End Semester Examination CSE, III Yr. (I Sem), 30002: Computer Organization

Size: px
Start display at page:

Download "End Semester Examination CSE, III Yr. (I Sem), 30002: Computer Organization"

Transcription

1 Ed Semester Examiatio CSE, III Yr. (I Sem), 30002: Computer Orgaizatio Istructios: GROUP -A 1. Write the questio paper group (A, B, C, D), o frot page top of aswer book, as per what is metioed i the questio paper. 2. Attempt all questios. 3. Write thecorrect choice a, b, c, or diaswer book, formultiple choice questios (MCQs). 4. Wrog aswer for a MCQ carries 1 4 of its full weightage. 5. Except MCQs, give the detailed aswer/solutio for each questio. Max. Marks=40 Time= 3 Hrs. 1. (a) The ALU, S, T, the bus ad all the registers i the data path are of idetical size. All operatios icludig icremetatio of the PC ad the GPRs (geeral purpose registers) are to be carried out i the ALU. Two clock cycles are eeded for memory read operatio the first oe for loadig address i the MAR ad the ext oe for loadig data from the memory bus ito the MDR. (ext two questios) MAR MDR S T IR PC GPRs ALU i. The istructio add R0, R1 has the register trasfer iterpretatio R0 R0 + R1. The miimum umber of clock cycles eeded for executio cycle of this istructio is: (2) (a) 2 (b) 3 (c) 4 (d) 5 Aswer: (b) 3. Oe cycle to load R0 i accumulator register S, oe cycle to add, oe cycle to store value i register R0. ii. The istructio call R, sub is a two word istructio. Assumig that PC is icremeted durig the fetch cycle of the first word of the istructio, its register trasfer iterpretatio is R <= PC +1; PC <= M[PC]; 1

2 The miimum umber of CPU clock cycles eeded durig the executio cycle of this istructio is: (2) (a) 2 (b) 3 (c) 4 (d) 5 Aswer: (b) 3. Oe cycle to icremet PC, oe cycle to load PC ito MAR, oe cycle to fetch memory cotet ad load ito PC. (b) i. A CPU has 24-bit istructios. A program starts at address 300 (i decimal). Which oe of the followig is a legal program couter (all values i aswers are i decimal)? Assume that each memory locatio is of oe byte size. (2) (a) 400 (b) 500 (c) 600 (d) 700 Aswer: (c) 600. Sice each istructio is 3 byte (24 bit) log ad memory locatios are oe byte each, the legal PC values are address, where address mode 3 == 0. ii. Which oe of the followig is true for a CPU havig a sigle iterrupt request lie ad a sigle iterrupt grat lie? (1) (a) Neither vectored iterrupt or multiple iterruptig devices are possible (b) Vectored iterrupts are ot possible but multiple iterruptig devices are possible. (c) Vectored iterrupts ad multiple iterruptig devices are both possible (d) Vectored iterrupt is possible but multiple iterruptig devices are ot possible Aswer (b). Because the vectored iterrupts requires separate iterrupts. iii. For the elemets of sets {A,B,C,D} ad {1,2,3,4} (1) (A) DMA I/O (1) High speed RAM (B) Cache (2) Disk (C) Iterrupt I/O (3) Priter (D) Coditio code Register (4) ALU followig is the correct matchig: (a) A-4 B-3 C-1 D-2 (b) A-2 B-1 C-3 D-4 (c) A-4 B-3 C-2 D-1 (d) A-2 B-3 C-4 D-1 Aswer (b) iv. Purpose of start-bit i RS232C serial commuicatio protocol is: (1) (a) to sychroize receiver for receivig every byte (b) to sychroize receiver for receivig a sequece of bytes (c) a parity bit (d) to sychroize receiver for receivig the last byte Aswer (a) v. I serial commuicatio employig 8-data bits, a parity bit ad 2 stop bits, the miimum baud rate required to sustai a trasfer rate of 300 characters per secods is: (1) (a) 2400 baud (b) baud (c) 4800 baud (d) 1200 baud Total bits per characters = 8+2+1=11, bits for 300 characters/sec = 300*11 = 3300 (baud). So miimum speed out of the give speeds is Aswer: (c) 4800 baud vi. A hard disk with a trasfer rate of Mbytes/secod is costatly trasferrig data to memory usig DMA. The processor rus at 600 MHz, ad takes 300 ad 900 clock cycles to iitiate ad complete DMA trasfer respectively. If the size of the trasfer is 20 Kbytes, what is the percetage of processor time cosumed for the trasfer operatio? (3) (A) 5.0% (B) 1.0% (c) 0.5% (D) 0.1% Aswer:(D) 0.1% Time for trasfer of 20kbytes= = 3 sec. This is because for a oe word trasfer, the address is set o bus i oe clock ad 2

3 other cycle for memory read. No. of cycles for trasfer = = 6 5 cycles. Total cycles The fractio of time of cpu spet = = 0.1% vii. The followig code is to ru o a pipelied processor with oe brach delay slot: I1 : ADD R2 <- R7 + R8 I2 : SUB R4 <- R5 R6 I3 : ADD R1 <- R2 + R3 I4 : STORE Memory [R4] <- R1 BRANCH to Label if R1 == 0 Which of the istructios I1, I2, I3 or I4 ca legitimately occupy the delay slot without ay other program modificatio? (2) (a) I1 (b) I2 (c) I3 (d) I4 Aswer: (D) I4: sice R1 is oly read i I4, ad its value will remai as it is while BRANCH is executed ad after BRANCH get executed, sice i BRANCH R1 is oly read. 2. Suppose a stack represetatio supports, i additio to PUSH ad POP, a operatio REVERSE, which reverses the order of the elemets o the stack. (a) To implemet a queue usig the above stack implemetatio, show how to implemet ENQUEUE usig a sigle operatio ad DEQUEUE usig a sequece of three operatios. (3) For Queue, we keep TOS (top of stack) as rear of the queue, ad BOS (bottom of stack) as frot of the queue. Thus, to add i queue from back, there is oly istructio: PUSH. To remove from the frot of queue, the three istructios i order are: REVERSE, POP, REVERSE. (b) The followig postfix expressio, cotaiig sigle digit operads ad arithmetic operators + ad *, is evaluated usig a stack. (3) show the cotets of stack: i after evaluatio of 5 2 * 3 4 * the steps are as follows: i. 5 is read from iput ad pushed oto stack ii. 2 is read from iput ad pushed oto stack iii. * is read ad result pop*pop = is pushed oto stack iv. 3 is read from iput ad pushed oto stack v. 4 is read from iput ad pushed oto stack vi. * is read ad result pop*pop =12 is pushed oto stack The resultat stack is as show below: 12 ii after evaluatio of 5 2 * 3 4 * 5 2 The resultat stack is:

4 iii at the ed of evaluatio. The resultat stack is: Aew microprocessor is beig desiged with a covetioal architecture employig sigleaddress istructios ad 8-bit words. Due to physical size costraits, oly eight distict 3-bit opcodes are allowed. The use of modifiers or the address field to exted the opcode is forbidde. (a) What eight istructios would you implemet? specify the operatios performed by each istructio as well as the locatio of its operads. (3) Aswer The followig eight Istructios are sufficiet: add, load, stor, ad, or, cma, jmp, hlt. Followig is explaatio: i. CMA is complemet accumulator, jp is jump. All istructios, except cma, have two operads, o is explicit ad other is implicit, which is accumulator. cma has o operad, ad takes accumulator as oe implicit operad. ii. The remaiig five bits (d 0...d 4 ) are for operad. d 4 = 0 idicates that operad is i ay oe of the 16 registers, whose umber is represeted by d 3...d 0. iii. whe d 4 = 1, it idicates that operad is i memory, whose address is idicated by the register d 3...d 0. iv. Each of these registers d 0...d 15 is 16 bit, hece total memory of 64 k ca be addressed. v. The register r 0 is accumulator register (8 bits) ad status register to hold status flag for zero/o-zero. jmp is ucoditioal jump istructio. (b) Demostrate that your istructio set is fuctioally complete i some reasoable sese; or if it is ot, describe a operatio caot be programmed usig your istructio set. (3) Aswer It is possible to do ay arithmetic usig add, cma. For example, for subtractio, we do 2 s complemet additio. 2 s complemet is cma, followed with add 1. This 1 ca be kept i a register. The remaiig justificatio is as follows: i. The jump ca be made coditioal subject to the cotet of a register, say r1. If r1=0, the jumps else ot. For ucoditioal jump, keep r1=0. ii. loop ad brachig are thus implemeted, which are ecessary for cotrol. iii. all the logical operatios are possible by ad, or, ot. iv. memory store, ad load from it, are possible by load ad store istructios. v. The RR, RM, MR, MM based istructios are possible. The idirect addressig is ot provided. But that is ot compulsory, as may HLLs have o provisio. vi. You caot do the rotate accumulator. 4. It is required to desig a hardwired cotroller to hadle the fetch cycle of a sigle address of a istructio. The operad should be delivered i the fetch cycle itself. Assume that lower 8-bits of a istructio costitute the operad field. 4

5 (a) Draw the logic schematic of the hardwired cotroller icludig the data paths. (4) Aswer. The aswer is similar to the cotets of slide 9, page 8. The istructio op-code part goes ito IR, ad operad part goes to ay register or accumulator. The cotrol sigals are geerated as give i slide 9 page. The data bus is 16 bits. (b) Give the micro-operatios to realize the above istructio s fetch cycle. (3) Aswer. The aswer ca be foud i slide set 9, page A istructio pipelie has five stages, each stage takes 2 aosecods ad all istructios use all five stages. Brach istructios are ot overlapped, i.e., the istructio after the brach is ot fetched till the brach istructio is completed. Uder ideal coditios, (a) calculate the average istructio executio time assumig that 20% of all istructios executed are brach istructios. Igore the fact that some brach istructios are may be coditioal. (3) Aswer: The five stages are say: FI, DI, FO, EI, WO. After first five istructios, every 2 sec, oe istructio is executed, provided that there is o brach istructio. A brach istructio will take oly 4 states, as there is o WO. So cosumig 4 * 2 = 8 sec. Average time = 1 * * 8 = 3.6 sec. Note: Because the brach istructios are ot overlapped. Explaatio: Avg,time = 0.2 (5 2) +0.8 ((5 2)+( 1) 2) = (+( 1)2) = lim = = 3.6sec (b) If a brach istructio is a coditioal brach istructio, the brach eed ot be take. If brach is ot take, the istructio followig to that istructio ca be overlapped. Whe 80% of all brach brach istructios are coditioal brach istructios, ad 50% of the coditioal brach istructios are such that the brach is take, calculate the average istructio executio time. (3) Aswer 1: Tavg = (1+stall frequecy*stall pealty)*clock time 20% are brach istructios out of which 20% ucoditioal ad 80%coditioal 50% of coditioal are take, we have to cosider oly take brach coditios: so Tavg=(1+0.2( * 0.5)*(5-1) ) *2 =2.96 s (cosiderig 80% as fractio of origial 20%). The detailed explaatio is as follows: Out of 20%, 80% ae coditioal brach istructios. Thus, coditioal brach istructios are= =0.16. The co-coditioal istructios are For 50% of coditioal brach istructios, there is brach, = =0.08. Thus total time is= 2( )+(0.08 )+(0.04 )+( ) 2 = 2(4+0.8) (0.08+4) 2 = lim = 2.96sec Aswer 2: (1+0.8*(0.5*(5-1)))*2 =5.2; here 0.5 correspods to 50% brach istructios where brach has take. (cosiderig 80% as fractio of 0) 5

6 Cosiderig 80% total brach istructios: 0.8(0.5( )+0.5(+( 1)2))+0.2(+( 1)2) Avg.time = = 0.8(5+(5+( 1)))+0.2(8+2) = 0.8(5+(4+)) = = lim = = 5.2sec. 6

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

UNIVERSITY OF MORATUWA

UNIVERSITY OF MORATUWA UNIVERSITY OF MORATUWA FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING B.Sc. Egieerig 2014 Itake Semester 2 Examiatio CS2052 COMPUTER ARCHITECTURE Time allowed: 2 Hours Jauary 2016

More information

Chapter 5: Processor Design Advanced Topics. Microprogramming: Basic Idea

Chapter 5: Processor Design Advanced Topics. Microprogramming: Basic Idea 5-1 Chapter 5 Processor Desig Advaced Topics Chapter 5: Processor Desig Advaced Topics Topics 5.3 Microprogrammig Cotrol store ad microbrachig Horizotal ad vertical microprogrammig 5- Chapter 5 Processor

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter The Processor Part A path Desig Itroductio CPU performace factors Istructio cout Determied by ISA ad compiler. CPI ad

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

Chapter 4 The Datapath

Chapter 4 The Datapath The Ageda Chapter 4 The Datapath Based o slides McGraw-Hill Additioal material 24/25/26 Lewis/Marti Additioal material 28 Roth Additioal material 2 Taylor Additioal material 2 Farmer Tae the elemets that

More information

top() Applications of Stacks

top() Applications of Stacks CS22 Algorithms ad Data Structures MW :00 am - 2: pm, MSEC 0 Istructor: Xiao Qi Lecture 6: Stacks ad Queues Aoucemets Quiz results Homework 2 is available Due o September 29 th, 2004 www.cs.mt.edu~xqicoursescs22

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Computer Architecture. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

Computer Architecture. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff Computer rchitecture Microcomputer rchitecture ad Iterfacig Colorado School of Mies Professor William Hoff Computer Hardware Orgaizatio Processor Performs all computatios; coordiates data trasfer Iput

More information

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS APPLICATION NOTE PACE175AE BUILT-IN UNCTIONS About This Note This applicatio brief is iteded to explai ad demostrate the use of the special fuctios that are built ito the PACE175AE processor. These powerful

More information

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures

University of Waterloo Department of Electrical and Computer Engineering ECE 250 Algorithms and Data Structures Uiversity of Waterloo Departmet of Electrical ad Computer Egieerig ECE 250 Algorithms ad Data Structures Midterm Examiatio ( pages) Istructor: Douglas Harder February 7, 2004 7:30-9:00 Name (last, first)

More information

1. SWITCHING FUNDAMENTALS

1. SWITCHING FUNDAMENTALS . SWITCING FUNDMENTLS Switchig is the provisio of a o-demad coectio betwee two ed poits. Two distict switchig techiques are employed i commuicatio etwors-- circuit switchig ad pacet switchig. Circuit switchig

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Single-Cycle Disadvantages & Advantages

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Single-Cycle Disadvantages & Advantages COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 4 The Processor Pipeliig Sigle-Cycle Disadvatages & Advatages Clk Uses the clock cycle iefficietly the clock cycle must

More information

Data diverse software fault tolerance techniques

Data diverse software fault tolerance techniques Data diverse software fault tolerace techiques Complemets desig diversity by compesatig for desig diversity s s limitatios Ivolves obtaiig a related set of poits i the program data space, executig the

More information

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions:

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions: CS 604 Data Structures Midterm Sprig, 00 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PROSI M UNI VERSI TY Istructios: Prit your ame i the space provided below. This examiatio is closed book ad closed

More information

EE University of Minnesota. Midterm Exam #1. Prof. Matthew O'Keefe TA: Eric Seppanen. Department of Electrical and Computer Engineering

EE University of Minnesota. Midterm Exam #1. Prof. Matthew O'Keefe TA: Eric Seppanen. Department of Electrical and Computer Engineering EE 4363 1 Uiversity of Miesota Midterm Exam #1 Prof. Matthew O'Keefe TA: Eric Seppae Departmet of Electrical ad Computer Egieerig Uiversity of Miesota Twi Cities Campus EE 4363 Itroductio to Microprocessors

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago CMSC 22200 Computer Architecture Lecture 2: ISA Prof. Yajig Li Departmet of Computer Sciece Uiversity of Chicago Admiistrative Stuff Lab1 out toight Due Thursday (10/18) Lab1 review sessio Tomorrow, 10/05,

More information

Description of Single Cycle Computer (SCC)

Description of Single Cycle Computer (SCC) Descriptio of Sigle Cycle Computer (SCC) Refereces: Chapter 9 of M. Morris Mao ad Charles Kime, Logic ad Computer Desig Fudametals, Pearso Pretice Hall, 4 th Editio, 28. Overview Part Datapaths Itroductio

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

CMSC Computer Architecture Lecture 12: Virtual Memory. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 12: Virtual Memory. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 12: Virtual Memory Prof. Yajig Li Uiversity of Chicago A System with Physical Memory Oly Examples: most Cray machies early PCs Memory early all embedded systems

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5.

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5. Morga Kaufma Publishers 26 February, 208 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Virtual Memory Review: The Memory Hierarchy Take advatage of the priciple

More information

CMPT 125 Assignment 2 Solutions

CMPT 125 Assignment 2 Solutions CMPT 25 Assigmet 2 Solutios Questio (20 marks total) a) Let s cosider a iteger array of size 0. (0 marks, each part is 2 marks) it a[0]; I. How would you assig a poiter, called pa, to store the address

More information

EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 13 Control and Sequencing: Hardwired and Microprogrammed Control

EE 459/500 HDL Based Digital Design with Programmable Logic. Lecture 13 Control and Sequencing: Hardwired and Microprogrammed Control EE 459/500 HDL Based Digital Desig with Programmable Logic Lecture 13 Cotrol ad Sequecig: Hardwired ad Microprogrammed Cotrol Refereces: Chapter s 4,5 from textbook Chapter 7 of M.M. Mao ad C.R. Kime,

More information

CMSC Computer Architecture Lecture 5: Pipelining. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 5: Pipelining. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 5: Pipeliig Prof. Yajig Li Uiversity of Chicago Admiistrative Stuff Lab1 Due toight Lab2: out later today; due 2 weeks from ow Review sessio this Friday Turig award

More information

Lecture 3. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram

Lecture 3. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram Lecture 3 RTL Desig Methodology Trasitio from Pseudocode & Iterface to a Correspodig Block Diagram Structure of a Typical Digital Data Iputs Datapath (Executio Uit) Data Outputs System Cotrol Sigals Status

More information

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 )

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 ) EE26: Digital Desig, Sprig 28 3/6/8 EE 26: Itroductio to Digital Desig Combiatioal Datapath Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Combiatioal Logic Blocks Multiplexer Ecoders/Decoders

More information

CMSC Computer Architecture Lecture 3: ISA and Introduction to Microarchitecture. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 3: ISA and Introduction to Microarchitecture. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 3: ISA ad Itroductio to Microarchitecture Prof. Yajig Li Uiversity of Chicago Lecture Outlie ISA uarch (hardware implemetatio of a ISA) Logic desig basics Sigle-cycle

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Lecture 2. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram

Lecture 2. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram Lecture 2 RTL Desig Methodology Trasitio from Pseudocode & Iterface to a Correspodig Block Diagram Structure of a Typical Digital Data Iputs Datapath (Executio Uit) Data Outputs System Cotrol Sigals Status

More information

K-NET bus. When several turrets are connected to the K-Bus, the structure of the system is as showns

K-NET bus. When several turrets are connected to the K-Bus, the structure of the system is as showns K-NET bus The K-Net bus is based o the SPI bus but it allows to addressig may differet turrets like the I 2 C bus. The K-Net is 6 a wires bus (4 for SPI wires ad 2 additioal wires for request ad ackowledge

More information

Review: The ACID properties

Review: The ACID properties Recovery Review: The ACID properties A tomicity: All actios i the Xactio happe, or oe happe. C osistecy: If each Xactio is cosistet, ad the DB starts cosistet, it eds up cosistet. I solatio: Executio of

More information

Chapter 3. Floating Point Arithmetic

Chapter 3. Floating Point Arithmetic COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 3 Floatig Poit Arithmetic Review - Multiplicatio 0 1 1 0 = 6 multiplicad 32-bit ALU shift product right multiplier add

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Cocurrecy Threads ad Cocurrecy i Java: Part 1 What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Threads ad Cocurrecy i Java: Part 1 1 Cocurrecy What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 22 Database Recovery Techiques Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Recovery algorithms Recovery cocepts Write-ahead

More information

Weston Anniversary Fund

Weston Anniversary Fund Westo Olie Applicatio Guide 2018 1 This guide is desiged to help charities applyig to the Westo to use our olie applicatio form. The Westo is ope to applicatios from 5th Jauary 2018 ad closes o 30th Jue

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor Advanced Issues

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor Advanced Issues COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 4 The Processor Advaced Issues Review: Pipelie Hazards Structural hazards Desig pipelie to elimiate structural hazards.

More information

CMSC Computer Architecture Lecture 10: Caches. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 10: Caches. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 10: Caches Prof. Yajig Li Uiversity of Chicago Midterm Recap Overview ad fudametal cocepts ISA Uarch Datapath, cotrol Sigle cycle, multi cycle Pipeliig Basic idea,

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

1 Enterprise Modeler

1 Enterprise Modeler 1 Eterprise Modeler Itroductio I BaaERP, a Busiess Cotrol Model ad a Eterprise Structure Model for multi-site cofiguratios are itroduced. Eterprise Structure Model Busiess Cotrol Models Busiess Fuctio

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software Structurig Redudacy for Fault Tolerace CSE 598D: Fault Tolerat Software What do we wat to achieve? Versios Damage Assessmet Versio 1 Error Detectio Iputs Versio 2 Voter Outputs State Restoratio Cotiued

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

Introduction to Computing Systems: From Bits and Gates to C and Beyond 2 nd Edition

Introduction to Computing Systems: From Bits and Gates to C and Beyond 2 nd Edition Lecture Goals Itroductio to Computig Systems: From Bits ad Gates to C ad Beyod 2 d Editio Yale N. Patt Sajay J. Patel Origial slides from Gregory Byrd, North Carolia State Uiversity Modified slides by

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 6: Out-of-Order Processors

CS252 Spring 2017 Graduate Computer Architecture. Lecture 6: Out-of-Order Processors CS252 Sprig 2017 Graduate Computer Architecture Lecture 6: Out-of-Order Processors Lisa Wu, Krste Asaovic http://ist.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 2 WU UCB CS252 SP17 Last Time i Lecture

More information

A collection of open-sourced RISC-V processors

A collection of open-sourced RISC-V processors Riscy Processors A collectio of ope-sourced RISC-V processors Ady Wright, Sizhuo Zhag, Thomas Bourgeat, Murali Vijayaraghava, Jamey Hicks, Arvid Computatio Structures Group, CSAIL, MIT 4 th RISC-V Workshop

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

Multiprocessors. HPC Prof. Robert van Engelen

Multiprocessors. HPC Prof. Robert van Engelen Multiprocessors Prof. Robert va Egele Overview The PMS model Shared memory multiprocessors Basic shared memory systems SMP, Multicore, ad COMA Distributed memory multicomputers MPP systems Network topologies

More information

DESIGN AND ANALYSIS OF LDPC DECODERS FOR SOFTWARE DEFINED RADIO

DESIGN AND ANALYSIS OF LDPC DECODERS FOR SOFTWARE DEFINED RADIO DESIGN AND ANALYSIS OF LDPC DECODERS FOR SOFTWARE DEFINED RADIO Sagwo Seo, Trevor Mudge Advaced Computer Architecture Laboratory Uiversity of Michiga at A Arbor {swseo, tm}@umich.edu Yumig Zhu, Chaitali

More information

GE FUNDAMENTALS OF COMPUTING AND PROGRAMMING UNIT III

GE FUNDAMENTALS OF COMPUTING AND PROGRAMMING UNIT III GE2112 - FUNDAMENTALS OF COMPUTING AND PROGRAMMING UNIT III PROBLEM SOLVING AND OFFICE APPLICATION SOFTWARE Plaig the Computer Program Purpose Algorithm Flow Charts Pseudocode -Applicatio Software Packages-

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

the beginning of the program in order for it to work correctly. Similarly, a Confirm

the beginning of the program in order for it to work correctly. Similarly, a Confirm I our sytax, a Assume statemet will be used to record what must be true at the begiig of the program i order for it to work correctly. Similarly, a Cofirm statemet is used to record what should be true

More information

On (K t e)-saturated Graphs

On (K t e)-saturated Graphs Noame mauscript No. (will be iserted by the editor O (K t e-saturated Graphs Jessica Fuller Roald J. Gould the date of receipt ad acceptace should be iserted later Abstract Give a graph H, we say a graph

More information

Algorithm Design Techniques. Divide and conquer Problem

Algorithm Design Techniques. Divide and conquer Problem Algorithm Desig Techiques Divide ad coquer Problem Divide ad Coquer Algorithms Divide ad Coquer algorithm desig works o the priciple of dividig the give problem ito smaller sub problems which are similar

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

Multi-Threading. Hyper-, Multi-, and Simultaneous Thread Execution

Multi-Threading. Hyper-, Multi-, and Simultaneous Thread Execution Multi-Threadig Hyper-, Multi-, ad Simultaeous Thread Executio 1 Performace To Date Icreasig processor performace Pipeliig. Brach predictio. Super-scalar executio. Out-of-order executio. Caches. Hyper-Threadig

More information

Guide to Applying Online

Guide to Applying Online Guide to Applyig Olie Itroductio Respodig to requests for additioal iformatio Reportig: submittig your moitorig or ed of grat Pledges: submittig your Itroductio This guide is to help charities submit their

More information

Bluespec-3: Modules & Interfaces. Bluespec: State and Rules organized into modules

Bluespec-3: Modules & Interfaces. Bluespec: State and Rules organized into modules Bluespec-3: Modules & Iterfaces Arvid Computer Sciece & Artificial Itelligece Lab Massachusetts Istitute of Techology Based o material prepared by Bluespec Ic, Jauary 2005 February 28, 2005 L09-1 Bluespec:

More information

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1 COSC 1P03 Ch 7 Recursio Itroductio to Data Structures 8.1 COSC 1P03 Recursio Recursio I Mathematics factorial Fiboacci umbers defie ifiite set with fiite defiitio I Computer Sciece sytax rules fiite defiitio,

More information

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

More information

Getting Started. Getting Started - 1

Getting Started. Getting Started - 1 Gettig Started Gettig Started - 1 Issue 1 Overview of Gettig Started Overview of Gettig Started This sectio explais the basic operatios of the AUDIX system. It describes how to: Log i ad log out of the

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 19 Query Optimizatio Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Query optimizatio Coducted by a query optimizer i a DBMS Goal:

More information

Course Site: Copyright 2012, Elsevier Inc. All rights reserved.

Course Site:   Copyright 2012, Elsevier Inc. All rights reserved. Course Site: http://cc.sjtu.edu.c/g2s/site/aca.html 1 Computer Architecture A Quatitative Approach, Fifth Editio Chapter 2 Memory Hierarchy Desig 2 Outlie Memory Hierarchy Cache Desig Basic Cache Optimizatios

More information

Behavioral Modeling in Verilog

Behavioral Modeling in Verilog Behavioral Modelig i Verilog COE 202 Digital Logic Desig Dr. Muhamed Mudawar Kig Fahd Uiversity of Petroleum ad Mierals Presetatio Outlie Itroductio to Dataflow ad Behavioral Modelig Verilog Operators

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

ALU Augmentation for MPEG-4 Repetitive Padding

ALU Augmentation for MPEG-4 Repetitive Padding ALU Augmetatio for MPEG-4 Repetitive Paddig Georgi Kuzmaov Stamatis Vassiliadis Computer Egieerig Lab, Electrical Egieerig Departmet, Faculty of formatio Techology ad Systems, Delft Uiversity of Techology,

More information

SCI Reflective Memory

SCI Reflective Memory Embedded SCI Solutios SCI Reflective Memory (Experimetal) Atle Vesterkjær Dolphi Itercoect Solutios AS Olaf Helsets vei 6, N-0621 Oslo, Norway Phoe: (47) 23 16 71 42 Fax: (47) 23 16 71 80 Mail: atleve@dolphiics.o

More information

Breakpoints and Breakpoint Detection in Source Level Emulation

Breakpoints and Breakpoint Detection in Source Level Emulation Breakpoits ad Breakpoit Detectio i Source Level Emulatio Gerot Koch 1, Udo Kebschull 1, Wolfgag Rosestiel 2 1 Forschugszetrum Iformatik (FZI), Haid-ud-Neu-Straße 10-14, D 76131 Karlsruhe, Germay 2 FZI

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

CS 683: Advanced Design and Analysis of Algorithms

CS 683: Advanced Design and Analysis of Algorithms CS 683: Advaced Desig ad Aalysis of Algorithms Lecture 6, February 1, 2008 Lecturer: Joh Hopcroft Scribes: Shaomei Wu, Etha Feldma February 7, 2008 1 Threshold for k CNF Satisfiability I the previous lecture,

More information

One advantage that SONAR has over any other music-sequencing product I ve worked

One advantage that SONAR has over any other music-sequencing product I ve worked *gajedra* D:/Thomso_Learig_Projects/Garrigus_163132/z_productio/z_3B2_3D_files/Garrigus_163132_ch17.3d, 14/11/08/16:26:39, 16:26, page: 647 17 CAL 101 Oe advatage that SONAR has over ay other music-sequecig

More information

DATA STRUCTURES. amortized analysis binomial heaps Fibonacci heaps union-find. Data structures. Appetizer. Appetizer

DATA STRUCTURES. amortized analysis binomial heaps Fibonacci heaps union-find. Data structures. Appetizer. Appetizer Data structures DATA STRUCTURES Static problems. Give a iput, produce a output. Ex. Sortig, FFT, edit distace, shortest paths, MST, max-flow,... amortized aalysis biomial heaps Fiboacci heaps uio-fid Dyamic

More information

Computer Architecture ELEC3441

Computer Architecture ELEC3441 CPU-Memory Bottleeck Computer Architecture ELEC44 CPU Memory Lecture 8 Cache Dr. Hayde Kwok-Hay So Departmet of Electrical ad Electroic Egieerig Performace of high-speed computers is usually limited by

More information

Guaranteeing Hard Real Time End-to-End Communications Deadlines

Guaranteeing Hard Real Time End-to-End Communications Deadlines Guarateeig Hard Real Time Ed-to-Ed Commuicatios Deadlies K. W. Tidell A. Burs A. J. Welligs Real Time Systems Research Group Departmet of Computer Sciece Uiversity of York e-mail: ke@mister.york.ac.uk

More information

Master Informatics Eng. 2017/18. A.J.Proença. Memory Hierarchy. (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1

Master Informatics Eng. 2017/18. A.J.Proença. Memory Hierarchy. (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1 Advaced Architectures Master Iformatics Eg. 2017/18 A.J.Proeça Memory Hierarchy (most slides are borrowed) AJProeça, Advaced Architectures, MiEI, UMiho, 2017/18 1 Itroductio Programmers wat ulimited amouts

More information

Massachusetts Institute of Technology Lecture : Theory of Parallel Systems Feb. 25, Lecture 6: List contraction, tree contraction, and

Massachusetts Institute of Technology Lecture : Theory of Parallel Systems Feb. 25, Lecture 6: List contraction, tree contraction, and Massachusetts Istitute of Techology Lecture.89: Theory of Parallel Systems Feb. 5, 997 Professor Charles E. Leiserso Scribe: Guag-Ie Cheg Lecture : List cotractio, tree cotractio, ad symmetry breakig Work-eciet

More information

Module Instantiation. Finite State Machines. Two Types of FSMs. Finite State Machines. Given submodule mux32two: Instantiation of mux32two

Module Instantiation. Finite State Machines. Two Types of FSMs. Finite State Machines. Given submodule mux32two: Instantiation of mux32two Give submodule mux32two: 2-to- MUX module mux32two (iput [3:] i,i, iput sel, output [3:] out); Module Istatiatio Fiite Machies esig methodology for sequetial logic -- idetify distict s -- create trasitio

More information

Solutions to Final COMS W4115 Programming Languages and Translators Monday, May 4, :10-5:25pm, 309 Havemeyer

Solutions to Final COMS W4115 Programming Languages and Translators Monday, May 4, :10-5:25pm, 309 Havemeyer Departmet of Computer ciece Columbia Uiversity olutios to Fial COM W45 Programmig Laguages ad Traslators Moday, May 4, 2009 4:0-5:25pm, 309 Havemeyer Closed book, o aids. Do questios 5. Each questio is

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 18 Strategies for Query Processig Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio DBMS techiques to process a query Scaer idetifies

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 201 Heaps 201 Goodrich ad Tamassia xkcd. http://xkcd.com/83/. Tree. Used with permissio uder

More information

WYSE Academic Challenge Sectional Computer Science 2005 SOLUTION SET

WYSE Academic Challenge Sectional Computer Science 2005 SOLUTION SET WYSE Academic Challege Sectioal Computer Sciece 2005 SOLUTION SET 1. Correct aswer: a. Hz = cycle / secod. CPI = 2, therefore, CPI*I = 2 * 28 X 10 8 istructios = 56 X 10 8 cycles. The clock rate is 56

More information

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015.

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015. Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Hash Tables xkcd. http://xkcd.com/221/. Radom Number. Used with permissio uder Creative

More information