# FPSim: A Floating- Point Arithmetic Demonstration Applet

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 FPSim: A Floating- Point Arithmetic Demonstration Applet Jeffrey Ward Departmen t of Computer Science St. Cloud State University ta te.edu Abstract An understan ding of IEEE 754 standar d conforming floating- point arithmetic is essential for any computer science student focusing on numerical computing. This topic, however, can often be difficult for students to unders tan d from an abstract, conceptual point of view. FPSim presents instructor s with a tool to visually demonst r ate the operation of IEEE 754 floating- point arithmetic. This Java applet is designed to be a full and accurate implementation of the IEEE 754 specification. The applet demonstr ates addition, subtraction, multiplication, and division of Single and Double floating- point numbers. Output shows the process of normalizing and rounding the number with guard bits and the sticky bit. It also shows the effects of the operation on the five floating- point exception flags. In order to accurately implement the IEEE 754 standar d, FPSim performs most arithmetic in software, with little reliance on the floating- point capabilities of either Java or the underlying hardware. The program stores numbers in binary as arrays of integers. Arithmetic functions then work with these arrays. Division is implemented by reciprocation throug h the use of Newton's Method. This paper will present the internal workings of FPSim.

2 Introduction The ANSI/IEEE Std IEEE Standar d for Binary Floating- Point Arithmetic defines the most widely used standar d for binary floatingpoint arithmetic. Specifically, the standar d defines how floating- point numbers are to be stored and rounded and how exceptional conditions are to be handled. Any student taking a course in numerical computing must begin with a solid comprehension of binary floating- point arithme tic as defined by this standar d. Like anything else, a visual demonst ration could give students a more thorough understa n ding of this topic. FPSim is designed to do just that. It is a Java applet which fully implements the IEEE 754 standar d and provides a graphical display of the arithmetic process. What follows is a brief overview of the standar d followed by a description of FPSim and its internal data structures and algorithms. For a more thorough overview of the IEEE 754 standar d and floating- point arithmetic, the reader should see [3] and [4]. Binary Representation Let β be the base of a floating- point number and p its precision. Then the number ± d 0.d 1 d 2...d p- 1 β e represents the number ± d 0 d 1 1 d d p 1 p 1 e, 0 d i. The part d 0.d 1 d 2...d p- 1 is referred to as the significand (also known as the fraction or mantisa). The IEEE 754 standar d defines two floating- point number storage formats: Single and Double. A Single floating- point number consists of 32 bits and a Double floating- point number consists of 64 bits. Each format is separated into three fields as shown in Figure 1 and Figure 2. Sign 1 bit Figure 1: The Single format bit fields. Biased Exponent Significand 8 bits 23 bits Most significant bit Least significant bit Sign 1 bit Figure 2: The Double format bit fields. Biased Exponent Significand 11 bits 52 bits Most significant bit Least significant bit

3 The exponent is stored as an unsigned integer. From this integer a bias is subtracted to retrieve the correct, signed exponent. There are two numbers of interest associated with the exponent: e min and e max are the smallest and largest possible exponent values for a given format. Table 1 shows the details of the exponent for Single and Double format numbers. Table 1: The exponent ranges for the standar d IEEE 754 formats. Format Exponent Length Bias Unbiase d Range e min e max Single 8 bits to Double 11 bits to In addition to Single and Double types, the IEEE 754 standar d allows for architecture- specific Extended formats. For example, the Intel IA- 32 architecture includes 80- bit Double Extended floating- point numbers. Normal and Subnormal Numbers The most significant bit of the binary floating- point significand is always assumed to be the only digit to the left of the binary point. Let b 0.b 1 b 2...b p- 1 be the significand of a binary floating- point number of precision p. If b 0 is one, the number is said to be normal ; if b 0 is zero, the number is subnor m al. IEEE 754 treats normalized numbers as the common case and does not store the most significant bit. Subnormal numbers are required when a number's exponent would be less than e min if normalized. In this case, the number is right- shifted until it has an exponent of e min 1 (see Table 2). This leads to a loss in precision and the underflow exception being thrown. Table 2: Interpretation of binary floating- point numbers from their exponent. Unbiase d Exponent Interpr et a tion e = e min - 1 e min e e max ± 0. b 1 b 2...b p- 1 2 emin ± 1. b 1 b 2...b p- 1 2 e e = e max + 1 ± Infinity if b 1 = b 2 =...= b p- 1 =0, NaN otherwise Special Values IEEE 754 defines two special values: Infinity and Not a Number (NaN). NaN results from perfor ming some invalid operation like those listed in Table 3

4 below. There is no single representation of NaN, but instead a whole set of possible representations. Any number with an exponent of e max + 1 and at least one bit of the significand field set is NaN. There is only one distinction made between any possible bit patterns of a NaN. If the most significant bit of the significand field is set, the number is a quiet NaN; if that bit is clear, the number is a signaling NaN. A signaling NaN used in one of the invalid operations listed in Table 3 will trigger an invalid exception, but a quiet NaN will not. An invalid operation involving either a signaling or a quiet NaN as an input will output a quiet NaN. Table 3: Invalid operations which produce NaN. Oper ation NaN Produced By Addition/subtraction Multiplication + (- ) 0 Division 0 / 0, / Rounding Regarding the issue of rounding, the IEEE 754 standar d states that...every operation...shall be performed as if it first produced an intermediate result correct to infinite precision and with unboun d e d range, and then rounded that result according to one of the [four rounding] modes [5] Of course producing a result that is correct to infinite precision would be impossible much of the time, so the use of guard bits and a sticky bit is employed for the purpose of correct rounding. A set of n guard bits will contain the last n bits right- shifted out of the result during an operation. Essentially, the number of significant bits is tempora rily increased by n. The sticky bit will capture any set bits that are right- shifted out of the guard bits. It is referred to as sticky because once set, it remains set until the current operation is complete. FPSim uses two guard bits and a sticky bit to ensure correctly rounde d results. There are four different methods for rounding specified by IEEE 754. The defualt, round to nearest, will round to the nearest representable number. In the event that two representable numbers are equidistant from the result, the even number is taken. The three other modes are round towards +Infinity, round towards - Infinity, and round towards zero. Certain care must be taken when rounding ±Infinity with these last three modes see Table 4.

5 Table 4: Results of rounding ±Infinity. Round Mode Result for +Infinity Result for - Infinity Round Towards Zero emax emax Round Towards +Infinity +Infinity emax Round Towards - Infinity emax - Infinity Floating- Point Exceptions The IEEE 754 standar d defines five floating- point arithmetic exceptions. 1) Invalid Occurs from any of the operations listed in Table 3. 2) Division by zero Occurs when attem pting to divide by zero. 3) Overflow Indicates that the result of an operation was larger than the maximu m possible value for the format being used. 4) Underflow Occurs when the result of an operation is subnor mal. 5) Inexact Indicates that the rounded result of an operation is not exact in other words, some precision may have been lost. Design One of the primary goals for FPSim was to create an implementation that would be as true as possible to the IEEE 754 standar d. For this reason, the progra m stores all numbers and perfor m s all floating- point arithmetic in software. There is little dependence on the underlying hardware or Java virtual machine floating- point functionality. Internal Floating- point Number Storage Within the program, the significand of each number is stored as an array of integers taking on the values zero or one. For the sake of simplicity in the arithmetic algorithms, the leading bit of the significand, which is implicit in the IEEE Single and Double formats, is included in this array. The array is exactly the size of the number of significant bits, with the most significant bit at index zero. Several other fields also describe the number. The exponent is stored as an integer and is unbiased. The sign bit, as well, is an integer, being either zero to indicate positive or one to indicate negative. The current state of the number whether it is normal, subnor mal, zero, NaN, or infinity is also stored.

7 If A 0 is an initial approximation for the reciprocal of the divisor, than at each iteration of Newton's Method, we will compute A n = A n 1 f A n 1 f ' A n 1 1/ r d = A n 1 1/ r 2 = A n 1 r d r 2 fo r n 1. Since A n - 1 is an approximation of r, we replace r with A n - 1 and obtain 2 A n =2 A n 1 d A n 1 = A n 1 2 d A n 1 fo r n 1. The greatest difficulty in this approach to division is finding a good initial approximation for the reciprocal. FPSim uses a formula described in [2] to make this approximation. Let Y be the divisor, n be the number of significant bits in Y and m be an integer such that 0 < m < n. Let p = 1.y 1 y 2...y m and q = y m +1 y m +2...y n. Then the initial approximation A 0 is given by A 0 = q q 2 m p 3. The computation of A 0 is the one and only part of FPSim that uses Java's floating- point functions. A hardware implementation would likely use a lookup table with a number of values of this formula already computed. This is not as feasible in FPSim, where a floating- point number requires much more than the 4 to 16 bytes needed in hardware. Even a relatively small lookup table would consume a very large amount of memory. Neither could the approximation be computed on demand in software, since it requires a division the very operation that we are ultimately trying to perfor m. So the approximation is computed by hardware and then converted to FPSim's internal floating- point format. Testing A program called TestFloat [1] is being used to verify the accuracy of FPSim. TestFloat compares the results of a computation from a softwarebased floating- point arithmetic engine, called SoftFloat, to that of the target implementation. It reports any discrepancies between the two in the resulting number or exception flags. TestFloat was designed for testing hardware, so some modifications were necessary. Each line of C

8 code in TestFloat that would normally compute the given operation was replaced with a function to execute a simple Java program. This program contained all of FPSim's arithmetic code. The operands and results were then passed back and forth between TestFloat and Java. At the time of this paper's writing, testing is still in progress. At present, addition is largely error- free, with only a few minor corrections that need to be made. Multiplication is about 50% error- free, and division is almost completely untested. References 1) Hauser, J. TestFloat. Retrieved February 21, 2004, from 2) Hennessy, J. L, & Patterson, D. A. (2003). Computer Architecture: A Quantitative Approach. 3 rd Edition. San Francisco: Morgan Kaufmann. 3) Ito, M., Takagi, N., & Yajima, S. (1995). Efficient Initial Approximation and Fast Converging Methods for Division and Square Root. IEEE 12 th Symposium on Computer Arithmetic ) Overton, M. L. (2001). Numerical Computing with IEEE Floating Point Arithmetic. SIAM. 5) Sun Microsystems. (1996). Numerical Computing Guide. 6) The Institute for Electrical and Electronics Engineers, Inc. (1985). IEEE Standard for Binary Floating- Point Arithmetic.

9 Appendix A A.1 Addition and Subtraction Input: Floating- point numbers OPA and OPB Output: Floating- point number RESULT. If (OPA.exp < OPB.exp) Shift significand of OPA right until the exponent of OPA matches that of OPB; If (OPA.exp > OPB.exp) Shift significand of OPB right until the exponent of OPB matches that of OPA; If (OPA == NaN or OPB == NaN) RESULT = NaN; If (the NaN operand is a signaling NaN) Throw an invalid exception; If (the specified operation is addition) If (OPA.sign = = OPB.sign) RESULT = OPA + OPB; If (OPA > OPB) RESULT = OPA OPB; If (OPA < OPB) RESULT = OPB OPA; RESULT = Zero; If (the specified operation is subtraction) If (OPA.sign = = OPB.sign) RESULT = OPA OPB; RESULT = OPA + OPB; A.2 Addition Input: Floating- point numbers OPA and OPB Output: Floating- point number RESULT. If (OPA == Infinity or OPB == Infinity) RESULT = Infinity; RESULT.significand = OPA.signficand + OPB.significand; If (the addition operation resulted in a carry out) Shift RESULT's significand right by one and set the most significant

10 bit to one; Normalize RESULT; Round RESULT; A.3 Subtraction Input: Floating- point numbers OPA and OPB Output: Floating- point number RESULT. If (OPA = = Infinity and OPB = = Infinity) RESULT = NaN; Throw invalid exception; If (OPA == Infinity or OPB == Infinity) RESULT = Infinity; RESULT.significand = OPA.signficand OPB.significand; Normalize RESULT; Round RESULT; A.4 Multiplication Input: Floating- point numbers OPA and OPB Output: Floating- point number RESULT. If (OPA == NaN or OPB == NaN) RESULT = NaN; If (the NaN operand is a signaling NaN) Throw an invalid exception; If (one operand is Infinity and the other is Zero) RESULT = NaN; Throw invalid exception; If (OPA == Infinity or OPB == Infinity) RESULT = Infinity; If (OPA.sign = = OPB.sign) RESULT.sign = Positive; RESULT.sign = Negative; RESULT.exponent = OPA.exponent + OPB.exponent; RESULT.significand = OPA.significand * OPB.significand; Normalize RESULT;

11 Round RESULT; A.5 Division Input: Floating- point numbers OPA and OPB Output: Floating- point number RESULT. If (OPA == NaN or OPB == NaN) RESULT = NaN; If (the NaN operand is a signaling NaN) Throw an invalid exception; If (OPA == Zero and OPB == Zero) RESULT = NaN; Throw an invalid exception; If (OPB == Zero) RESULT = Infinity; Throw divide by zero exception; If (OPA.sign = = OPB.sign) RESULT.sign = Positive; RESULT.sign = Negative; Compute OPB_INVERSE, the reciprocal of OPB; RESULT = OPA * OPB_INVERSE; Normalize RESULT; Round RESULT; A.6 Normalization Input: Floating- point number NUMBER If (NUMBER.exponent < e min ) Right- shift NUMBER until NUMBER.exponent == e min ; If (e min < NUMBER.exponent e max ) Left- shift NUMBER until the most significant bit is one or until NUMBER.exponent == e min ; If (NUMBER.exponent > e max ) NUMBER = Infinity; Throw overflow and inexact exceptions;

12 A.7 Rounding Input: Floating- point number NUMBER; guard/sticky bits from the last operation stored in the three- element array GUARD If (no guard/sticky bits are set) If (Rounding Mode = = Round Towards - Infinity) If (NUMBER.sign = = Positive) Truncate NUMBER.significand; Increment NUMBER.significand; If (Rounding Mode = = Round Towards +Infinity) If (NUMBER.sign = = Positive) Increment NUMBER.significand; Truncate NUMBER.significand; If (Rounding Mode = = Round Towards Zero) Truncate NUMBER.significand; If (Rounding Mode = = Round to Nearest) GUARDVALUE = GUARD[0] * 4 + GUARD[1] * 2 + GUARD[2]; If (GUARDVALUE < 4) Truncate NUMBER.signficand; If (GUARDVALUE > 4) Increment NUMBER.significand; If (least significant bit of NUMBER.significand = = 1) Increment NUMBER.significand; Truncate NUMBER.significand;

### UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-C Floating-Point Arithmetic - III Israel Koren ECE666/Koren Part.4c.1 Floating-Point Adders

### Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

### The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive.

IEEE 754 Standard - Overview Frozen Content Modified by on 13-Sep-2017 Before discussing the actual WB_FPU - Wishbone Floating Point Unit peripheral in detail, it is worth spending some time to look at

### Floating Point Arithmetic

Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

### Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

### Floating-point representations

Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

### Floating-point representations

Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

### By, Ajinkya Karande Adarsh Yoga

By, Ajinkya Karande Adarsh Yoga Introduction Early computer designers believed saving computer time and memory were more important than programmer time. Bug in the divide algorithm used in Intel chips.

### EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 4-B Floating-Point Arithmetic - II Spring 2017 Koren Part.4b.1 The IEEE Floating-Point Standard Four formats for floating-point

### Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

### The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop.

CS 320 Ch 10 Computer Arithmetic The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. Signed integers are typically represented in sign-magnitude

### UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-A Floating-Point Arithmetic Israel Koren ECE666/Koren Part.4a.1 Preliminaries - Representation

### UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-B Floating-Point Arithmetic - II Israel Koren ECE666/Koren Part.4b.1 The IEEE Floating-Point

### Floating Point Numbers

Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

### Finite arithmetic and error analysis

Finite arithmetic and error analysis Escuela de Ingeniería Informática de Oviedo (Dpto de Matemáticas-UniOvi) Numerical Computation Finite arithmetic and error analysis 1 / 45 Outline 1 Number representation:

### Floating Point January 24, 2008

15-213 The course that gives CMU its Zip! Floating Point January 24, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties class04.ppt 15-213, S 08 Floating

### Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

### Divide: Paper & Pencil

Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

### Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

### Double Precision Floating-Point Arithmetic on FPGAs

MITSUBISHI ELECTRIC ITE VI-Lab Title: Double Precision Floating-Point Arithmetic on FPGAs Internal Reference: Publication Date: VIL04-D098 Author: S. Paschalakis, P. Lee Rev. A Dec. 2003 Reference: Paschalakis,

### CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

### Foundations of Computer Systems

18-600 Foundations of Computer Systems Lecture 4: Floating Point Required Reading Assignment: Chapter 2 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron Assignments for This Week: Lab 1 18-600

### Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

### Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

### Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

### ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

### Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.

Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010 IEEE Floating point Floating point

### Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

### Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) (aritmeettis-looginen yksikkö) Does all

### Signed Multiplication Multiply the positives Negate result if signs of operand are different

Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result

### Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science)

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties

### Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) Does all work in CPU (aritmeettis-looginen

### Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

CS 33 Data Representation (Part 3) CS33 Intro to Computer Systems VIII 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Byte-Oriented Memory Organization 00 0 FF F Programs refer to data by address

### Module 2: Computer Arithmetic

Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

### Floating Point Numbers

Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

### Floating Point Numbers

Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Fractions in Binary Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU)

### System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

### COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

### Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (

Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language

### Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon

Floating Point 15-213: Introduction to Computer Systems 4 th Lecture, May 25, 2018 Instructor: Brian Railing Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition

### Classes of Real Numbers 1/2. The Real Line

Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers non-integral fractions irrational numbers Rational numbers

### Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Carnegie Mellon Floating Point 15-213/18-213/14-513/15-513: Introduction to Computer Systems 4 th Lecture, Sept. 6, 2018 Today: Floating Point Background: Fractional binary numbers IEEE floating point

### Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

### Floating Point Numbers

Floating Point Floating Point Numbers Mathematical background: tional binary numbers Representation on computers: IEEE floating point standard Rounding, addition, multiplication Kai Shen 1 2 Fractional

### Data Representation Floating Point

Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

### Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point

Chapter 3 Part 2 Arithmetic for Computers Floating Point Floating Point Representation for non integral numbers Including very small and very large numbers 4,600,000,000 or 4.6 x 10 9 0.0000000000000000000000000166

### Floating Point. Borrowed from the Carnegie Mellon (Thanks, guys!) Carnegie Mellon

Floating Point Borrowed from the 15-213 Team @ Carnegie Mellon (Thanks, guys!) Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties

### Giving credit where credit is due

CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

### CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: September 18, 2017 at 12:48 CS429 Slideset 4: 1 Topics of this Slideset

### COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE For COMPUTER SCIENCE COMPUTER ORGANIZATION. SYLLABUS AND ARCHITECTURE Machine instructions and addressing modes, ALU and data-path, CPU control design, Memory interface,

### Giving credit where credit is due

JDEP 284H Foundations of Computer Systems Floating Point Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created by Drs. Bryant

### Data Representation Floating Point

Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

### Floating Point Arithmetic. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Floating Point Arithmetic Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Floating Point (1) Representation for non-integral numbers Including very

### Floating Point. CSE 238/2038/2138: Systems Programming. Instructor: Fatma CORUT ERGİN. Slides adapted from Bryant & O Hallaron s slides

Floating Point CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides Today: Floating Point Background: Fractional binary numbers IEEE floating

### COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

### Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

1 Logistics Notes for 2016-09-07 1. We are still at 50. If you are still waiting and are not interested in knowing if a slot frees up, let me know. 2. There is a correction to HW 1, problem 4; the condition

### Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

### VHDL IMPLEMENTATION OF IEEE 754 FLOATING POINT UNIT

VHDL IMPLEMENTATION OF IEEE 754 FLOATING POINT UNIT Ms. Anjana Sasidharan Student, Vivekanandha College of Engineering for Women, Namakkal, Tamilnadu, India. Abstract IEEE-754 specifies interchange and

### Floating-Point Arithmetic

ENEE446---Lectures-4/10-15/08 A. Yavuz Oruç Professor, UMD, College Park Copyright 2007 A. Yavuz Oruç. All rights reserved. Floating-Point Arithmetic Integer or fixed-point arithmetic provides a complete

### Hardware Modules for Safe Integer and Floating-Point Arithmetic

Hardware Modules for Safe Integer and Floating-Point Arithmetic A Thesis submitted to the Graduate School Of The University of Cincinnati In partial fulfillment of the requirements for the degree of Master

### Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

### ECE260: Fundamentals of Computer Engineering

Arithmetic for Computers James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Arithmetic for

### Arithmetic for Computers. Hwansoo Han

Arithmetic for Computers Hwansoo Han Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

### Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 3 Fall 2005 Department of Computer Science Kent State University Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point

### Today: Floating Point. Floating Point. Fractional Binary Numbers. Fractional binary numbers. bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j

Floating Point 15 213: Introduction to Computer Systems 4 th Lecture, Jan 24, 2013 Instructors: Seth Copen Goldstein, Anthony Rowe, Greg Kesden 2 Fractional binary numbers What is 1011.101 2? Fractional

### Computer Architecture and Organization

3-1 Chapter 3 - Arithmetic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 3 Arithmetic 3-2 Chapter 3 - Arithmetic Chapter Contents 3.1 Fixed Point Addition and Subtraction

### MIPS Integer ALU Requirements

MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set

### Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier

Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier Sahdev D. Kanjariya VLSI & Embedded Systems Design Gujarat Technological University PG School Ahmedabad,

### Floating Point Arithmetic

Floating Point Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

### IEEE Standard for Floating-Point Arithmetic: 754

IEEE Standard for Floating-Point Arithmetic: 754 G.E. Antoniou G.E. Antoniou () IEEE Standard for Floating-Point Arithmetic: 754 1 / 34 Floating Point Standard: IEEE 754 1985/2008 Established in 1985 (2008)

### VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y

Arithmetic A basic operation in all digital computers is the addition and subtraction of two numbers They are implemented, along with the basic logic functions such as AND,OR, NOT,EX- OR in the ALU subsystem

### Chapter 10 - Computer Arithmetic

Chapter 10 - Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 10 - Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation

### Chapter 2. Data Representation in Computer Systems

Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

### Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1

Floating-Point Arithmetic Numerical Analysis uses floating-point arithmetic, but it is just one tool in numerical computation. There is an impression that floating point arithmetic is unpredictable and

### C NUMERIC FORMATS. Overview. IEEE Single-Precision Floating-point Data Format. Figure C-0. Table C-0. Listing C-0.

C NUMERIC FORMATS Figure C-. Table C-. Listing C-. Overview The DSP supports the 32-bit single-precision floating-point data format defined in the IEEE Standard 754/854. In addition, the DSP supports an

### Chapter 3 Arithmetic for Computers (Part 2)

Department of Electr rical Eng ineering, Chapter 3 Arithmetic for Computers (Part 2) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Eng ineering, Feng-Chia Unive

### Chapter 2 Data Representations

Computer Engineering Chapter 2 Data Representations Hiroaki Kobayashi 4/21/2008 4/21/2008 1 Agenda in Chapter 2 Translation between binary numbers and decimal numbers Data Representations for Integers

### Introduction to Numerical Computing

Statistics 580 Introduction to Numerical Computing Number Systems In the decimal system we use the 10 numeric symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent numbers. The relative position of each symbol

### Number Representations

Number Representations times XVII LIX CLXX -XVII D(CCL)LL DCCC LLLL X-X X-VII = DCCC CC III = MIII X-VII = VIIIII-VII = III 1/25/02 Memory Organization Viewed as a large, single-dimension array, with an

### A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications

A Single/Double Precision Floating-Point Reciprocal Unit Design for Multimedia Applications Metin Mete Özbilen 1 and Mustafa Gök 2 1 Mersin University, Engineering Faculty, Department of Computer Science,

### ±M R ±E, S M CHARACTERISTIC MANTISSA 1 k j

ENEE 350 c C. B. Silio, Jan., 2010 FLOATING POINT REPRESENTATIONS It is assumed that the student is familiar with the discussion in Appendix B of the text by A. Tanenbaum, Structured Computer Organization,

### 3.5 Floating Point: Overview

3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer

### Computer Organization: A Programmer's Perspective

A Programmer's Perspective Representing Numbers Gal A. Kaminka galk@cs.biu.ac.il Fractional Binary Numbers 2 i 2 i 1 4 2 1 b i b i 1 b 2 b 1 b 0. b 1 b 2 b 3 b j 1/2 1/4 1/8 Representation Bits to right

### Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE23: Introduction to Computer Systems, Spring 218,

### Floating Point Considerations

Chapter 6 Floating Point Considerations In the early days of computing, floating point arithmetic capability was found only in mainframes and supercomputers. Although many microprocessors designed in the

### Floating Point Arithmetic

Floating Point Arithmetic Computer Systems, Section 2.4 Abstraction Anything that is not an integer can be thought of as . e.g. 391.1356 Or can be thought of as + /

### Data Representations & Arithmetic Operations

Data Representations & Arithmetic Operations Hiroaki Kobayashi 7/13/2011 7/13/2011 Computer Science 1 Agenda Translation between binary numbers and decimal numbers Data Representations for Integers Negative

### COMPUTER ARCHITECTURE AND ORGANIZATION. Operation Add Magnitudes Subtract Magnitudes (+A) + ( B) + (A B) (B A) + (A B)

Computer Arithmetic Data is manipulated by using the arithmetic instructions in digital computers. Data is manipulated to produce results necessary to give solution for the computation problems. The Addition,

### Data Representation Floating Point

Data Representation Floating Point CSCI 224 / ECE 317: Computer Architecture Instructor: Prof. Jason Fritts Slides adapted from Bryant & O Hallaron s slides Today: Floating Point Background: Fractional

### Floating Point. CSE 351 Autumn Instructor: Justin Hsia

Floating Point CSE 351 Autumn 2016 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun http://xkcd.com/899/

### CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits

### Numerical computing. How computers store real numbers and the problems that result

Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

### Floating Point Square Root under HUB Format

Floating Point Square Root under HUB Format Julio Villalba-Moreno Dept. of Computer Architecture University of Malaga Malaga, SPAIN jvillalba@uma.es Javier Hormigo Dept. of Computer Architecture University

### A Decimal Floating Point Arithmetic Unit for Embedded System Applications using VLSI Techniques

A Decimal Floating Point Arithmetic Unit for Embedded System Applications using VLSI Techniques Rajeshwari Mathapati #1, Shrikant. K.Shirakol *2 # Dept of E&CE, S.D.M. College of Engg. and Tech., Dharwad,

### Floating-point representation

Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,