CS61C L10 MIPS Instruction Representation II, Floating Point I (6)
|
|
- Joseph Grant
- 1 years ago
- Views:
Transcription
1 CS61C L1 MIPS Instruction Representation II, Floating Point I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #1 Instruction Representation II, Floating Point I There is one handout today at the front and back of the room! Lecturer PSOE, new dad Dan Garcia #9 bears win again! Marshawn Lynch ran for 17 yds and a TD & Ayoob went We won 28- and have outscored zona 66- the last 2 yrs! We visit #16 UCLA next week. calbears.collegesports.com/sports/m-footbl/recaps/115aaa.html Review Logical and Shift Instructions Operate on individual bits (arithmetic operate on entire word) Use to isolate fields, either by masking or by shifting back & forth Use shift left logical, sll,for multiplication by powers of 2 Use shift right arithmetic, sra,for division by powers of 2 Simplifying MIPS: Define instructions to be same size as data word (one word) so that they can use the same memory (compiler can use lw and sw). Computer actually stores programs as a series of these 32-bit numbers. MIPS Machine Language Instruction: 32 bits representing a single instruction R opcode rs rt rd shamt funct I opcode rs rt immediate J opcode target address CS61C L1 MIPS Instruction Representation II, Floating Point I (2) I-Format Problems (/3) Problem : Unsigned # sign-extended? addiu, sltiu, sign-extends immediates to 32 bits. Thus, # is a signed integer. Rationale addiu so that can add w/out overflow - See K&R pp. 23, 35 sltiu suffers so that we can have ez HW - Does this mean we ll get wrong answers? - Nope, it means assembler has to handle any unsigned immediate 2 15 n < 2 16 (I.e., with a 1 in the 15th bit and s in the upper 2 bytes) as it does for numbers that are too large. I-Format Problems (1/3) Problem 1: Chances are that addi, lw, sw and slti will use immediates small enough to fit in the immediate field. but what if it s too big? We need a way to deal with a 32-bit immediate in any I-format instruction. CS61C L1 MIPS Instruction Representation II, Floating Point I (3) CS61C L1 MIPS Instruction Representation II, Floating Point I (4) I-Format Problems (2/3) Solution to Problem 1: Handle it in software + new instruction Don t change the current instructions: instead, add a new instruction to help out New instruction: lui register, immediate stands for Load Upper Immediate takes 16-bit immediate and puts these bits in the upper half (high order half) of the specified register sets lower half to s I-Format Problems (3/3) Solution to Problem 1 (continued): So how does lui help us? Example: addi becomes: lui ori add $t,$t, xababcdcd $at, xabab $at, $at, xcdcd $t,$t,$at Now each I-format instruction has only a 16- bit immediate. Wouldn t it be nice if the assembler would this for us automatically? (later) CS61C L1 MIPS Instruction Representation II, Floating Point I (5) CS61C L1 MIPS Instruction Representation II, Floating Point I (6)
2 CS61C L1 MIPS Instruction Representation II, Floating Point I (7) Branches: PC-Relative Addressing (1/5) Use I-Format opcode rs rt immediate opcode specifies beq v. bne rs and rt specify registers to compare What can immediate specify? Immediate is only 16 bits PC (Program Counter) has byte address of current instruction being executed; 32-bit pointer to memory So immediate cannot specify entire address to branch to. Branches: PC-Relative Addressing (2/5) How do we usually use branches? Answer: if-else, while, for Loops are generally small: typically up to 5 instructions Function calls and unconditional jumps are done using jump instructions (j and jal), not the branches. Conclusion: may want to branch to anywhere in memory, but a branch often changes PC by a small amount CS61C L1 MIPS Instruction Representation II, Floating Point I (8) Branches: PC-Relative Addressing (3/5) Solution to branches in a 32-bit instruction: PC-Relative Addressing Let the 16-bit immediate field be a signed two s complement integer to be added to the PC if we take the branch. Now we can branch ± 2 15 bytes from the PC, which should be enough to cover almost any loop. Any ideas to further optimize this? Branches: PC-Relative Addressing (4/5) Note: Instructions are words, so they re word aligned (byte address is always a multiple of 4, which means it ends with in binary). So the number of bytes to add to the PC will always be a multiple of 4. So specify the immediate in words. Now, we can branch ± 2 15 words from the PC (or ± 2 17 bytes), so we can handle loops 4 times as large. CS61C L1 MIPS Instruction Representation II, Floating Point I (9) CS61C L1 MIPS Instruction Representation II, Floating Point I (1) Branches: PC-Relative Addressing (5/5) Branch Calculation: If we don t take the branch: PC = PC + 4 PC+4 = byte address of next instruction If we do take the branch: PC = (PC + 4) + (immediate * 4) Observations - Immediate field specifies the number of words to jump, which is simply the number of instructions to jump. - Immediate field can be positive or negative. - Due to hardware, add immediate to (PC+4), not to PC; will be clearer why later in course CS61C L1 MIPS Instruction Representation II, Floating Point I (11) Branch Example (1/3) MIPS Code: Loop: beq $9,$,End add $8,$8,$1 addi $9,$9,-1 j Loop End: beq branch is I-Format: opcode = 4 (look up in table) rs = 9 (first operand) rt = (second operand) immediate =??? CS61C L1 MIPS Instruction Representation II, Floating Point I (12)
3 CS61C L1 MIPS Instruction Representation II, Floating Point I (13) Branch Example (2/3) MIPS Code: Loop: beq $9,$,End addi $8,$8,$1 addi $9,$9,-1 j Loop End: Immediate Field: Number of instructions to add to (or subtract from) the PC, starting at the instruction following the branch. In beq case, immediate = 3 Branch Example (3/3) MIPS Code: Loop: beq $9,$,End addi $8,$8,$1 addi $9,$9,-1 j Loop End: decimal representation: binary representation: CS61C L1 MIPS Instruction Representation II, Floating Point I (14) Questions on PC-addressing Upcoming Calendar Does the value in branch field change if we move the code? What do we do if destination is > 2 15 instructions away from branch? Since it s limited to ± 2 15 instructions, doesn t this generate lots of extra MIPS instructions? Why do we need all these addressing modes? Why not just one? CS61C L1 MIPS Instruction Representation II, Floating Point I (15) Week # #6 This week #7 Next week #8 Midterm week Sun 2pm Review 1 Evans Mon MIPS Inst Format II / Floating Pt I MIPS Inst Format III / Running Program I Exam Midterm 5:3-8:3pm Here! (155 Dwin) CS61C L1 MIPS Instruction Representation II, Floating Point I (17) Wed Floating Pt II (No Dan OH) Running Program II (Proj 2 due) SDS I Thu Lab Floating Pt Running Program (Proj 2 really due) SDS J-Format Instructions (1/5) For branches, we assumed that we won t want to branch too far, so we can specify change in PC. For general jumps (j and jal), we may jump to anywhere in memory. Ideally, we could specify a 32-bit memory address to jump to. Unfortunately, we can t fit both a 6-bit opcode and a 32-bit address into a single 32-bit word, so we compromise. J-Format Instructions (2/5) Define fields of the following number of bits each: 6 bits 26 bits As usual, each field has a name: opcode target address Key Concepts Keep opcode field identical to R-format and I-format for consistency. Combine all other fields to make room for large target address. CS61C L1 MIPS Instruction Representation II, Floating Point I (18) CS61C L1 MIPS Instruction Representation II, Floating Point I (19)
4 CS61C L1 MIPS Instruction Representation II, Floating Point I (2) J-Format Instructions (3/5) For now, we can specify 26 bits of the 32-bit bit address. Optimization: Note that, just like with branches, jumps will only jump to word aligned addresses, so last two bits are always (in binary). So let s just take this for granted and not even specify them. J-Format Instructions (4/5) Now specify 28 bits of a 32-bit address Where do we get the other 4 bits? By definition, take the 4 highest order bits from the PC. Technically, this means that we cannot jump to anywhere in memory, but it s adequate % of the time, since programs aren t that long - only if straddle a 256 MB boundary If we absolutely need to specify a 32-bit address, we can always put it in a register and use the jr instruction. CS61C L1 MIPS Instruction Representation II, Floating Point I (21) J-Format Instructions (5/5) In semi-conclusion Summary: New PC = { PC[31..28], target address, } Understand where each part came from! Note: {,, } means concatenation { 4 bits, 26 bits, 2 bits } = 32 bit address { 11, , } = Note: Book uses R I J MIPS Machine Language Instruction: 32 bits representing a single instruction opcode rs rt rd shamt funct opcode rs rt immediate opcode target address Branches use PC-relative addressing, Jumps use absolute addressing. Disassembly is simple and starts by decoding opcode field. (more in a week) CS61C L1 MIPS Instruction Representation II, Floating Point I (22) CS61C L1 MIPS Instruction Representation II, Floating Point I (24) Quote of the day 95% of the folks out there are completely clueless about floating-point. James Gosling Sun Fellow Java Inventor Review of Numbers Computers are made to deal with numbers What can we represent in N bits? Unsigned integers: to 2 N - 1 Signed Integers (Two s Complement) -2 (N-1) to 2 (N-1) - 1 CS61C L1 MIPS Instruction Representation II, Floating Point I (25) CS61C L1 MIPS Instruction Representation II, Floating Point I (26)
5 CS61C L1 MIPS Instruction Representation II, Floating Point I (27) Other Numbers What about other numbers? Very large numbers? (seconds/century) 3,155,76, 1 ( x 1 9 ) Very small numbers? (atomic diameter).1 1 (1. 1 x 1-8 ) Rationals (repeating pattern) 2/3 ( ) Irrationals 2 1/2 ( ) Transcendentals e ( ), π ( ) All represented in scientific notation Scientific Notation (in Decimal) mantissa x 1 23 decimal point exponent radix (base) Normalized form: no leadings s (exactly one digit to left of decimal point) Alternatives to representing 1/1,,, Normalized: 1. x 1-9 Not normalized:.1 x 1-8,1. x 1-1 CS61C L1 MIPS Instruction Representation II, Floating Point I (28) Scientific Notation (in Binary) Floating Point Representation (1/2) mantissa exponent Normal format: +1.xxxxxxxxxx two *2 yyyy two Multiple of Word Size (32 bits) 1. two x 2-1 radix (base) binary point Computer arithmetic that supports it called floating point, because it represents numbers where the binary point is not fixed, as it is for integers Declare such variable in C as float S Exponent Significand 1 bit 8 bits 23 bits S represents Sign Exponent represents y s Significand represents x s Represent numbers as small as 2. x 1-38 to as large as 2. x 1 38 CS61C L1 MIPS Instruction Representation II, Floating Point I (29) CS61C L1 MIPS Instruction Representation II, Floating Point I (3) Floating Point Representation (2/2) What if result too large? (> 2.x1 38 ) Overflow! Overflow Exponent larger than represented in 8-bit Exponent field What if result too small? (>, < 2.x1-38 ) Underflow! Underflow Negative exponent larger than represented in 8-bit Exponent field How to reduce chances of overflow or underflow? Double Precision Fl. Pt. Representation Next Multiple of Word Size (64 bits) S Exponent Significand 1 bit 11 bits 2 bits Significand (cont d) 32 bits Double Precision (vs. Single Precision) C variable declared as double Represent numbers almost as small as 2. x 1-38 to almost as large as 2. x 1 38 But primary advantage is greater accuracy due to larger significand CS61C L1 MIPS Instruction Representation II, Floating Point I (31) CS61C L1 MIPS Instruction Representation II, Floating Point I (32)
6 CS61C L1 MIPS Instruction Representation II, Floating Point I (33) QUAD Precision Fl. Pt. Representation Next Multiple of Word Size (128 bits) Unbelievable range of numbers Unbelievable precision (accuracy) This is currently being worked on The current version has 15 bits for the exponent and 112 bits for the significand Oct-Precision? That s just silly! It s been implemented before IEEE 754 Floating Point Standard (1/4) Single Precision, DP similar Sign bit: 1 means negative means positive Significand: To pack more bits, leading 1 implicit for normalized numbers bits single, bits double always true: Significand < 1 (for normalized numbers) Note: has no leading 1, so reserve exponent value just for number CS61C L1 MIPS Instruction Representation II, Floating Point I (34) IEEE 754 Floating Point Standard (2/4) Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands Wanted it to be faster, single compare if possible, especially if positive numbers Then want order: Highest order bit is sign ( negative < positive) Exponent next, so big exponent => bigger # Significand last: exponents same => bigger # IEEE 754 Floating Point Standard (3/4) Negative Exponent? 2 s comp? 1. x 2-1 v. 1. x2 +1 (1/2 v. 2) 1/ This notation using integer compare of 1/2 v. 2 makes 1/2 > 2! Instead, pick notation 1 is most negative, and is most positive 1. x 2-1 v. 1. x2 +1 (1/2 v. 2) 1/ CS61C L1 MIPS Instruction Representation II, Floating Point I (35) CS61C L1 MIPS Instruction Representation II, Floating Point I (36) IEEE 754 Floating Point Standard (4/4) Called Biased Notation, where bias is number subtract to get real number IEEE 754 uses bias of 127 for single prec. Subtract 127 from Exponent field to get actual value for exponent 123 is bias for double precision Summary (single precision): S Exponent Significand 1 bit 8 bits 23 bits (-1) S x (1 + Significand) x 2 (Exponent-127) Double precision identical, except with exponent bias of 123 CS61C L1 MIPS Instruction Representation II, Floating Point I (37) And in conclusion Floating Point numbers approximate values that we want to use. IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers Every desktop or server computer sold since ~1997 follows these conventions Summary (single precision): S Exponent Significand 1 bit 8 bits 23 bits (-1) S x (1 + Significand) x 2 (Exponent-127) Double precision identical, bias of 123 CS61C L1 MIPS Instruction Representation II, Floating Point I (4)
CS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #10 Instruction Representation II, Floating Point I 2005-10-03 Lecturer PSOE, new dad Dan Garcia www.cs.berkeley.edu/~ddgarcia #9 bears
CS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Are you P2P sharing fans? Two
CS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 14 Introduction to MIPS Instruction Representation II 2004-02-23 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia In the US, who is
CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats
CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Machine Interpretation Levels of Representation/Interpretation
CS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 13 Introduction to MIPS Instruction Representation I Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Anyone seen Terminator? Military
3.5 Floating Point: Overview
3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer
CS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures $2M 3D camera Lecture 8 MIPS Instruction Representation I Instructor: Miki Lustig 2014-09-17 August 25: The final ISA showdown: Is ARM, x86, or
Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21
2.9 Communication with People: Byte Data & Constants Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 32: space 33:! 34: 35: #...
Floating Point Numbers. Lecture 9 CAP
Floating Point Numbers Lecture 9 CAP 3103 06-16-2014 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? 2 N things, and no more! They could be Unsigned integers:
Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture
Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:
Floating Point Arithmetic
Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678
Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:
Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators
Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction
1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in
Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture
Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:
Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine
Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction
MIPS (SPIM) Assembler Syntax
MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin
CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014
B CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 DUE : March 3, 2014 READ : - Related sections of Chapter 2 - Related sections of Chapter 3 - Related sections of Appendix A - Related sections
Chapter 2. Instruction Set Architecture (ISA)
Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:
ECE232: Hardware Organization and Design. Computer Organization - Previously covered
ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization
MIPS%Assembly% E155%
MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary
ecture 25 Floating Point Friedland and Weaver Computer Science 61C Spring 2017 March 17th, 2017
ecture 25 Computer Science 61C Spring 2017 March 17th, 2017 Floating Point 1 New-School Machine Structures (It s a bit more complicated!) Software Hardware Parallel Requests Assigned to computer e.g.,
MIPS PROJECT INSTRUCTION SET and FORMAT
ECE 312: Semester Project MIPS PROJECT INSTRUCTION SET FORMAT This is a description of the required MIPS instruction set, their meanings, syntax, semantics, bit encodings. The syntax given for each instruction
ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design
ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer
CS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 17 Instruction Representation III 2010-03-01! Hello to Sherif Kandel listening from Egypt!!!Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia
COMP MIPS instructions 2 Feb. 8, f = g + h i;
Register names (save, temporary, zero) From what I have said up to now, you will have the impression that you are free to use any of the 32 registers ($0,..., $31) in any instruction. This is not so, however.
CS3350B Computer Architecture
CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,
RECITATION SECTION: YOUR CDA 3101 NUMBER:
PRINT YOUR NAME: KEY UFID [5:8]: RECITATION SECTION: YOUR CDA 3101 NUMBER: I have not looked at anyone else s paper, and I have not obtained unauthorized help in completing this exam. Also, I have adhered
Review (1/2) IEEE 754 Floating Point Standard: Kahan pack as much in as could get away with. CS61C - Machine Structures
Review (1/2) CS61C - Machine Structures Lecture 11 - Starting a Program October 4, 2000 David Patterson http://www-inst.eecs.berkeley.edu/~cs61c/ IEEE 754 Floating Point Standard: Kahan pack as much in
Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.
Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic
MIPS Assembly Programming
COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2
CS 61C: Great Ideas in Computer Architecture RISC-V Instruction Formats
CS 61C: Great Ideas in Computer Architecture RISC-V Instruction Formats Instructors: Krste Asanović and Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 9/14/17 Fall 2017 - Lecture #7 1 Levels of
UCB CS61C : Machine Structures
inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 10 Introduction to MIPS Procedures I Sr Lecturer SOE Dan Garcia 2014-02-14 If cars broadcast their speeds to other vehicles (and the
Mips Code Examples Peter Rounce
Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register $2 then
Math 230 Assembly Programming (AKA Computer Organization) Spring 2008
Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1
Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers
CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers
CSE A215 Assembly Language Programming for Engineers
CSE A215 Assembly Language Programming for Engineers Lecture 7 MIPS vs. ARM (COD Chapter 2 and Exam #1 Review) October 12, 2012 Sam Siewert Comparison of MIPS32 and ARM Instruction Formats and Addressing
CS 4200/5200 Computer Architecture I
CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational
Midterm. CS64 Spring Midterm Exam
Midterm LAST NAME FIRST NAME PERM Number Instructions Please turn off all pagers, cell phones and beepers. Remove all hats & headphones. Place your backpacks, laptops and jackets at the front. Sit in every
Module 2: Computer Arithmetic
Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N
Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off.
Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 552 Introductions to Computer Architecture Homework #2 (Suggested Solution) 1. (10 points) MIPS and C program translations
Computer Architecture. Chapter 3: Arithmetic for Computers
182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin
Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.
Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood
Number Systems and Computer Arithmetic
Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text
EC 413 Computer Organization
EC 413 Computer Organization Review I Prof. Michel A. Kinsy Computing: The Art of Abstraction Application Algorithm Programming Language Operating System/Virtual Machine Instruction Set Architecture (ISA)
Course Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation
Course Schedule CS 221 Computer Architecture Week 3: Information Representation (2) Fall 2001 W1 Sep 11- Sep 14 Introduction W2 Sep 18- Sep 21 Information Representation (1) (Chapter 3) W3 Sep 25- Sep
MIPS ISA and MIPS Assembly. CS301 Prof. Szajda
MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done
Computer Architecture Set Four. Arithmetic
Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What
Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College
Assembly Language Programming CPSC 252 Computer Organization Ellen Walker, Hiram College Instruction Set Design Complex and powerful enough to enable any computation Simplicity of equipment MIPS Microprocessor
EE108B Lecture 3. MIPS Assembly Language II
EE108B Lecture 3 MIPS Assembly Language II Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Urgent: sign up at EEclass and say if you are taking 3 or 4 units Homework
Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology
Computer Organization MIPS Architecture Department of Computer Science Missouri University of Science & Technology hurson@mst.edu Computer Organization Note, this unit will be covered in three lectures.
All instructions have 3 operands Operand order is fixed (destination first)
Instruction Set Architecture for MIPS Processors Overview Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu These slides are available at: http://www.csc.lsu.edu/~durresi/_07/
Assembly Programming
Designing Computer Systems Assembly Programming 08:34:48 PM 23 August 2016 AP-1 Scott & Linda Wills Designing Computer Systems Assembly Programming In the early days of computers, assembly programming
Computer Architecture. Lecture 2 : Instructions
Computer Architecture Lecture 2 : Instructions 1 Components of a Computer Hierarchical Layers of Program Code 3 Instruction Set The repertoire of instructions of a computer 2.1 Intr roduction Different
Problem maximum score 1 35pts 2 22pts 3 23pts 4 15pts Total 95pts
University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences CS61c Summer 2001 Woojin Yu Midterm Exam This is a closed-book exam. No calculators
ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013
Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate
Anne Bracy CS 3410 Computer Science Cornell University. See P&H Chapter: , , Appendix B
Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. See P&H Chapter: 2.16-2.20, 4.1-4.4,
ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5
ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local
Arithmetic for Computers. Hwansoo Han
Arithmetic for Computers Hwansoo Han Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation
Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3
Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part
Orange Coast College. Business Division. Computer Science Department CS 116- Computer Architecture. The Instructions
Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Instructions 1 1 Topics: Assembly language, assemblers MIPS R2000 Assembly language Instruction set
EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design
EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown
Merging datapaths: (add,lw, sw)
COP 273 Winter 2012 1 - IPS datapath and control 2 ar., 2012 erging datapaths: (add,lw, sw) The datapaths that we saw last lecture considered each instruction in isolation. I drew only those elements that
Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer
Instructions (354 Review) Forecast Instructions are the words of a computer Instruction set architecture (ISA) is its vocabulary With a few other things, this defines the interface of computers But implementations
Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.
Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum
MIPS Integer ALU Requirements
MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set
CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14
CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 13 & 14 Dr. Kinga Lipskoch Fall 2017 Frame Pointer (1) The stack is also used to store variables that are local to function, but
Review of the Machine Cycle
MIPS Branch and Jump Instructions Cptr280 Dr Curtis Nelson Review of the Machine Cycle When a program is executing, its instructions are located in main memory. The address of an instruction is the address
EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic
1 EE 109 Unit 19 IEEE 754 Floating Point Representation Floating Point Arithmetic 2 Floating Point Used to represent very small numbers (fractions) and very large numbers Avogadro s Number: +6.0247 * 10
Homework 1 graded and returned in class today. Solutions posted online. Request regrades by next class period. Question 10 treated as extra credit
Announcements Homework 1 graded and returned in class today. Solutions posted online. Request regrades by next class period. Question 10 treated as extra credit Quiz 2 Monday on Number System Conversions
Architecture I. Computer Systems Laboratory Sungkyunkwan University
MIPS Instruction ti Set Architecture I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Architecture (1) the attributes of a system as seen by the
IEEE Standard for Floating-Point Arithmetic: 754
IEEE Standard for Floating-Point Arithmetic: 754 G.E. Antoniou G.E. Antoniou () IEEE Standard for Floating-Point Arithmetic: 754 1 / 34 Floating Point Standard: IEEE 754 1985/2008 Established in 1985 (2008)
Architecture II. Computer Systems Laboratory Sungkyunkwan University
MIPS Instruction ti Set Architecture II Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Making Decisions (1) Conditional operations Branch to a
ECE 154A Introduction to. Fall 2012
ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 4: Arithmetic and Data Transfer Instructions Agenda Review of last lecture Logic and shift instructions Load/store instructionsi
Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers
Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers
Lecture 6 Decision + Shift + I/O
Lecture 6 Decision + Shift + I/O Instructions so far MIPS C Program add, sub, addi, multi, div lw $t0,12($s0) sw $t0, 12($s0) beq $s0, $s1, L1 bne $s0, $s1, L1 j L1 (unconditional branch) slt reg1,reg2,reg3
CPS311 - COMPUTER ORGANIZATION. A bit of history
CPS311 - COMPUTER ORGANIZATION A Brief Introduction to the MIPS Architecture A bit of history The MIPS architecture grows out of an early 1980's research project at Stanford University. In 1984, MIPS computer
Concocting an Instruction Set
Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Lab is posted. Do your prelab! Stay tuned for the first problem set. L04 Instruction
CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.
CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits
COMP 303 Computer Architecture Lecture 3. Comp 303 Computer Architecture
COMP 303 Computer Architecture Lecture 3 Comp 303 Computer Architecture 1 Supporting procedures in computer hardware The execution of a procedure Place parameters in a place where the procedure can access
Lecture Topics. Branch Condition Options. Branch Conditions ECE 486/586. Computer Architecture. Lecture # 8. Instruction Set Principles.
ECE 486/586 Computer Architecture Lecture # 8 Spring 2015 Portland State University Instruction Set Principles MIPS Control flow instructions Dealing with constants IA-32 Fallacies and Pitfalls Reference:
CS 101: Computer Programming and Utilization
CS 101: Computer Programming and Utilization Jul-Nov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.
ICS 233 COMPUTER ARCHITECTURE. MIPS Processor Design Multicycle Implementation
ICS 233 COMPUTER ARCHITECTURE MIPS Processor Design Multicycle Implementation Lecture 23 1 Add immediate unsigned Subtract unsigned And And immediate Or Or immediate Nor Shift left logical Shift right
Topics Power tends to corrupt; absolute power corrupts absolutely. Computer Organization CS Data Representation
Computer Organization CS 231-01 Data Representation Dr. William H. Robinson November 12, 2004 Topics Power tends to corrupt; absolute power corrupts absolutely. Lord Acton British historian, late 19 th
Arithmetic. Chapter 3 Computer Organization and Design
Arithmetic Chapter 3 Computer Organization and Design Addition Addition is similar to decimals 0000 0111 + 0000 0101 = 0000 1100 Subtraction (negate) 0000 0111 + 1111 1011 = 0000 0010 Over(under)flow For
Chapter 2. Instruction Set. RISC vs. CISC Instruction set. The University of Adelaide, School of Computer Science 18 September 2017
COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface RISC-V Edition Chapter 2 Instructions: Language of the Computer These slides are based on the slides by the authors. The slides doesn t
IEEE Floating Point Numbers Overview
COMP 40: Machine Structure and Assembly Language Programming (Fall 2015) IEEE Floating Point Numbers Overview Noah Mendelsohn Tufts University Email: noah@cs.tufts.edu Web: http://www.cs.tufts.edu/~noah
Lecture 2: RISC V Instruction Set Architecture. James C. Hoe Department of ECE Carnegie Mellon University
18 447 Lecture 2: RISC V Instruction Set Architecture James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L02 S1, James C. Hoe, CMU/ECE/CALCM, 2018 Your goal today Housekeeping get bootstrapped
EN164: Design of Computing Systems Lecture 09: Processor / ISA 2
EN164: Design of Computing Systems Lecture 09: Processor / ISA 2 Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University
A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3
A Processor Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Let s build a MIPS CPU but using Harvard architecture Basic Computer System Registers ALU
Five classic components
CS/COE0447: Computer Organization and Assembly Language Chapter 2 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower
Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats
Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:
Up next. Midterm. Today s lecture. To follow
Up next Midterm Next Friday in class Exams page on web site has info + practice problems Excited for you to rock the exams like you have been the assignments! Today s lecture Back to numbers, bits, data
Inf2C - Computer Systems Lecture 2 Data Representation
Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack
Concocting an Instruction Set
Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L03 Instruction Set 1 A General-Purpose Computer The von
Inequalities in MIPS (2/4) Inequalities in MIPS (1/4) Inequalities in MIPS (4/4) Inequalities in MIPS (3/4) UCB CS61C : Machine Structures
CS61C L8 Introduction to MIPS : Decisions II & Procedures I (1) Instructor Paul Pearce inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures http://www.xkcd.org/627/ Lecture 8 Decisions & and Introduction
Floating Point. EE 109 Unit 20. Floating Point Representation. Fixed Point
2.1 Floating Point 2.2 EE 19 Unit 2 IEEE 754 Floating Point Representation Floating Point Arithmetic Used to represent very numbers (fractions) and very numbers Avogadro s Number: +6.247 * 1 23 Planck
Do-While Example. In C++ In assembly language. do { z--; while (a == b); z = b; loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero
Do-While Example In C++ do { z--; while (a == b); z = b; In assembly language loop: addi $s2, $s2, -1 beq $s0, $s1, loop or $s2, $s1, $zero 25 Comparisons Set on less than (slt) compares its source registers
ISA: The Hardware Software Interface
ISA: The Hardware Software Interface Instruction Set Architecture (ISA) is where software meets hardware In embedded systems, this boundary is often flexible Understanding of ISA design is therefore important
10.1. Unit 10. Signed Representation Systems Binary Arithmetic
0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system
MIPS Instruction Reference
Page 1 of 9 MIPS Instruction Reference This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly