# Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.

Save this PDF as:

Size: px
Start display at page:

Download "Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time."

## Transcription

1 Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010

2 IEEE Floating point Floating point representations Encodes rational numbers of the form V=x*(2 y ) Useful for very large numbers or numbers close to zero IEEE Standard 754 (IEEE floating point) Established in 1985 as uniform standard for floating point arithmetic (started as an Intel s sponsored effort) Before that, many idiosyncratic formats Supported by all major CPUs Driven by numerical concerns Nice standards for rounding, overflow, underflow Hard to make go fast Numerical analysts predominated over hardware types in defining standard 2

3 Fractional binary numbers Representation Bits to right of binary point represent fractional powers of 2 Represents rational number: b i b i 1 b 2 b 1 b 0. b 1 b 2 b 3 b j 1/2 1/4 1/8 2 i 2 i i k j b k 2 k 2 j 3

4 Fractional binary number examples Value Representation???? 5-3/ ???? 2-7/ ???? 63/ Observations Divide by 2 by shifting right (the point moves to the left) Multiply by 2 by shifting left (the point moves to the right) Numbers of form represent those just below 1.0 1/2 + 1/4 + 1/ /2 i We use notation 1.0 ε to represent them 4

5 Representable numbers Limitation Can only exactly represent numbers of the form x/2 k Other numbers have repeating bit representations Value Representation 1/ [01] 2 1/ [0011] 2 1/ [0011] 2 5

6 Floating point representation Numerical form V = ( 1) s * M * 2 E Sign bit s determines whether number is negative or positive Significand M normally a fractional value in range [1.0,2.0). Exponent E weights value by power of two Encoding MSB is sign bit exp field encodes E (note: encode!= is) frac field encodes M s exp frac 6

7 Floating point precisions Encoding s exp frac Sign bit; exp (encodes E): k-bit; frac (encodes M): n-bit Sizes Single precision: k = 8 exp bits, n= 23 frac bits 32 bits total Double precision: k = 11 exp bits, n = 52 frac bits 64 bits total Extended precision: k = 15 exp bits, n = 63 frac bits Only found in Intel-compatible machines Stored in 80 bits 1 bit wasted Value encoded three different cases, depending on value of exp 7

8 Normalized numeric values Condition exp and exp Exponent coded as biased value E = Exp Bias Exp : unsigned value denoted by exp Bias : Bias value Single precision: 127 (Exp: 1 254, E: ) Double precision: 1023 (Exp: , E: ) in general: Bias = 2 k-1-1, where k is number of exponent bits Significand coded with implied leading 1 M = 1.xxx x 2 (1+f & f = 0.xxx 2 ) xxx x: bits of frac Minimum when (M = 1.0) Maximum when (M = 2.0 ε) Get extra leading bit for free 8

9 Normalized encoding example Value Float F = ; = = X 2 13 Significand M = frac = Exponent E = 13 Bias = 127 exp = E + Bias = 140 = Floating Point Representation: Hex: D B Binary: : :

10 Denormalized values Condition exp = Value Exponent value E = 1 - Bias Note: not simply E= Bias Significand value M = 0.xxx x 2 (0.f) Cases xxx x: bits of frac exp = 000 0, frac = Represents value 0 Note that have distinct values +0 and 0 exp = 000 0, frac Numbers very close to

11 Special values Condition exp = Cases exp = 111 1, frac = Represents value (infinity) Operation that overflows Both positive and negative E.g., 1.0/0.0 = -1.0/-0.0 = +, 1.0/-0.0 = - exp = 111 1, frac Not-a-Number (NaN) Represents case when no numeric value can be determined E.g., -1, ( - ) 11

12 Summary of FP real number encodings -Normalized -Denorm +Denorm +Normalized + NaN 0 +0 NaN 12

13 Tiny floating point example 8-bit Floating Point Representation the sign bit is in the most significant bit. the next four (k) bits are the exponent, with a bias of 7 (2 k-1-1) the last three (n) bits are the frac Same General Form as IEEE Format normalized, denormalized representation of 0, NaN, infinity s exp frac 0 13

14 Values related to the exponent Exp exp E 2 E Normalized E = e - Bias Denormalized E = 1 - Bias /64 (denorms) / / / / / / n/a (inf, NaN) 14

15 Dynamic range s exp frac E Value Denormalized numbers Normalized numbers /8*1/64 = 1/ /8*1/64 = 2/ /8*1/64 = 6/ /8*1/64 = 7/ /8*1/64 = 8/ /8*1/64 = 9/ /8*1/2 = 14/ /8*1/2 = 15/ /8*1 = /8*1 = 9/ /8*1 = 10/ /8*128 = /8*128 = n/a inf closest to zero largest denorm smallest norm closest to 1 below closest to 1 above largest norm 15

16 Distribution of values 6-bit IEEE-like format e = 3 exponent bits f = 2 fraction bits Bias is 3 Notice how the distribution gets denser toward zero Denormalized Normalized Infinity 16

17 Distribution of values (close-up view) 6-bit IEEE-like format e = 3 exponent bits f = 2 fraction bits Bias is 3 Note: Smooth transition between normalized and denormalized numbers due to definition E = 1 - Bias for denormalized values Denormalized Normalized Infinity 17

18 Interesting numbers Description exp frac Numeric Value Zero Smallest Pos. Denorm {23,52} X 2 {126,1022} Single ~ 1.4 X Double ~ 4.9 X Largest Denormalized (1.0 ε) X 2 {126,1022} Single ~ 1.18 X Double ~ 2.2 X Smallest Pos. Normalized X 2 {126,1022} Just larger than largest denormalized One Largest Normalized (2.0 ε) X 2 {127,1023} Single ~ 3.4 X Double ~ 1.8 X

19 Floating point operations Conceptual view First compute exact result Make it fit into desired precision Possibly overflow if exponent too large Possibly round to fit into frac Rounding modes (illustrate with \$ rounding) \$1.40 \$1.60 \$1.50 \$2.50 \$1.50 Zero \$1 \$1 \$1 \$2 \$1 Round down (- ) \$1 \$1 \$1 \$2 \$2 Round up (+ ) \$2 \$2 \$2 \$3 \$1 Nearest Even (default) \$1 \$2 \$2 \$2 \$2 Note: 1. Round down: rounded result is close to but no greater than true result. 2. Round up: rounded result is close to but no less than true result. 19

20 Closer look at round-to-even Default rounding mode All others are statistically biased Sum of set of positive numbers will consistently be overor under- estimated Applying to other decimal places / bit positions When exactly halfway between two possible values Round so that least significant digit is even E.g., round to nearest hundredth (Less than half way) (Greater than half way) (Half way round up) (Half way round down) 20

21 Rounding binary numbers Binary fractional numbers Even when least significant bit is 0 Half way when bits to right of rounding position = Examples Round to nearest 1/4 (2 bits right of binary point) Value Binary Rounded Action Rounded Value 2 3/ (<1/2 down) 2 2 3/ (>1/2 up) 2 1/4 2 7/ (1/2 up) 3 2 5/ (1/2 down) 2 1/2 21

22 FP multiplication Operands ( 1) s1 M 1 2 E1 * ( 1) s2 M 2 2 E2 Exact result ( 1) s M 2 E Sign s: s1 ^ s2 Significand M: M1 * M2 Exponent E: E1 + E2 Fixing If M 2, shift M right, increment E If E out of range, overflow Round M to fit frac precision Implementation Biggest chore is multiplying significands 22

23 FP addition Operands ( 1)s1 M1 2E1 ( 1)s2 M2 2E2 Assume E1 > E2 Exact Result ( 1)s M 2E Sign s, significand M: Result of signed align & add Exponent E: E1 Fixing ( 1) s1 M1 + ( 1) s2 M2 ( 1) s M If M 2, shift M right, increment E if M < 1, shift M left k positions, decrement E by k Overflow if E out of range Round M to fit frac precision E1 E2 23

24 Mathematical properties of FP add Compare to those of Abelian Group Closed under addition? YES But may generate infinity or NaN Commutative? YES Associative? NO Overflow and inexactness of rounding (3.14+1e10)-1e10=0 (rounding) 3.14+(1e10-1e10)= is additive identity? YES Every element has additive inverse ALMOST Except for infinities & NaNs Monotonicity a b a+c b+c? ALMOST Except for NaNs 24

25 Math. properties of FP multiplication Compare to commutative ring Closed under multiplication? YES But may generate infinity or NaN Multiplication Commutative? YES Multiplication is Associative? NO Possibility of overflow, inexactness of rounding 1 is multiplicative identity? YES Multiplication distributes over addition? NO Possibility of overflow, inexactness of rounding Monotonicity a b & c 0 a *c b *c? ALMOST Except for NaNs 25

26 Floating point in C C guarantees two levels float single precision double double precision Conversions int float : maybe rounded int double : exact value preserved (double has greater range and higher precision) float double : exact value preserved (double has greater range and higher precision) double float : may overflow or be rounded double int : truncated toward zero ( ) float int : truncated toward zero 26

27 Floating point puzzles For each of the following C expressions, either: Argue that it is true for all argument values Explain why not true int x = ; float f = ; double d = ; Assume neither d nor f is NaN x == (int)(double) x x == (int)(float) x d == (double)(float) d f == (float)(double) f f == -(-f); 1.0/2 == 1/2.0 d*d >= 0.0 (f+d)-f == d Yes No (x = TMax) No (d = 1e40) Yes Yes Yes Yes (may overflow) No (f = 1.0e20, d = 1.0; f+d rounded to 1.0e20 27

28 Summary IEEE Floating point has clear mathematical properties Represents numbers of form M X 2E Not the same as real arithmetic Violates associativity/distributivity Makes life difficult for compilers & serious numerical applications programmers 28

### Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

### Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

### System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

### Giving credit where credit is due

CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

### Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

### Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

### CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: September 18, 2017 at 12:48 CS429 Slideset 4: 1 Topics of this Slideset

### Data Representation Floating Point

Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

### Computer Organization: A Programmer's Perspective

A Programmer's Perspective Representing Numbers Gal A. Kaminka galk@cs.biu.ac.il Fractional Binary Numbers 2 i 2 i 1 4 2 1 b i b i 1 b 2 b 1 b 0. b 1 b 2 b 3 b j 1/2 1/4 1/8 Representation Bits to right

### Floating Point Numbers

Floating Point Floating Point Numbers Mathematical background: tional binary numbers Representation on computers: IEEE floating point standard Rounding, addition, multiplication Kai Shen 1 2 Fractional

### Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

### Up next. Midterm. Today s lecture. To follow

Up next Midterm Next Friday in class Exams page on web site has info + practice problems Excited for you to rock the exams like you have been the assignments! Today s lecture Back to numbers, bits, data

### Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

### Floating Point Arithmetic

Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

### 15213 Recitation 2: Floating Point

15213 Recitation 2: Floating Point 1 Introduction This handout will introduce and test your knowledge of the floating point representation of real numbers, as defined by the IEEE standard. This information

### Floating Point Numbers

Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

### Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

### Integers and Floating Point

CMPE12 More about Numbers Integers and Floating Point (Rest of Textbook Chapter 2 plus more)" Review: Unsigned Integer A string of 0s and 1s that represent a positive integer." String is X n-1, X n-2,

### Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

### Description Hex M E V smallest value > largest denormalized negative infinity number with hex representation 3BB0 ---

CSE2421 HOMEWORK #2 DUE DATE: MONDAY 11/5 11:59pm PROBLEM 2.84 Given a floating-point format with a k-bit exponent and an n-bit fraction, write formulas for the exponent E, significand M, the fraction

### Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

### Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as:

N Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: a n a a a The value of this number is given by: = a n Ka a a a a a

### EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic

1 EE 109 Unit 19 IEEE 754 Floating Point Representation Floating Point Arithmetic 2 Floating Point Used to represent very small numbers (fractions) and very large numbers Avogadro s Number: +6.0247 * 10

### The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive.

IEEE 754 Standard - Overview Frozen Content Modified by on 13-Sep-2017 Before discussing the actual WB_FPU - Wishbone Floating Point Unit peripheral in detail, it is worth spending some time to look at

### Floating Point Numbers. Lecture 9 CAP

Floating Point Numbers Lecture 9 CAP 3103 06-16-2014 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? 2 N things, and no more! They could be Unsigned integers:

### Midterm Exam Answers Instructor: Randy Shepherd CSCI-UA.0201 Spring 2017

Section 1: Multiple choice (select any that apply) - 20 points 01. Representing 10 using the 4 byte unsigned integer encoding and using 4 byte two s complements encoding yields the same bit pattern. (a)

### Module 2: Computer Arithmetic

Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

### CS367 Test 1 Review Guide

CS367 Test 1 Review Guide This guide tries to revisit what topics we've covered, and also to briefly suggest/hint at types of questions that might show up on the test. Anything on slides, assigned reading,

### C NUMERIC FORMATS. Overview. IEEE Single-Precision Floating-point Data Format. Figure C-0. Table C-0. Listing C-0.

C NUMERIC FORMATS Figure C-. Table C-. Listing C-. Overview The DSP supports the 32-bit single-precision floating-point data format defined in the IEEE Standard 754/854. In addition, the DSP supports an

### CS 101: Computer Programming and Utilization

CS 101: Computer Programming and Utilization Jul-Nov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.

### 3.5 Floating Point: Overview

3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer

### Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

### Floating-point representation

Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

### 2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

### Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

### Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

### IEEE Standard for Floating-Point Arithmetic: 754

IEEE Standard for Floating-Point Arithmetic: 754 G.E. Antoniou G.E. Antoniou () IEEE Standard for Floating-Point Arithmetic: 754 1 / 34 Floating Point Standard: IEEE 754 1985/2008 Established in 1985 (2008)

### Floating Point. EE 109 Unit 20. Floating Point Representation. Fixed Point

2.1 Floating Point 2.2 EE 19 Unit 2 IEEE 754 Floating Point Representation Floating Point Arithmetic Used to represent very numbers (fractions) and very numbers Avogadro s Number: +6.247 * 1 23 Planck

### Floating Point Arithmetic

Floating Point Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

### Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

### Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example

Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,

### IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1

IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose

### CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits

### CS101 Introduction to computing Floating Point Numbers

CS101 Introduction to computing Floating Point Numbers A. Sahu and S. V.Rao Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Need to floating point number Number representation

### MIPS Integer ALU Requirements

MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set

### CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader

CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader Number representation (See: Lecture 2, Lab 1, HW#1) KNOW: Kibi (2 10 ), Mebi(2 20 ), Gibi(2 30 ), Tebi(2

### Arithmetic for Computers. Hwansoo Han

Arithmetic for Computers Hwansoo Han Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

### 10.1. Unit 10. Signed Representation Systems Binary Arithmetic

0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

### ecture 25 Floating Point Friedland and Weaver Computer Science 61C Spring 2017 March 17th, 2017

ecture 25 Computer Science 61C Spring 2017 March 17th, 2017 Floating Point 1 New-School Machine Structures (It s a bit more complicated!) Software Hardware Parallel Requests Assigned to computer e.g.,

### IEEE Standard 754 Floating Point Numbers

IEEE Standard 754 Floating Point Numbers Steve Hollasch / Last update 2005-Feb-24 IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intel-based

### Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) (aritmeettis-looginen yksikkö) Does all

### Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) Does all work in CPU (aritmeettis-looginen

### Floating Point Arithmetic

Floating Point Arithmetic Clark N. Taylor Department of Electrical and Computer Engineering Brigham Young University clark.taylor@byu.edu 1 Introduction Numerical operations are something at which digital

### Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

### & Control Flow of Program

CS101 Introduction to computing Recap of Floating Point & Control Flow of Program A. Sahu and S. V.Rao Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Recap Operation on Floating

### Number Systems. Both numbers are positive

Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

### Bits and Bytes: Data Presentation Mohamed Zahran (aka Z)

CSCI-UA.0201 Computer Systems Organization Bits and Bytes: Data Presentation Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted and modified from: Clark Barrett Jinyang

### Chapter 2 Data Representations

Computer Engineering Chapter 2 Data Representations Hiroaki Kobayashi 4/21/2008 4/21/2008 1 Agenda in Chapter 2 Translation between binary numbers and decimal numbers Data Representations for Integers

### ICS Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2

ICS 2008 Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2 Data Representations Sizes of C Objects (in Bytes) C Data Type Compaq Alpha Typical 32-bit Intel IA32 int 4 4 4 long int 8 4 4

### Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Floating Point COE 38 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Floating-Point Numbers IEEE 754 Floating-Point

### Floating Point Considerations

Chapter 6 Floating Point Considerations In the early days of computing, floating point arithmetic capability was found only in mainframes and supercomputers. Although many microprocessors designed in the

### Characters, Strings, and Floats

Characters, Strings, and Floats CS 350: Computer Organization & Assembler Language Programming 9/6: pp.8,9; 9/28: Activity Q.6 A. Why? We need to represent textual characters in addition to numbers. Floating-point

### Data Representations & Arithmetic Operations

Data Representations & Arithmetic Operations Hiroaki Kobayashi 7/13/2011 7/13/2011 Computer Science 1 Agenda Translation between binary numbers and decimal numbers Data Representations for Integers Negative

### Scientific Computing. Error Analysis

ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

### REMEMBER TO REGISTER FOR THE EXAM.

REMEMBER TO REGISTER FOR THE EXAM http://tenta.angstrom.uu.se/tenta/ Floating point representation How are numbers actually stored? Some performance consequences and tricks Encoding Byte Values Byte =

### Computer Systems C S Cynthia Lee

Computer Systems C S 1 0 7 Cynthia Lee 2 Today s Topics LECTURE: Floating point! Real Numbers and Approximation MATH TIME! Some preliminary observations on approximation We know that some non-integer numbers

### Course Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation

Course Schedule CS 221 Computer Architecture Week 3: Information Representation (2) Fall 2001 W1 Sep 11- Sep 14 Introduction W2 Sep 18- Sep 21 Information Representation (1) (Chapter 3) W3 Sep 25- Sep

### Classes of Real Numbers 1/2. The Real Line

Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers non-integral fractions irrational numbers Rational numbers

### FP_IEEE_DENORM_GET_ Procedure

FP_IEEE_DENORM_GET_ Procedure FP_IEEE_DENORM_GET_ Procedure The FP_IEEE_DENORM_GET_ procedure reads the IEEE floating-point denormalization mode. fp_ieee_denorm FP_IEEE_DENORM_GET_ (void); DeNorm The denormalization

### ±M R ±E, S M CHARACTERISTIC MANTISSA 1 k j

ENEE 350 c C. B. Silio, Jan., 2010 FLOATING POINT REPRESENTATIONS It is assumed that the student is familiar with the discussion in Appendix B of the text by A. Tanenbaum, Structured Computer Organization,

### 1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

### Chapter 2. Data Representation in Computer Systems

Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

### Floating-Point Numbers in Digital Computers

POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

### Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8

Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted

### Fixed Point. Basic idea: Choose a xed place in the binary number where the radix point is located. For the example above, the number is

Real Numbers How do we represent real numbers? Several issues: How many digits can we represent? What is the range? How accurate are mathematical operations? Consistency... Is a + b = b + a? Is (a + b)

### What Every Programmer Should Know About Floating-Point Arithmetic

What Every Programmer Should Know About Floating-Point Arithmetic Last updated: October 15, 2015 Contents 1 Why don t my numbers add up? 3 2 Basic Answers 3 2.1 Why don t my numbers, like 0.1 + 0.2 add

### Systems 1. Integers. Unsigned & Twoʼs complement. Addition, negation, multiplication

Systems 1 Integers Topics Numeric Encodings Unsigned & Twoʼs complement Programming Implications C promotion rules Basic operations Addition, negation, multiplication Programming Implications Consequences

### The Perils of Floating Point

The Perils of Floating Point by Bruce M. Bush Copyright (c) 1996 Lahey Computer Systems, Inc. Permission to copy is granted with acknowledgement of the source. Many great engineering and scientific advances

### GPU Floating Point Features

CSE 591: GPU Programming Floating Point Considerations Klaus Mueller Computer Science Department Stony Brook University Objective To understand the fundamentals of floating-point representation To know

### Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1

Floating-Point Arithmetic Numerical Analysis uses floating-point arithmetic, but it is just one tool in numerical computation. There is an impression that floating point arithmetic is unpredictable and

### Chapter 4: Data Representations

Chapter 4: Data Representations Integer Representations o unsigned o sign-magnitude o one's complement o two's complement o bias o comparison o sign extension o overflow Character Representations Floating

### The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop.

CS 320 Ch 10 Computer Arithmetic The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. Signed integers are typically represented in sign-magnitude

### IEEE-754 floating-point

IEEE-754 floating-point Real and floating-point numbers Real numbers R form a continuum - Rational numbers are a subset of the reals - Some numbers are irrational, e.g. π Floating-point numbers are an

### Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point and associated issues. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point and associated issues Ramani Duraiswami, Dept. of Computer Science Class Outline Computations should be as accurate and as

### Lecture 5. Computer Arithmetic. Ch 9 [Stal10] Integer arithmetic Floating-point arithmetic

Lecture 5 Computer Arithmetic Ch 9 [Stal10] Integer arithmetic Floating-point arithmetic ALU ALU = Arithmetic Logic Unit (aritmeettis-looginen yksikkö) Actually performs operations on data Integer and

### Floating-Point Numbers in Digital Computers

POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

### CSCI 402: Computer Architectures. Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI Homework 4 Assigned on Feb 22, Thursday Due Time: 11:59pm, March 5 on Monday

### Floating Point Representation. CS Summer 2008 Jonathan Kaldor

Floating Point Representation CS3220 - Summer 2008 Jonathan Kaldor Floating Point Numbers Infinite supply of real numbers Requires infinite space to represent certain numbers We need to be able to represent

### Outline. What is Performance? Restating Performance Equation Time = Seconds. CPU Performance Factors

CS 61C: Great Ideas in Computer Architecture Performance and Floating-Point Arithmetic Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 Outline Defining Performance

### IEEE Floating Point Numbers Overview

COMP 40: Machine Structure and Assembly Language Programming (Fall 2015) IEEE Floating Point Numbers Overview Noah Mendelsohn Tufts University Email: noah@cs.tufts.edu Web: http://www.cs.tufts.edu/~noah

### Floating-Point Arithmetic

Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 3. L12 Multiplication 1 Approximating Real Numbers on Computers Thus far, we ve entirely ignored one of the most

### Preliminary Decimal-Floating-Point Architecture

z/architecture Preliminary Decimal-Floating-Point Architecture November, 2006 SA23-2232-00 ii Preliminary Decimal-Floating-Point Architecture Note: Before using this information and the product it supports,

### FPSim: A Floating- Point Arithmetic Demonstration Applet

FPSim: A Floating- Point Arithmetic Demonstration Applet Jeffrey Ward Departmen t of Computer Science St. Cloud State University waje9901@stclouds ta te.edu Abstract An understan ding of IEEE 754 standar

### Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (

Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language

### CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

### Floating Point. CSC207 Fall 2017

Floating Point CSC207 Fall 2017 Ariane 5 Rocket Launch Ariane 5 rocket explosion In 1996, the European Space Agency s Ariane 5 rocket exploded 40 seconds after launch. During conversion of a 64-bit to

### Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier

Architecture and Design of Generic IEEE-754 Based Floating Point Adder, Subtractor and Multiplier Sahdev D. Kanjariya VLSI & Embedded Systems Design Gujarat Technological University PG School Ahmedabad,

### Floating-Point Arithmetic

Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } L11 Floating Point 1 What is the problem? Many numeric applications require numbers over a VERY large range. (e.g. nanoseconds to centuries)