Virtual Memory B: Objec5ves

Size: px
Start display at page:

Download "Virtual Memory B: Objec5ves"

Transcription

1 Virtual Memory B: Objec5ves Benefits of a virtual memory system" Demand paging, page-replacement algorithms, and allocation of page frames" The working-set model" Relationship between shared memory and memory-mapped files" To explore how kernel memory is managed" Slides based on Text by Silberschatz, Galvin, Gagne Berkeley Opera7ng Systems group S. Pallikara Other sources Yashwant K Malaiya CS370 Opera7ng Systems Fall

2 Page Replacement Prevent over- alloca7on of memory by modifying page- fault service rou5ne to include page replacement Use modify (dirty) bit to reduce overhead of page transfers only modified pages are wrihen to disk 2

3 Need For Page Replacement Now no place for B 3

4 Basic Page Replacement 1. Find the loca5on of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select a vic7m frame - Write vic5m frame to disk if dirty 1. Bring the desired page into the (newly) free frame; update the page and frame tables 2. Con5nue the process by restar5ng the instruc5on that caused the trap Note now poten5ally 2 page transfers for page fault increasing EAT 4

5 5 Page Replacement

6 Page and Frame Replacement Algorithms Frame- alloca7on algorithm determines How many frames to give each process Which frames to replace Page- replacement algorithm Want lowest page- fault rate on both first access and re- access Evaluate algorithm by running it on a par5cular string of memory references (reference string) and compu5ng the number of page faults on that string String is just page numbers, not full addresses Repeated access to the same page does not cause a page fault Results depend on number of frames available In all our examples, the reference string of referenced page numbers is 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 6

7 7 Graph of Page Faults Versus The Number of Frames

8 First- In- First- Out (FIFO) Algorithm Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 3 frames (3 pages can be in memory at a 5me per process) 8 15 page faults" Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5 Adding more frames (3 to 4) can cause more page (9 to 10) faults! Belady s Anomaly How to track ages of pages? Just use a FIFO queue Belady was here at CSU. Guest in my CS530!

9 FIFO Illustra5ng Belady s Anomaly 16 number of page faults number of frames

10 Op5mal Algorithm Replace page that will not be used for longest period of 5me 9 is op5mal for the example (FIFO was 15) How do you know this? Would have been nice if we could Can t read the future Used for measuring how well your algorithm performs 10

11 Least Recently Used (LRU) Algorithm Use past knowledge rather than future Replace page that has not been used in the most amount of 5me Associate 5me of last use with each page 12 faults beher than FIFO but worse than OPT Generally good algorithm and frequently used But how to implement? 11

12 How we got here.. External fragmenta5on > Paging > Low degree of mul5programming > Demand paging Page Faults > Page replacement algorithm Page buffering Frame alloca5on Working sets 12

13 Ques5ons from last 5me Demand paging: page loaded on demand only Zero- fill: wiped clean for security EAT equa5on: page fault/no page fault Copy- on- write: private copy for wri5ng How does an algorithm know which page it will not need soon. My addi5on Malaiya s anomaly ( anomalous reverse conduc5on 89) 13

14 LRU Algorithm (Cont.) Counter implementa5on Every page table entry has a counter; every 5me page is referenced through this entry, copy the clock into the counter 5me of use field When a page needs to be changed, look at the counters to find smallest value Search through page table needed Stack implementa5on Keep a stack of page numbers in a double link form: Page referenced: move it to the top requires mul5ple pointers to be changed But each update more expensive No search for replacement: bohom page is vic5m LRU and OPT are cases of stack algorithms that don t exhibit Belady s Anomaly 14

15 Use Of A Stack to Record Most Recent Page References reference string a b stack before a stack after b Most recently accessed page moved to the top BoHom page candidate for replacement 15

16 LRU Approxima5on Algorithms LRU needs special hardware and s5ll slow LRU approxima7on: Reference bit With each page associate a bit, ini5ally = 0 When page is referenced bit set to 1 Replace any with reference bit = 0 (if one exists) 1 = recently used We do not know the order, however (improvements possible with mul5ple bits) LRU approxima7on: Second- chance algorithm Generally FIFO, plus hardware- provided reference bit Clock replacement If page to be replaced has Reference bit = 0 - > replace it reference bit = 1 then: set reference bit 0, leave page in memory replace next page, subject to same rules 16

17 Reference bit with shiq register ShiU register Reference bit for page ShiU register auer OS 7mer interrupt

18 Reference bit with shiq register Interpre5ng the reference bits Interpret 8- bit bytes as unsigned integers Page with the lowest number is the LRU page : Not used in last 8 periods : Used 4 5mes in the last 8 periods used more recently than

19 Second- chance algorithm LRU approxima7on: Second- chance algorithm Generally FIFO, plus hardware- provided reference bit avoids throwing out a heavily used page Clock replacement Examine reference bit of next page Reference bit = 0 - > page is old, evict it reference bit = 1 then give it another chance: set reference bit 0, leave page in memory Examine page, subject to same rules 1 = recently used 19

20 Second- Chance (clock) Page- Replacement Algorithm reference bits pages reference bits pages 0 0 next victim nd chance 0 0 Also called Clock algo 1 2 nd chance 0 Hand points to oldest page circular queue of pages (a) circular queue of pages Pointer indicates which page is to be replaced next. When a frame is needed, pointer advances un5l it finds page with a 0 reference bit. As it advances, it clears the reference bits. Once a vic5m page is found, page is replaced, and new page is inserted in circular queue in that posi5on. 20 (b)

21 Enhanced Second- Chance Algorithm Improve algorithm by using reference bit and modify bit (if available) in concert Take ordered pair (reference, modify) 1. (0, 0) neither recently used not modified best page to replace 2. (0, 1) not recently used but modified not quite as good, must write out before replacement 3. (1, 0) recently used but clean probably will be used again soon 4. (1, 1) recently used and modified probably will be used again soon and need to write out before replacement When page replacement called for, use the clock scheme but use the four classes replace page in lowest non- empty class Might need to search circular queue several 5mes 21

22 Coun5ng Algorithms Keep a counter of the number of references that have been made to each page Not common Least Frequently Used (LFU) Algorithm: replaces page with smallest count Most Frequently Used (MFU) Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used 22

23 Page- Buffering Algorithms Buffering: Keep a pool of free frames Then frame available when needed, not found at fault 5me Read page into free frame and select vic5m to evict and add to free pool When convenient, evict vic5m Pro- ac5ve: Keep list of modified pages When backing store otherwise idle, write pages there and set to non- dirty If a page is selected for replacement increase likelihood of that page being clean Reuse, keep free frame contents intact and note what page they held If same page referenced again before reused, no need to load contents again from disk 23

24 Ques5ons from last 5me LRU: Would a queue be a good data structure? Page Buffering Algorithms : ideas to reduce demand paging overheads Why number of page faults is an important number? Buffering: Keep a pool of free frames Bring in frame now, evict vic5m later Pro- ac5ve: Save modified pages when convenient Don t wait for a page fault Keep freed frame contents and note what page they held In case same page referenced again before reuse 24

25 Applica5ons and Page Replacement All of these algorithms have OS guessing about future page access Some applica5ons have beher knowledge of future pages i.e. databases Memory intensive applica5ons can cause double buffering OS keeps copy of page in memory as I/O buffer Applica5on keeps page in memory for its own work 25

26 Alloca5on of Frames How do you divvy up free memory among processes? Each process needs minimum number of frames Example: IBM pages to handle SS MOVE instruc5on: instruc5on is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Maximum of course is total frames in the system Two major alloca5on schemes fixed alloca5on priority alloca5on Many varia5ons in alloca5on approaches 26

27 A. Fixed Alloca5on Equal alloca7on For example, if there are 100 frames (aqer alloca5ng frames for the OS) and 5 processes, give each process 20 frames Have to keep some as free frame buffer pool Propor7onal alloca7on Allocate according to the size of process Dynamic as degree of mul5programming, process sizes change s S = s a i i = size of process i m = total number of = allocation for p i p i frames si = m S m = 64 s1 =10 s 2 =127 a 1 = a 2 =

28 Priority Alloca5on Use a propor5onal alloca5on scheme using priori5es rather than size If process P i generates a page fault, select for replacement one of its frames: Local grab for replacement a frame from a process with lower priority number: Global 28

29 Global vs. Local Alloca5on Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another But then process execu5on 5me can vary greatly But greater throughput so more common Local replacement each process selects from only its own set of allocated frames More consistent per- process performance But possibly underu5lized memory 29

30 Non- Uniform Memory Access NUMA So far all memory accessed equally Many systems are NUMA speed of access to memory varies Consider system boards containing CPUs and memory, interconnected over a system bus Op5mal performance comes from alloca5ng memory close to the CPU on which the thread is scheduled And modifying the scheduler to schedule the thread on the same system board when possible Idea used by Solaris 30

31 Problem: Thrashing If a process does not have enough pages, the page- fault rate is very high Page fault to get page Replace exis5ng frame But quickly need replaced frame back This leads to: Low CPU u5liza5on, leading to Opera5ng system thinking that it needs to increase the degree of mul5programming leading to Another process added to the system Thrashing a process is busy swapping pages in and out 31

32 32 Thrashing (Cont.)

33 Demand Paging and Thrashing Why does demand paging work? Locality model Process migrates from one locality to another Locali5es may overlap Why does thrashing occur? Σ size of locality > total memory size Limit effects by using local or priority page replacement Working sets: iden5fy locality 33

34 Locality In A Memory- Reference PaHern page numbers memory address execution time

35 Working- Set Model Δ working- set window a fixed number of page references Example: 10,000 instruc5ons WSS i (working set of Process P i ) = total number of pages referenced in the most recent Δ (varies in 5me) if Δ too small will not encompass en5re locality if Δ too large will encompass several locali5es if Δ = will encompass en5re program D = Σ WSS i total demand frames Approxima5on of locality if D > m Thrashing Policy if D > m, then suspend or swap out one of the processes Δ = 10 35

36 Keeping Track of the Working Set Approximate with interval 5mer + a reference bit Example: Δ = 10,000 units Timer interrupts aqer every me units Keep in memory 2 bits for each page Whenever a 5mer interrupts copy and sets the values of all reference bits to 0 If one of the bits in memory = 1 page in working set Why is this not completely accurate? Improvement = 10 bits and interrupt every me units 36

37 Page- Fault Frequency More direct approach than WSS Establish acceptable page- fault frequency (PFF) rate and use local replacement policy If actual rate too low, process loses frame If actual rate too high, process gains frame page-fault rate increase number of frames upper bound lower bound decrease number of frames number of frames 37

38 Working Sets and Page Fault Rates Direct rela5onship between working set of a process and its page- fault rate Working set changes over 5me Peaks (working set changed) and valleys (working set stable) over 5me Transi5ons: 3 working sets 38

39 Memory- Mapped Disk Files Memory- mapped file I/O allows file I/O to be treated as rou5ne memory access by mapping a disk block to a page in memory A file is ini5ally read using demand paging A page- sized por5on of the file is read from the file system into a physical page Subsequent reads/writes to/from the file are treated as ordinary memory accesses Simplifies and speeds file access by driving file I/O through memory rather than read() and write() system calls Also allows several processes to map the same file allowing the pages in memory to be shared But when does wrihen data make it to disk? Periodically and / or at file close() 5me For example, when the pager scans for dirty pages 39

40 Ques5ons from last 5me Frame alloca5on for a process Threshing: when a process has too few frames Working set update: to avoid threshing, make sure working set is in memory Which is the best choice for page replacement algorithm? Transfers between memory and disk: DMA Memory mapped files: delays 40

41 Memory- Mapped File Technique for all I/O Some OSes uses memory mapped files for standard I/O Process can explicitly request memory mapping a file via mmap() system call Now file mapped into process address space For standard I/O (open(), read(), write(), close()), mmap anyway But map file into kernel address space Process s5ll does read() and write() Copies data to and from kernel space and user space Uses efficient memory management subsystem Avoids needing separate subsystem COW can be used for read/write non- shared pages Memory mapped files can be used for shared memory (although again via separate system calls) 41

42 Memory Mapped Files process A virtual memory process B virtual memory 4 2 physical memory disk file Disk File uses 6 blocks Page tables used for mapping 42

43 Shared Memory via Memory- Mapped I/O process 1 process 2 shared memory memory-mapped file shared memory shared memory 43

44 Alloca5ng Kernel Memory Treated differently from user memory Oqen allocated from a free- memory pool Kernel requests memory for structures of varying sizes Process descriptors, semaphores, file objects etc. Oqen much smaller than page size Some kernel memory needs to be con5guous I.e. for device I/O Two approaches (skipped) Buddy system Slab allocator 44

45 Other Considera5ons - - Prepaging Prepaging To reduce the large number of page faults that occurs at process startup Prepage all or some of the pages a process will need, before they are referenced But if prepaged pages are unused, I/O and memory was wasted Assume s pages are prepaged and α of the pages is used Is cost of s * α save pages faults > or < than the cost of prepaging s * (1- α) unnecessary pages? α near zero prepaging loses 45

46 Other Issues Page Size Some5mes OS designers have a choice Especially if running on custom- built CPU Page size selec5on must take into considera5on: Fragmenta5on: smaller is beher Page table size: larger is beher I/O overhead: large beher Locality: smaller is beher Always power of 2, usually in the range 2 12 (4,096 bytes) to 2 22 (4,194,304 bytes) On average, growing over 5me 46

47 Other Issues TLB Reach TLB Reach - The amount of memory accessible from the TLB TLB Reach = (TLB Size) X (Page Size) Ideally, the working set of each process is stored in the TLB Otherwise there is a high degree of page faults Increase the Page Size to increase reach? This may lead to an increase in fragmenta5on as not all applica5ons require a large page size Provide Mul5ple Page Sizes This allows applica5ons that require larger page sizes the opportunity to use them without an increase in fragmenta5on 47

48 Other Issues Program Structure Program structure int[128,128] data; i: row, j: column Each row is stored in one page Program 1 for (j = 0; j <128; j++) for (i = 0; i < 128; i++) data[i,j] = 0; 128 x 128 = 16,384 page faults Program 2 for (i = 0; i < 128; i++) for (j = 0; j < 128; j++) data[i,j] = 0; 128 page faults 48

49 Other Issues I/O interlock I/O Interlock Pages must some5mes be locked into memory Consider I/O - Pages that are used for copying a file from a device must be locked from being selected for evic5on by a page replacement algorithm Pinning of pages to lock into memory 49

50 Opera5ng System Examples (Skipped) Windows Solaris 50

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 23 Virtual memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Is a page replaces when

More information

First-In-First-Out (FIFO) Algorithm

First-In-First-Out (FIFO) Algorithm First-In-First-Out (FIFO) Algorithm Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1 3 frames (3 pages can be in memory at a time per process) 15 page faults Can vary by reference string:

More information

Page Replacement Algorithms

Page Replacement Algorithms Page Replacement Algorithms MIN, OPT (optimal) RANDOM evict random page FIFO (first-in, first-out) give every page equal residency LRU (least-recently used) MRU (most-recently used) 1 9.1 Silberschatz,

More information

Chapter 8: Virtual Memory. Operating System Concepts

Chapter 8: Virtual Memory. Operating System Concepts Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2009 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapter 9: Virtual-Memory

Chapter 9: Virtual-Memory Chapter 9: Virtual-Memory Management Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation of Frames Thrashing Other Considerations Silberschatz, Galvin and Gagne 2013

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 33 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ How does the virtual

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory 9.1 Background 9.2 Demand Paging 9.3 Copy-on-Write 9.4 Page Replacement 9.5 Allocation of Frames 9.6 Thrashing 9.7 Memory-Mapped Files 9.8 Allocating

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Chapter 9: Virtual Memory Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

OPERATING SYSTEM. Chapter 9: Virtual Memory

OPERATING SYSTEM. Chapter 9: Virtual Memory OPERATING SYSTEM Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory

More information

Operating System Concepts

Operating System Concepts Chapter 9: Virtual-Memory Management 9.1 Silberschatz, Galvin and Gagne 2005 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs Optimal Algorithm Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs page 1 Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3,

More information

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได Chapter 9: Virtual Memory Chapter 3: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 10: Virtual Memory

Chapter 10: Virtual Memory Chapter 10: Virtual Memory Chapter 10: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmentation Operating

More information

Operating System Concepts 9 th Edition

Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Lecture 17 Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Page Replacement Algorithms Last Lecture: FIFO Optimal Page Replacement LRU LRU Approximation Additional-Reference-Bits

More information

Chapter 10: Virtual Memory. Background

Chapter 10: Virtual Memory. Background Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples 10.1 Background Virtual memory separation of user logical

More information

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles Page Replacement page 1 Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number

More information

Chapter 10: Virtual Memory. Background. Demand Paging. Valid-Invalid Bit. Virtual Memory That is Larger Than Physical Memory

Chapter 10: Virtual Memory. Background. Demand Paging. Valid-Invalid Bit. Virtual Memory That is Larger Than Physical Memory Chapter 0: Virtual Memory Background Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples Virtual memory separation of user logical memory

More information

Chapter 9: Virtual Memory. Operating System Concepts 9th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9th Edition Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L20 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time Page

More information

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Where are we in the course?

Where are we in the course? Previous Lectures Memory Management Approaches Allocate contiguous memory for the whole process Use paging (map fixed size logical pages to physical frames) Use segmentation (user s view of address space

More information

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging Virtual Memory (/) Background Page Replacement Allocation of Frames Thrashing Background Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in memory

More information

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory. Demand Paging

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory. Demand Paging TDDB68 Concurrent programming and operating systems Overview: Virtual Memory Virtual Memory [SGG7/8] Chapter 9 Background Demand Paging Page Replacement Allocation of Frames Thrashing and Data Access Locality

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmenation 9.1 Background

More information

Virtual Memory Outline

Virtual Memory Outline Virtual Memory Outline Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations Operating-System Examples

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Demand Segmentation Operating System Examples 9.2 Background

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture were based on those Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and

More information

Background. Demand Paging. valid-invalid bit. Tevfik Koşar. CSC Operating Systems Spring 2007

Background. Demand Paging. valid-invalid bit. Tevfik Koşar. CSC Operating Systems Spring 2007 CSC 0 - Operating Systems Spring 007 Lecture - XIII Virtual Memory Tevfik Koşar Background Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Basic Page Replacement

Basic Page Replacement Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select

More information

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory Virtual Memory Virtual Memory CSCI Operating Systems Design Department of Computer Science Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 21-23 - Virtual Memory Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian,

More information

instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes

instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes Allocation of Frames How should the OS distribute the frames among the various processes? Each process needs minimum number of pages - at least the minimum number of pages required for a single assembly

More information

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory TDIU Operating systems Overview: Virtual Memory Virtual Memory Background Demand Paging Page Replacement Allocation of Frames Thrashing and Data Access Locality [SGG7/8/9] Chapter 9 Copyright Notice: The

More information

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier edition of the course text Operating

More information

Demand Paging. Valid-Invalid Bit. Steps in Handling a Page Fault. Page Fault. Transfer of a Paged Memory to Contiguous Disk Space

Demand Paging. Valid-Invalid Bit. Steps in Handling a Page Fault. Page Fault. Transfer of a Paged Memory to Contiguous Disk Space Demand Paging Transfer of a Paged Memory to Contiguous Disk Space Bring a page into memory only when it is needed. Less I/O needed Less memory needed Faster response More users Page is needed reference

More information

CS420: Operating Systems

CS420: Operating Systems Virtual Memory James Moscola Department of Physical Sciences York College of Pennsylvania Based on Operating System Concepts, 9th Edition by Silberschatz, Galvin, Gagne Background Code needs to be in memory

More information

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition,

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition, Chapter 9: Virtual-Memory Management, Silberschatz, Galvin and Gagne 2009 Chapter 9: Virtual-Memory Management Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

PAGE REPLACEMENT. Operating Systems 2015 Spring by Euiseong Seo

PAGE REPLACEMENT. Operating Systems 2015 Spring by Euiseong Seo PAGE REPLACEMENT Operating Systems 2015 Spring by Euiseong Seo Today s Topics What if the physical memory becomes full? Page replacement algorithms How to manage memory among competing processes? Advanced

More information

Virtual Memory COMPSCI 386

Virtual Memory COMPSCI 386 Virtual Memory COMPSCI 386 Motivation An instruction to be executed must be in physical memory, but there may not be enough space for all ready processes. Typically the entire program is not needed. Exception

More information

Memory Management. Virtual Memory. By : Kaushik Vaghani. Prepared By : Kaushik Vaghani

Memory Management. Virtual Memory. By : Kaushik Vaghani. Prepared By : Kaushik Vaghani Memory Management Virtual Memory By : Kaushik Vaghani Virtual Memory Background Page Fault Dirty Page / Dirty Bit Demand Paging Copy-on-Write Page Replacement Objectives To describe the benefits of a virtual

More information

Operating Systems. Overview Virtual memory part 2. Page replacement algorithms. Lecture 7 Memory management 3: Virtual memory

Operating Systems. Overview Virtual memory part 2. Page replacement algorithms. Lecture 7 Memory management 3: Virtual memory Operating Systems Lecture 7 Memory management : Virtual memory Overview Virtual memory part Page replacement algorithms Frame allocation Thrashing Other considerations Memory over-allocation Efficient

More information

Chapters 9 & 10: Memory Management and Virtual Memory

Chapters 9 & 10: Memory Management and Virtual Memory Chapters 9 & 10: Memory Management and Virtual Memory Important concepts (for final, projects, papers) addressing: physical/absolute, logical/relative/virtual overlays swapping and paging memory protection

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2016 Lecture 32 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions for you What is

More information

Virtual Memory - Overview. Programmers View. Virtual Physical. Virtual Physical. Program has its own virtual memory space.

Virtual Memory - Overview. Programmers View. Virtual Physical. Virtual Physical. Program has its own virtual memory space. Virtual Memory - Overview Programmers View Process runs in virtual (logical) space may be larger than physical. Paging can implement virtual. Which pages to have in? How much to allow each process? Program

More information

Chapter 8: Main Memory. Operating System Concepts 8th Edition

Chapter 8: Main Memory. Operating System Concepts 8th Edition Chapter 8: Main Memory Operating System Concepts 8th Edition Silberschatz, Galvin and Gagne 2009 Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page

More information

Basic Memory Management

Basic Memory Management Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester 10/15/14 CSC 2/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it

More information

Virtual Memory - II. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - XVI. University at Buffalo.

Virtual Memory - II. Roadmap. Tevfik Koşar. CSE 421/521 - Operating Systems Fall Lecture - XVI. University at Buffalo. CSE 421/521 - Operating Systems Fall 2012 Lecture - XVI Virtual Memory - II Tevfik Koşar University at Buffalo October 25 th, 2012 1 Roadmap Virtual Memory Page Replacement Algorithms Optimal Algorithm

More information

1. Background. 2. Demand Paging

1. Background. 2. Demand Paging COSC4740-01 Operating Systems Design, Fall 2001, Byunggu Yu Chapter 10 Virtual Memory 1. Background PROBLEM: The entire process must be loaded into the memory to execute limits the size of a process (it

More information

Page Replacement Chap 21, 22. Dongkun Shin, SKKU

Page Replacement Chap 21, 22. Dongkun Shin, SKKU Page Replacement Chap 21, 22 1 Virtual Memory Concept Virtual memory Concept A technique that allows the execution of processes that are not completely in memory Partition each user s program into multiple

More information

Chapter 6: Demand Paging

Chapter 6: Demand Paging ADRIAN PERRIG & TORSTEN HOEFLER ( 5-006-00 ) Networks and Operating Systems Chapter 6: Demand Paging Source: http://redmine.replicant.us/projects/replicant/wiki/samsunggalaxybackdoor If you miss a key

More information

Virtual Memory. Reading: Silberschatz chapter 10 Reading: Stallings. chapter 8 EEL 358

Virtual Memory. Reading: Silberschatz chapter 10 Reading: Stallings. chapter 8 EEL 358 Virtual Memory Reading: Silberschatz chapter 10 Reading: Stallings chapter 8 1 Outline Introduction Advantages Thrashing Principal of Locality VM based on Paging/Segmentation Combined Paging and Segmentation

More information

CS6401- Operating System UNIT-III STORAGE MANAGEMENT

CS6401- Operating System UNIT-III STORAGE MANAGEMENT UNIT-III STORAGE MANAGEMENT Memory Management: Background In general, to rum a program, it must be brought into memory. Input queue collection of processes on the disk that are waiting to be brought into

More information

Virtual Memory Management

Virtual Memory Management Virtual Memory Management CS-3013 Operating Systems Hugh C. Lauer (Slides include materials from Slides include materials from Modern Operating Systems, 3 rd ed., by Andrew Tanenbaum and from Operating

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Memory Management 1 Hardware background The role of primary memory Program

More information

Operating Systems Virtual Memory. Lecture 11 Michael O Boyle

Operating Systems Virtual Memory. Lecture 11 Michael O Boyle Operating Systems Virtual Memory Lecture 11 Michael O Boyle 1 Paged virtual memory Allows a larger logical address space than physical memory All pages of address space do not need to be in memory the

More information

Caching and Demand- Paged Virtual Memory

Caching and Demand- Paged Virtual Memory Caching and Demand- Paged Virtual Memory Defini8ons Cache Copy of data that is faster to access than the original Hit: if cache has copy Miss: if cache does not have copy Cache block Unit of cache storage

More information

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has

Swapping. Operating Systems I. Swapping. Motivation. Paging Implementation. Demand Paging. Active processes use more physical memory than system has Swapping Active processes use more physical memory than system has Operating Systems I Address Binding can be fixed or relocatable at runtime Swap out P P Virtual Memory OS Backing Store (Swap Space) Main

More information

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it to be run Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester Mono-programming

More information

CS 3733 Operating Systems:

CS 3733 Operating Systems: CS 3733 Operating Systems: Topics: Virtual Memory (SGG, Chapter 09) Instructor: Dr. Dakai Zhu Department of Computer Science @ UTSA 1 Reminders Assignment 3: due March 30, 2018 (mid-night)! Part I: fixed

More information

Page Replacement Chap 21, 22. Dongkun Shin, SKKU

Page Replacement Chap 21, 22. Dongkun Shin, SKKU Page Replacement Chap 21, 22 1 Virtual Memory Concept Virtual memory Concept A technique that allows the execution of processes that are not completely in memory Partition each user s program into multiple

More information

Virtual Memory III. Jo, Heeseung

Virtual Memory III. Jo, Heeseung Virtual Memory III Jo, Heeseung Today's Topics What if the physical memory becomes full? Page replacement algorithms How to manage memory among competing processes? Advanced virtual memory techniques Shared

More information

Memory management, part 2: outline

Memory management, part 2: outline Memory management, part 2: outline Page replacement algorithms Modeling PR algorithms o Working-set model and algorithms Virtual memory implementation issues 1 Page Replacement Algorithms Page fault forces

More information

UNIT - IV. What is virtual memory?

UNIT - IV. What is virtual memory? UNIT - IV Virtual Memory Demand Paging Process creation Page Replacement Allocation of frames Thrashing- File Concept - Access Methods Directory Structure File System Mounting File Sharing Protection.

More information

Virtual Memory: Page Replacement. CSSE 332 Operating Systems Rose-Hulman Institute of Technology

Virtual Memory: Page Replacement. CSSE 332 Operating Systems Rose-Hulman Institute of Technology Virtual Memory: Page Replacement CSSE 332 Operating Systems Rose-Hulman Institute of Technology Announcements Project E & presentation are due Wednesday Team reflections due Monday, May 19 The need for

More information

ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operating Systems ( ) Chapter 6: Demand Paging

ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operating Systems ( ) Chapter 6: Demand Paging ADRIAN PERRIG & TORSTEN HOEFLER Networks and Operating Systems (5-006-00) Chapter 6: Demand Paging http://redmine.replicant.us/projects/replicant/wiki/samsunggalaxybackdoor (0) # Inverted page table One

More information

Memory Management. To improve CPU utilization in a multiprogramming environment we need multiple programs in main memory at the same time.

Memory Management. To improve CPU utilization in a multiprogramming environment we need multiple programs in main memory at the same time. Memory Management To improve CPU utilization in a multiprogramming environment we need multiple programs in main memory at the same time. Basic CPUs and Physical Memory CPU cache Physical memory

More information

Memory management, part 2: outline. Operating Systems, 2017, Danny Hendler and Amnon Meisels

Memory management, part 2: outline. Operating Systems, 2017, Danny Hendler and Amnon Meisels Memory management, part 2: outline 1 Page Replacement Algorithms Page fault forces choice o which page must be removed to make room for incoming page? Modified page must first be saved o unmodified just

More information

CSE 120. Translation Lookaside Buffer (TLB) Implemented in Hardware. July 18, Day 5 Memory. Instructor: Neil Rhodes. Software TLB Management

CSE 120. Translation Lookaside Buffer (TLB) Implemented in Hardware. July 18, Day 5 Memory. Instructor: Neil Rhodes. Software TLB Management CSE 120 July 18, 2006 Day 5 Memory Instructor: Neil Rhodes Translation Lookaside Buffer (TLB) Implemented in Hardware Cache to map virtual page numbers to page frame Associative memory: HW looks up in

More information

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced?

!! What is virtual memory and when is it useful? !! What is demand paging? !! When should pages in memory be replaced? Chapter 10: Virtual Memory Questions? CSCI [4 6] 730 Operating Systems Virtual Memory!! What is virtual memory and when is it useful?!! What is demand paging?!! When should pages in memory be replaced?!!

More information

Lecture 14 Page Replacement Policies

Lecture 14 Page Replacement Policies CS 423 Operating Systems Design Lecture 14 Page Replacement Policies Klara Nahrstedt Fall 2011 Based on slides by YY Zhou and Andrew S. Tanenbaum Overview Administrative Issues Page Replacement Policies

More information

Chapter 8 Virtual Memory

Chapter 8 Virtual Memory Chapter 8 Virtual Memory Contents Hardware and control structures Operating system software Unix and Solaris memory management Linux memory management Windows 2000 memory management Characteristics of

More information

VII. Memory Management

VII. Memory Management VII. Memory Management 1 Intended Schedule Date Lecture Hand out Submission 0 20.04. Introduction to Operating Systems Course registration 1 27.04. Systems Programming using C (File Subsystem) 1. Assignment

More information

Topics: Virtual Memory (SGG, Chapter 09) CS 3733 Operating Systems

Topics: Virtual Memory (SGG, Chapter 09) CS 3733 Operating Systems Topics: Virtual Memory (SGG, Chapter 09) 9.1-9.7 CS 3733 Operating Systems Instructor: Dr. Turgay Korkmaz Department Computer Science The University of Texas at San Antonio Office: NPB 3.330 Phone: (210)

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 24 File Systems Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time How

More information

Memory Management. Chapter 4 Memory Management. Multiprogramming with Fixed Partitions. Ideally programmers want memory that is.

Memory Management. Chapter 4 Memory Management. Multiprogramming with Fixed Partitions. Ideally programmers want memory that is. Chapter 4 Memory Management Ideally programmers want memory that is Memory Management large fast non volatile 4.1 Basic memory management 4.2 Swapping 4.3 Virtual memory 4.4 Page replacement algorithms

More information

Chapter 4 Memory Management

Chapter 4 Memory Management Chapter 4 Memory Management 4.1 Basic memory management 4.2 Swapping 4.3 Virtual memory 4.4 Page replacement algorithms 4.5 Modeling page replacement algorithms 4.6 Design issues for paging systems 4.7

More information

Memory Management and Protection

Memory Management and Protection Part IV Memory Management and Protection Sadeghi, Cubaleska RUB 2008-09 Course Operating System Security Memory Management and Protection Main Memory Virtual Memory Roadmap of Chapter 4 Main Memory Background

More information

Outline. 1 Paging. 2 Eviction policies. 3 Thrashing 1 / 28

Outline. 1 Paging. 2 Eviction policies. 3 Thrashing 1 / 28 Outline 1 Paging 2 Eviction policies 3 Thrashing 1 / 28 Paging Use disk to simulate larger virtual than physical mem 2 / 28 Working set model # of accesses virtual address Disk much, much slower than memory

More information

Virtual Memory. ICS332 Operating Systems

Virtual Memory. ICS332 Operating Systems Virtual Memory ICS332 Operating Systems Virtual Memory Allow a process to execute while not completely in memory Part of the address space is kept on disk So far, we have assumed that the full address

More information

Practice Exercises 449

Practice Exercises 449 Practice Exercises 449 Kernel processes typically require memory to be allocated using pages that are physically contiguous. The buddy system allocates memory to kernel processes in units sized according

More information

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 14 Page Replacement Jonathan Walpole Computer Science Portland State University Page replacement Assume a normal page table (e.g., BLITZ) User-program is

More information

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 14 Page Replacement. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 14 Page Replacement Jonathan Walpole Computer Science Portland State University Page replacement Assume a normal page table (e.g., BLITZ) User-program is

More information

Last Class: Demand Paged Virtual Memory

Last Class: Demand Paged Virtual Memory Last Class: Demand Paged Virtual Memory Benefits of demand paging: Virtual address space can be larger than physical address space. Processes can run without being fully loaded into memory. Processes start

More information

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I)

ECE7995 Caching and Prefetching Techniques in Computer Systems. Lecture 8: Buffer Cache in Main Memory (I) ECE7995 Caching and Prefetching Techniques in Computer Systems Lecture 8: Buffer Cache in Main Memory (I) 1 Review: The Memory Hierarchy Take advantage of the principle of locality to present the user

More information

Memory Management Virtual Memory

Memory Management Virtual Memory Background; key issues Memory Management Virtual Memory Memory allocation schemes Virtual memory Memory management design and implementation issues 1 Remember Basic OS structures: intro in historical order

More information

Virtual Memory Design and Implementation

Virtual Memory Design and Implementation Virtual Memory Design and Implementation To do q Page replacement algorithms q Design and implementation issues q Next: Last on virtualization VMMs Loading pages When should the OS load pages? On demand

More information

CSC Operating Systems Spring Lecture - XIV Virtual Memory - II. Tevfik Ko!ar. Louisiana State University. March 27 th, 2008.

CSC Operating Systems Spring Lecture - XIV Virtual Memory - II. Tevfik Ko!ar. Louisiana State University. March 27 th, 2008. CSC 0 - Operating Systems Spring 008 Lecture - XIV Virtual Memory - II Tevfik Ko!ar Louisiana State University March 7 th, 008 Background Virtual memory separation of user logical memory from physical

More information

Virtual Memory. Today.! Virtual memory! Page replacement algorithms! Modeling page replacement algorithms

Virtual Memory. Today.! Virtual memory! Page replacement algorithms! Modeling page replacement algorithms Virtual Memory Today! Virtual memory! Page replacement algorithms! Modeling page replacement algorithms Reminder: virtual memory with paging! Hide the complexity let the OS do the job! Virtual address

More information

Memory Management Outline. Operating Systems. Motivation. Paging Implementation. Accessing Invalid Pages. Performance of Demand Paging

Memory Management Outline. Operating Systems. Motivation. Paging Implementation. Accessing Invalid Pages. Performance of Demand Paging Memory Management Outline Operating Systems Processes (done) Memory Management Basic (done) Paging (done) Virtual memory Virtual Memory (Chapter.) Motivation Logical address space larger than physical

More information

Operating System - Virtual Memory

Operating System - Virtual Memory Operating System - Virtual Memory Virtual memory is a technique that allows the execution of processes which are not completely available in memory. The main visible advantage of this scheme is that programs

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Chapter 8: Main Memory Chapter 9: Virtual Memory. Operating System Concepts 9th Edition

Chapter 8: Main Memory Chapter 9: Virtual Memory. Operating System Concepts 9th Edition Chapter 8: Main Memory Chapter 9: Virtual Memory Dr Prabhaker Mateti, CEG 4350 edition This collection is the combined edition of slides for Chapters 8 and 9 of SG, with several slides deleted or modified.

More information