Dynamic Memory CMSC 104 Spring 2014, Section 02, Lecture 24 Jason Tang

Size: px
Start display at page:

Download "Dynamic Memory CMSC 104 Spring 2014, Section 02, Lecture 24 Jason Tang"

Transcription

1 Dynamic Memory CMSC 104 Spring 2014, Section 02, Lecture 24 Jason Tang

2 Topics Memory Lifetime Dynamic Memory Allocation Dynamic Memory Deallocation

3 Variable Lifetime (Review) Lifetime refers to when the computer reserves memory to the variable and when the computer will re-use that memory afterwards A local variable s lifetime is the same as its scope Recall that every variable refers to a unique memory address

4 Why Use Dynamic Memory? Thus far, all strings have relied upon arrays An array s size is determined at array declaration and cannot be changed afterwards (so-called static allocation ) What if the array s size cannot be known ahead of time? Example scenario: Write a function that takes a string and returns a duplicate of it (a strdup() function)

5 Flawed strdup() Implementations char * bad_strdup(char *orig) { int len = strlen(orig); What s wrong char dup[len + 1]; with this? strcpy(dup, orig); return dup; char dup[????]; char * bad_strdup(char *orig) { int len = strlen(orig); What s wrong strcpy(dup, orig); with this? return dup;

6 malloc() Solution is to determine and allocate just the right amount of memory at runtime Use malloc() function to do this Takes an argument that specifies number of bytes to reserve Returns a pointer to the start of reserved bytes

7 Using malloc() #include <stdlib.h> #include <stdio.h> int main(void) { char *a = malloc(5); *(a + 0) = 'U'; *(a + 1) = 'M'; *(a + 2) = 'B'; *(a + 3) = 'C'; *(a + 4) = '\0'; printf("%s\n", a); return 0;

8 Using malloc() #include <stdlib.h> Need to #include <stdlib.h> #include <stdio.h> when calling malloc() int main(void) { char *a = malloc(5); *(a + 0) = 'U'; *(a + 1) = 'M'; *(a + 2) = 'B'; *(a + 3) = 'C'; *(a + 4) = '\0'; printf("%s\n", a); return 0; Bytes returned by malloc() still need to be initialized

9 Caveats of malloc() Memory that has been reserved by malloc() stays reserved until told otherwise Either implicitly when program terminates, or Explicitly (see next slide) That memory s scope and lifetime is from the invocation of malloc() until it is no longer reserved

10 free() Call free(), also declared in stdlib.h, to release memory previously reserved by a call to malloc() Takes as a parameter the same address that was returned by malloc() Generally speaking for every malloc(), there needs to be exactly one (and only one!) matching free()

11 Using free() #include <stdlib.h> #include <stdio.h> int main(void) { char *a = malloc(5); *(a + 0) = 'U'; *(a + 1) = 'M'; *(a + 2) = 'B'; *(a + 3) = 'C'; *(a + 4) = '\0'; printf("%s\n", a); free(a); return 0;

12 Caveats of free() Can only free() something that was returned by malloc() or some other memory allocation function free() must be against the exact same address that was returned by malloc() (or by some other allocater ) free() of a non-pointer or of an address not returned by malloc() will crash program This is also a segmentation fault

13 Crashing Program #1: Freeing a Non-Pointer #include <stdlib.h> #include <stdio.h> int main(void) { char a[] = "UMBC"; printf("%s\n", a); free(a); return 0;

14 Crashing Program #2: Not Freeing Exact Same Address #include <stdlib.h> #include <stdio.h> int main(void) { char *a = malloc(3); *(a + 0) = 'U'; *(a + 1) = 'M'; *(a + 2) = '\0'; printf("%s\n", a); free(a+1); return 0;

15 Crashing Program #3: Freeing a Non-Allocated Pointer #include <stdlib.h> #include <stdio.h> int main(void) { char a[] = "UMBC"; char *b = &a[0]; printf("%s\n", a); free(b); return 0;

16 Crashing Program #4: Doublefree() #include <stdlib.h> #include <stdio.h> int main(void) { char *a = malloc(3); *(a + 0) = 'U'; *(a + 1) = 'M'; *(a + 2) = '\0'; printf("%s\n", a); free(a); printf("freeing again\n"); free(a); return 0;

17 Crashing Program #4: Doublefree() #include <stdlib.h> #include <stdio.h> int main(void) { char *a = malloc(3); *(a + 0) = 'U'; *(a + 1) = 'M'; *(a + 2) = '\0'; printf("%s\n", a); free(a); printf("freeing again\n"); free(a); return 0; Once free()d, that memory block may not be accessed again This includes calling free() on pointer a second (or third or fourth) time

18 Working homemade strdup() with malloc() char * good_strdup(char *orig) { int len = strlen(orig); char *dup = malloc(len + 1); strcpy(dup, orig); return dup; This version of strdup() uses dynamic memory to reserve just the right amount of memory Don t forget to add 1 so as to hold the trailing \0

19 Rest of strdup() example #include <stdio.h> #include <stdlib.h> #include <string.h> char * good_strdup(char *orig); int main(void) { char s[] = "UMBC"; char *t = good_strdup(s); *(t + 0) = *(t + 1) = 'C'; printf("s = %s, t = %s\n", s, t); free(t); return 0;

20 strdup() This is a common design pattern: get the length of a string (strlen()), allocate space (malloc()), then copy the string into the returned memory (strcpy()) Built-in C library already has a function that does this, strdup() Declared in string.h like the other string functions strdup() is a memory allocator, so its returned

21 Cleaned Up Example #include <stdio.h> #include <stdlib.h> #include <string.h> int main(void) { char s[] = "UMBC"; char *t = strdup(s); *(t + 0) = *(t + 1) = 'C'; printf("s = %s, t = %s\n", s, t); free(t); return 0;

22 Cleaned Up Example #include <stdio.h> #include <stdlib.h> #include <string.h> int main(void) { char s[] = "UMBC"; char *t = strdup(s); *(t + 0) = *(t + 1) = 'C'; printf("s = %s, t = %s\n", s, t); free(t); return 0; strdup() is an allocator, so don t forget to free() the memory afterwards

23 Updated Variable Qualifiers Type Visibility Lifetime Storage Class scalar function local duration of function static allocation array global duration of program dynamic allocation pointer complex You are now ready for CMSC 201!

Programs in memory. The layout of memory is roughly:

Programs in memory. The layout of memory is roughly: Memory 1 Programs in memory 2 The layout of memory is roughly: Virtual memory means that memory is allocated in pages or segments, accessed as if adjacent - the platform looks after this, so your program

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Class Information ANNOUCEMENTS

Class Information ANNOUCEMENTS Class Information ANNOUCEMENTS Third homework due TODAY at 11:59pm. Extension? First project has been posted, due Monday October 23, 11:59pm. Midterm exam: Friday, October 27, in class. Don t forget to

More information

Dynamic memory. EECS 211 Winter 2019

Dynamic memory. EECS 211 Winter 2019 Dynamic memory EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/06dynamic.tgz tar zx $ cd 06dynamic 3 Oops! I made a mistake. In C, the declaration struct circle read_circle();

More information

advanced data types (2) typedef. today advanced data types (3) enum. mon 23 sep 2002 defining your own types using typedef

advanced data types (2) typedef. today advanced data types (3) enum. mon 23 sep 2002 defining your own types using typedef today advanced data types (1) typedef. mon 23 sep 2002 homework #1 due today homework #2 out today quiz #1 next class 30-45 minutes long one page of notes topics: C advanced data types dynamic memory allocation

More information

Lecture07: Strings, Variable Scope, Memory Model 4/8/2013

Lecture07: Strings, Variable Scope, Memory Model 4/8/2013 Lecture07: Strings, Variable Scope, Memory Model 4/8/2013 Slides modified from Yin Lou, Cornell CS2022: Introduction to C 1 Outline Review pointers New: Strings New: Variable Scope (global vs. local variables)

More information

CMSC 341 Lecture 2 Dynamic Memory and Pointers

CMSC 341 Lecture 2 Dynamic Memory and Pointers CMSC 341 Lecture 2 Dynamic Memory and Pointers Park Sects. 01 & 02 Based on earlier course slides at UMBC Today s Topics Stack vs Heap Allocating and freeing memory new and delete Memory Leaks Valgrind

More information

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1

Announcements. assign0 due tonight. Labs start this week. No late submissions. Very helpful for assign1 Announcements assign due tonight No late submissions Labs start this week Very helpful for assign1 Goals for Today Pointer operators Allocating memory in the heap malloc and free Arrays and pointer arithmetic

More information

Linked-List Basic Examples. A linked-list is Linear collection of self-referential class objects, called nodes Connected by pointer links

Linked-List Basic Examples. A linked-list is Linear collection of self-referential class objects, called nodes Connected by pointer links Linked-List Basic Examples A linked-list is Linear collection of self-referential class objects, called nodes Connected by pointer links Accessed via a pointer to the first node of the list Subsequent

More information

CS61, Fall 2012 Section 2 Notes

CS61, Fall 2012 Section 2 Notes CS61, Fall 2012 Section 2 Notes (Week of 9/24-9/28) 0. Get source code for section [optional] 1: Variable Duration 2: Memory Errors Common Errors with memory and pointers Valgrind + GDB Common Memory Errors

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 13 Strings, Lists & Stacks Announcements HW #3 Due next Friday, May 15 at 5:00 PM in HFH Project #2 Due May 29 at 5:00 PM Project #3 Assigned next Thursday, May 19

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

CS61C Machine Structures. Lecture 4 C Structs & Memory Management. 9/5/2007 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 4 C Structs & Memory Management. 9/5/2007 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 4 C Structs & Memory Management 9/5/2007 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L04 C Structs (1) C String Standard Functions

More information

Memory Organization. The machine code and data associated with it are in the code segment

Memory Organization. The machine code and data associated with it are in the code segment Memory Management Memory Organization During run time, variables can be stored in one of three pools : 1. Stack 2. Global area (Static heap) 3. Dynamic heap The machine code and data associated with it

More information

CS 0449 Sample Midterm

CS 0449 Sample Midterm Name: CS 0449 Sample Midterm Multiple Choice 1.) Given char *a = Hello ; char *b = World;, which of the following would result in an error? A) strlen(a) B) strcpy(a, b) C) strcmp(a, b) D) strstr(a, b)

More information

Slide Set 3. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng

Slide Set 3. for ENCM 339 Fall 2017 Section 01. Steve Norman, PhD, PEng Slide Set 3 for ENCM 339 Fall 2017 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2017 ENCM 339 Fall 2017 Section 01

More information

Dynamic Memory: Alignment and Fragmentation

Dynamic Memory: Alignment and Fragmentation Dynamic Memory: Alignment and Fragmentation Learning Objectives Explain the purpose of dynamic memory Define the terms arena, heap Identify common errors involving dynamic memory Explain how dynamic memory

More information

Character Strings Lesson Outline

Character Strings Lesson Outline Outline 1. Outline 2. char Arrays #1 3. char Arrays #2 4. Character Array Example #1 5. Character Array Example #2 6. Character Strings 7. Character String Terminator 8. Character String Assignment Example

More information

19-Nov CSCI 2132 Software Development Lecture 29: Linked Lists. Faculty of Computer Science, Dalhousie University Heap (Free Store)

19-Nov CSCI 2132 Software Development Lecture 29: Linked Lists. Faculty of Computer Science, Dalhousie University Heap (Free Store) Lecture 29 p.1 Faculty of Computer Science, Dalhousie University CSCI 2132 Software Development Lecture 29: Linked Lists 19-Nov-2018 Location: Chemistry 125 Time: 12:35 13:25 Instructor: Vlado Keselj Previous

More information

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition ELEC / COMP 177 Fall 2012 Some slides from Kurose and Ross, Computer Networking, 5 th Edition Prior experience in programming languages C++ programming? Java programming? C programming? Other languages?

More information

Dynamic Data Structures. CSCI 112: Programming in C

Dynamic Data Structures. CSCI 112: Programming in C Dynamic Data Structures CSCI 112: Programming in C 1 It s all about flexibility In the programs we ve made so far, the compiler knows at compile time exactly how much memory to allocate for each variable

More information

Pointer Arithmetic and Lexical Scoping. CS449 Spring 2016

Pointer Arithmetic and Lexical Scoping. CS449 Spring 2016 Pointer Arithmetic and Lexical Scoping CS449 Spring 2016 Review Pitfall 1 from previous lecture void foo(char *s) { s = "World"; int main() { char *str = "Hello"; foo(str); printf("%s\n", str); return

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Slide Set 3. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 3. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 3 for ENCM 339 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary September 2016 ENCM 339 Fall 2016 Slide Set 3 slide 2/46

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Secure Coding in C and C++

Secure Coding in C and C++ Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Sept 21, 2017 Acknowledgement: These slides are based on author Seacord s original presentation Issues Dynamic Memory Management Common Dynamic

More information

CS240: Programming in C

CS240: Programming in C CS240: Programming in C Lecture 5: Functions. Scope of variables. Program structure. Cristina Nita-Rotaru Lecture 5/ Fall 2013 1 Functions: Explicit declaration Declaration, definition, use, order matters.

More information

Memory Management in C (Dynamic Strings) Personal Software Engineering

Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Organization Function Call Frames The Stack The call stack grows from the top of memory down. sp Available for allocation The

More information

Dynamic Memory. Dynamic Memory Allocation Strings. September 18, 2017 Hassan Khosravi / Geoffrey Tien 1

Dynamic Memory. Dynamic Memory Allocation Strings. September 18, 2017 Hassan Khosravi / Geoffrey Tien 1 Dynamic Memory Dynamic Memory Allocation Strings September 18, 2017 Hassan Khosravi / Geoffrey Tien 1 Pointer arithmetic If we know the address of the first element of an array, we can compute the addresses

More information

20 Dynamic allocation of memory: malloc and calloc

20 Dynamic allocation of memory: malloc and calloc 20 Dynamic allocation of memory: malloc and calloc As noted in the last lecture, several new functions will be used in this section. strlen (string.h), the length of a string. fgets(buffer, max length,

More information

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 5 C Structs & Memory Mangement. 1/27/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 5 C Structs & Memory Mangement 1/27/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L05 C Structs (1) C String Standard Functions

More information

CSE 333 Autumn 2013 Midterm

CSE 333 Autumn 2013 Midterm CSE 333 Autumn 2013 Midterm Please do not read beyond this cover page until told to start. A question involving what could be either C or C++ is about C, unless it explicitly states that it is about C++.

More information

Arrays and Pointers in C. Alan L. Cox

Arrays and Pointers in C. Alan L. Cox Arrays and Pointers in C Alan L. Cox alc@rice.edu Objectives Be able to use arrays, pointers, and strings in C programs Be able to explain the representation of these data types at the machine level, including

More information

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays C Arrays This handout was written by Nick Parlante and Julie Zelenski. As you recall, a C array is formed by laying out all the elements

More information

Debugging (Part 2) 1

Debugging (Part 2) 1 Debugging (Part 2) 1 Programming in the Large Steps Design & Implement Program & programming style (done) Common data structures and algorithms Modularity Building techniques & tools (done) Test Testing

More information

Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Jan 29, 2013

Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Jan 29, 2013 Secure Coding in C and C++ Dynamic Memory Management Lecture 5 Jan 29, 2013 Acknowledgement: These slides are based on author Seacord s original presentation Issues Dynamic Memory Management Common Dynamic

More information

return return else return

return return else return compare0.c 1 // Compares two strings' addresses 4 #include 5 6 int main(void) 7 { 8 // get two strings 9 string s = get_string("s: "); 10 string t = get_string("t: "); 11 1 // compare strings'

More information

Advanced Pointer Topics

Advanced Pointer Topics Advanced Pointer Topics Pointers to Pointers A pointer variable is a variable that takes some memory address as its value. Therefore, you can have another pointer pointing to it. int x; int * px; int **

More information

CSE 230 Intermediate Programming in C and C++ Arrays, Pointers and Strings

CSE 230 Intermediate Programming in C and C++ Arrays, Pointers and Strings CSE 230 Intermediate Programming in C and C++ Arrays, Pointers and Strings Fall 2017 Stony Brook University Instructor: Shebuti Rayana http://www3.cs.stonybrook.edu/~cse230/ Pointer Arithmetic and Element

More information

CS 61C: Great Ideas in Computer Architecture. C Arrays, Strings, More Pointers

CS 61C: Great Ideas in Computer Architecture. C Arrays, Strings, More Pointers CS 61C: Great Ideas in Computer Architecture C Arrays, Strings, More Pointers Instructor: Justin Hsia 6/20/2012 Summer 2012 Lecture #3 1 Review of Last Lecture C Basics Variables, Functions, Flow Control,

More information

Introduction to C CMSC 104 Spring 2014, Section 02, Lecture 6 Jason Tang

Introduction to C CMSC 104 Spring 2014, Section 02, Lecture 6 Jason Tang Introduction to C CMSC 104 Spring 2014, Section 02, Lecture 6 Jason Tang Topics History of Programming Languages Compilation Process Anatomy of C CMSC 104 Coding Standards Machine Code In the beginning,

More information

Programming Language B

Programming Language B Programming Language B Takako Nemoto (JAIST) 7 January Takako Nemoto (JAIST) 7 January 1 / 13 Usage of pointers #include int sato = 178; int sanaka = 175; int masaki = 179; int *isako, *hiroko;

More information

Contents of Lecture 3

Contents of Lecture 3 Contents of Lecture 3 Repetition of matrices double a[3][4]; double* b; double** c; Terminology Linkage Types Conversions Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 1 / 33 A global matrix: double a[3][4]

More information

SOFTWARE Ph.D. Qualifying Exam Fall 2017

SOFTWARE Ph.D. Qualifying Exam Fall 2017 (i) (4 pts.) SOFTWARE Ph.D. Qualifying Exam Fall 2017 Consider the following C program. #include #define START 2 #define LIMIT 60 #define STEP 7 #define SIZE 3 int main(void) { int i = START,

More information

Midterm Exam Nov 8th, COMS W3157 Advanced Programming Columbia University Fall Instructor: Jae Woo Lee.

Midterm Exam Nov 8th, COMS W3157 Advanced Programming Columbia University Fall Instructor: Jae Woo Lee. Midterm Exam Nov 8th, 2012 COMS W3157 Advanced Programming Columbia University Fall 2012 Instructor: Jae Woo Lee About this exam: - There are 4 problems totaling 100 points: problem 1: 30 points problem

More information

Chapter IV Introduction to C for Java programmers

Chapter IV Introduction to C for Java programmers Chapter IV Introduction to C for Java programmers Now that we have seen the native instructions that a processor can execute, we will temporarily take a step up on the abstraction ladder and learn the

More information

OBJECTIVE QUESTIONS: Choose the correct alternative:

OBJECTIVE QUESTIONS: Choose the correct alternative: OBJECTIVE QUESTIONS: Choose the correct alternative: 1. Function is data type a) Primary b) user defined c) derived d) none 2. The declaration of function is called a) function prototype b) function call

More information

CS 314 Principles of Programming Languages. Lecture 11

CS 314 Principles of Programming Languages. Lecture 11 CS 314 Principles of Programming Languages Lecture 11 Zheng Zhang Department of Computer Science Rutgers University Wednesday 12 th October, 2016 Zheng Zhang 1 eddy.zhengzhang@cs.rutgers.edu Class Information

More information

CSC209H Lecture 4. Dan Zingaro. January 28, 2015

CSC209H Lecture 4. Dan Zingaro. January 28, 2015 CSC209H Lecture 4 Dan Zingaro January 28, 2015 Strings (King Ch 13) String literals are enclosed in double quotes A string literal of n characters is represented as a n+1-character char array C adds a

More information

C++ for Java Programmers

C++ for Java Programmers Lecture 6 More pointing action Yesterday we considered: Pointer Assignment Dereferencing Pointers to Pointers to Pointers Pointers and Array Pointer Arithmetic 2 Todays Lecture What do we know 3 And now

More information

(13-2) Dynamic Data Structures I H&K Chapter 13. Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University

(13-2) Dynamic Data Structures I H&K Chapter 13. Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University (13-2) Dynamic Data Structures I H&K Chapter 13 Instructor - Andrew S. O Fallon CptS 121 (November 17, 2017) Washington State University Dynamic Data Structures (1) Structures that expand and contract

More information

APT Session 4: C. Software Development Team Laurence Tratt. 1 / 14

APT Session 4: C. Software Development Team Laurence Tratt. 1 / 14 APT Session 4: C Laurence Tratt Software Development Team 2017-11-10 1 / 14 http://soft-dev.org/ What to expect from this session 1 C. 2 / 14 http://soft-dev.org/ Prerequisites 1 Install either GCC or

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

Signals, Instruments, and Systems W3. C Programming & Memory Management in C

Signals, Instruments, and Systems W3. C Programming & Memory Management in C Signals, Instruments, and Systems W3 C Programming & Memory Management in C 1 Remarks 2 Indentation, indentation, indentation, Indentation and spacing helps you and others (= TAs) read your code. It has

More information

C BOOTCAMP DAY 2. CS3600, Northeastern University. Alan Mislove. Slides adapted from Anandha Gopalan s CS132 course at Univ.

C BOOTCAMP DAY 2. CS3600, Northeastern University. Alan Mislove. Slides adapted from Anandha Gopalan s CS132 course at Univ. C BOOTCAMP DAY 2 CS3600, Northeastern University Slides adapted from Anandha Gopalan s CS132 course at Univ. of Pittsburgh Pointers 2 Pointers Pointers are an address in memory Includes variable addresses,

More information

Lectures 5-6: Introduction to C

Lectures 5-6: Introduction to C Lectures 5-6: Introduction to C Motivation: C is both a high and a low-level language Very useful for systems programming Faster than Java This intro assumes knowledge of Java Focus is on differences Most

More information

Linked Data Representations

Linked Data Representations Linked Data Representations Manolis Koubarakis 1 Linked Data Representations Linked data representations such as lists, stacks, queues, sets and trees are very useful in computer science and applications.

More information

COMP26120: Linked List in C (2018/19) Lucas Cordeiro

COMP26120: Linked List in C (2018/19) Lucas Cordeiro COMP26120: Linked List in C (2018/19) Lucas Cordeiro lucas.cordeiro@manchester.ac.uk Linked List Lucas Cordeiro (Formal Methods Group) lucas.cordeiro@manchester.ac.uk Office: 2.28 Office hours: 10-11 Tuesday,

More information

C Tutorial Pointers, Dynamic Memory allocation, Makefile

C Tutorial Pointers, Dynamic Memory allocation, Makefile C Tutorial Pointers, Dynamic Memory allocation, Makefile -Abhishek Yeluri and Rejina Basnet 8/23/18 CS370 - Fall 2018 Outline What is a pointer? & and * operators Pointers with Arrays and Strings Dynamic

More information

Problem 2 Add the two 2 s complement signed 8-bit values given below, and express your answer in decimal.

Problem 2 Add the two 2 s complement signed 8-bit values given below, and express your answer in decimal. Problem 1 Recall the definition of root in project 1. (The declaration of struct entrynode appears below.) struct entrynode * root; Give the type of each of the following expressions. The answer may be

More information

ESc101: Pointers and Arrays

ESc101: Pointers and Arrays ESc101: Pointers and Arrays Instructor: Krithika Venkataramani Semester 2, 2011-2012 1 The content of some of these slides are from the lecture slides of Prof. Arnab Bhattacharya 2 1 Movie Theater Seat

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

Memory Allocation in C

Memory Allocation in C Memory Allocation in C When a C program is loaded into memory, it is organized into three areas of memory, called segments: the text segment, stack segment and heap segment. The text segment (also called

More information

Memory Allocation. General Questions

Memory Allocation. General Questions General Questions 1 Memory Allocation 1. Which header file should be included to use functions like malloc() and calloc()? A. memory.h B. stdlib.h C. string.h D. dos.h 2. What function should be used to

More information

C Tutorial. Pointers, Dynamic Memory allocation, Valgrind, Makefile - Abhishek Yeluri and Yashwant Reddy Virupaksha

C Tutorial. Pointers, Dynamic Memory allocation, Valgrind, Makefile - Abhishek Yeluri and Yashwant Reddy Virupaksha C Tutorial Pointers, Dynamic Memory allocation, Valgrind, Makefile - Abhishek Yeluri and Yashwant Reddy Virupaksha CS 370 - Operating Systems - Spring 2019 1 Outline What is a pointer? & and * operators

More information

Personal SE. Functions, Arrays, Strings & Command Line Arguments

Personal SE. Functions, Arrays, Strings & Command Line Arguments Personal SE Functions, Arrays, Strings & Command Line Arguments Functions in C Syntax like Java methods but w/o public, abstract, etc. As in Java, all arguments (well, most arguments) are passed by value.

More information

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C

Outline. Lecture 1 C primer What we will cover. If-statements and blocks in Python and C. Operators in Python and C Lecture 1 C primer What we will cover A crash course in the basics of C You should read the K&R C book for lots more details Various details will be exemplified later in the course Outline Overview comparison

More information

DECLARAING AND INITIALIZING POINTERS

DECLARAING AND INITIALIZING POINTERS DECLARAING AND INITIALIZING POINTERS Passing arguments Call by Address Introduction to Pointers Within the computer s memory, every stored data item occupies one or more contiguous memory cells (i.e.,

More information

Reference slides! Garcia, Fall 2011 UCB! CS61C L04 Introduction to C (pt 2) (1)!

Reference slides! Garcia, Fall 2011 UCB! CS61C L04 Introduction to C (pt 2) (1)! Reference slides! You ARE responsible for the material on these slides (they re just taken from the reading anyway). These were the slides that generated the fewest questions in years past (i.e., those

More information

Computer Programming: Skills & Concepts (CP) Strings

Computer Programming: Skills & Concepts (CP) Strings CP 14 slide 1 Tuesday 31 October 2017 Computer Programming: Skills & Concepts (CP) Strings Ajitha Rajan Tuesday 31 October 2017 Last lecture Input handling char CP 14 slide 2 Tuesday 31 October 2017 Today

More information

Computer Programming Unit 3

Computer Programming Unit 3 POINTERS INTRODUCTION Pointers are important in c-language. Some tasks are performed more easily with pointers such as dynamic memory allocation, cannot be performed without using pointers. So it s very

More information

Warmup January 9th, What is the value of the following C expression? 8*9 % 10/ 2

Warmup January 9th, What is the value of the following C expression? 8*9 % 10/ 2 Warmup January 9th, 2018 What is the value of the following C expression? 8*9 % 10/ 2 Warmup January 11th, 2018 What is the value of the following C expression? ( -42 3!= 3) && ( -3 < -2 < -1) Warmup January

More information

else return for return

else return for return addresses.c 1 // Prints two strings' addresses 4 #include 5 6 int main(void) 7 { 8 // Get two strings 9 string s = get_string("s: "); 10 string t = get_string("t: "); 11 1 // Print strings' addresses

More information

Kurt Schmidt. October 30, 2018

Kurt Schmidt. October 30, 2018 to Structs Dept. of Computer Science, Drexel University October 30, 2018 Array Objectives to Structs Intended audience: Student who has working knowledge of Python To gain some experience with a statically-typed

More information

Linked Data Representations. Data Structures and Programming Techniques

Linked Data Representations. Data Structures and Programming Techniques Linked Data Representations 1 Linked Data Representations Linked data representations such as lists, stacks, queues, sets and trees are very useful in Computer Science and applications. E.g., in Databases,

More information

High-performance computing and programming Intro to C on Unix/Linux. Uppsala universitet

High-performance computing and programming Intro to C on Unix/Linux. Uppsala universitet High-performance computing and programming Intro to C on Unix/Linux IT Uppsala universitet What is C? An old imperative language that remains rooted close to the hardware C is relatively small and easy

More information

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory.

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory. Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

Dynamic Memory & ADTs in C

Dynamic Memory & ADTs in C Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

A Fast Review of C Essentials Part II

A Fast Review of C Essentials Part II A Fast Review of C Essentials Part II Structural Programming by Z. Cihan TAYSI Outline Fixed vs. Automatic duration Scope Global variables The register specifier Storage classes Dynamic memory allocation

More information

E&CE 454/750-5: Spring 2010 Programming Assignment 1 Due: 11:59 PM Friday 11 th June 2010

E&CE 454/750-5: Spring 2010 Programming Assignment 1 Due: 11:59 PM Friday 11 th June 2010 E&CE 454/750-5: Spring 2010 Programming Assignment 1 Due: 11:59 PM Friday 11 th June 2010 For this assignment you are required to implement a crude version of Remote Procedure Call (RPC). Normally this

More information

CS349/SE382 A1 C Programming Tutorial

CS349/SE382 A1 C Programming Tutorial CS349/SE382 A1 C Programming Tutorial Erin Lester January 2005 Outline Comments Variable Declarations Objects Dynamic Memory Boolean Type structs, enums and unions Other Differences The Event Loop Comments

More information

Quiz 0 Review Session. October 13th, 2014

Quiz 0 Review Session. October 13th, 2014 Quiz 0 Review Session October 13th, 2014 Topics (non-exhaustive) Binary. ASCII. Algorithms. Pseudocode. Source code. Compiler. Object code. Scratch. Statements. Boolean expressions. Conditions. Loops.

More information

C Programming & Memory

C Programming & Memory Signals, Instruments, and Systems W3 C Programming & Memory Management in C Outline Week 2: main concepts of C introduced Today: consolidation and refinement of your understanding of C Further details

More information

G52CPP C++ Programming Lecture 3. Dr Jason Atkin

G52CPP C++ Programming Lecture 3. Dr Jason Atkin G52CPP C++ Programming Lecture 3 Dr Jason Atkin E-Mail: jaa@cs.nott.ac.uk 1 Revision so far C/C++ designed for speed, Java for catching errors Java hides a lot of the details (so can C++) Much of C, C++

More information

Good Luck! Marking Guide. APRIL 2014 Final Exam CSC 209H5S

Good Luck! Marking Guide. APRIL 2014 Final Exam CSC 209H5S APRIL 2014 Final Exam CSC 209H5S Last Name: Student #: First Name: Signature: UNIVERSITY OF TORONTO MISSISSAUGA APRIL 2014 FINAL EXAMINATION CSC209H5S System Programming Daniel Zingaro Duration - 3 hours

More information

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100

Q1: /20 Q2: /30 Q3: /24 Q4: /26. Total: /100 ECE 2035(B) Programming for Hardware/Software Systems Fall 2013 Exam Two October 22 nd 2013 Name: Q1: /20 Q2: /30 Q3: /24 Q4: /26 Total: /100 1/6 For functional call related questions, let s assume the

More information

Lecture 07 Debugging Programs with GDB

Lecture 07 Debugging Programs with GDB Lecture 07 Debugging Programs with GDB In this lecture What is debugging Most Common Type of errors Process of debugging Examples Further readings Exercises What is Debugging Debugging is the process of

More information

BSM540 Basics of C Language

BSM540 Basics of C Language BSM540 Basics of C Language Chapter 4: Character strings & formatted I/O Prof. Manar Mohaisen Department of EEC Engineering Review of the Precedent Lecture To explain the input/output functions printf()

More information

The output will be: marks all or nothing. 1 #include <stdio.h> 2 main() { 3 int i; int j; 4 int *p; int *q; 6 p = &i; 7 q = &j; 8 i = 1;

The output will be: marks all or nothing. 1 #include <stdio.h> 2 main() { 3 int i; int j; 4 int *p; int *q; 6 p = &i; 7 q = &j; 8 i = 1; p. 2 of 9 Q1. [5 marks] The following program compiles and runs with no problems. Indicate what the output of the program is going to be (no explanation necessary). 1 #include 2 main() { 3 int

More information

Dynamic memory allocation (malloc)

Dynamic memory allocation (malloc) 1 Plan for today Quick review of previous lecture Array of pointers Command line arguments Dynamic memory allocation (malloc) Structures (Ch 6) Input and Output (Ch 7) 1 Pointers K&R Ch 5 Basics: Declaration

More information

ENCM 339 Fall 2017 Tutorial for Week 8

ENCM 339 Fall 2017 Tutorial for Week 8 ENCM 339 Fall 2017 Tutorial for Week 8 for section T01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 2 November, 2017 ENCM 339 T01 Tutorial

More information

C Programming Basics II

C Programming Basics II C Programming Basics II Xianyi Zeng xzeng@utep.edu Department of Mathematical Sciences The University of Texas at El Paso. September 20, 2016. Pointers and Passing by Address Upon declaring a variable,

More information

CPSC 213. Introduction to Computer Systems. Winter Session 2017, Term 2. Unit 1c Jan 24, 26, 29, 31, and Feb 2

CPSC 213. Introduction to Computer Systems. Winter Session 2017, Term 2. Unit 1c Jan 24, 26, 29, 31, and Feb 2 CPSC 213 Introduction to Computer Systems Winter Session 2017, Term 2 Unit 1c Jan 24, 26, 29, 31, and Feb 2 Instance Variables and Dynamic Allocation Overview Reading Companion: Reference 2.4.4-5 Textbook:

More information

String constants. /* Demo: string constant */ #include <stdio.h> int main() {

String constants. /* Demo: string constant */ #include <stdio.h> int main() { Strings 1 String constants 2 /* Demo: string constant */ #include s1.c int main() { printf("hi\n"); } String constants are in double quotes A backslash \ is used to include 'special' characters,

More information

From Java to C. Thanks to Randal E. Bryant and David R. O'Hallaron (Carnegie-Mellon University) for providing the basis for these slides

From Java to C. Thanks to Randal E. Bryant and David R. O'Hallaron (Carnegie-Mellon University) for providing the basis for these slides From Java to C Thanks to Randal E. Bryant and David R. O'Hallaron (Carnegie-Mellon University) for providing the basis for these slides 1 Outline Overview comparison of C and Java Good evening Preprocessor

More information

arrays and strings week 3 Ritsumeikan University College of Information Science and Engineering Ian Piumarta 1 / 22 imperative programming review

arrays and strings week 3 Ritsumeikan University College of Information Science and Engineering Ian Piumarta 1 / 22 imperative programming review of char imperative week 3 and Ritsumeikan University College of Information Science and Engineering Ian Piumarta 1 / 22 : miscellaneous of char several library functions are have put or get in their name

More information

Arrays and Pointers (part 2) Be extra careful with pointers!

Arrays and Pointers (part 2) Be extra careful with pointers! Arrays and Pointers (part 2) EECS 2031 22 October 2017 1 Be extra careful with pointers! Common errors: l Overruns and underruns Occurs when you reference a memory beyond what you allocated. l Uninitialized

More information

This is CS50. Harvard University Fall Quiz 0 Answer Key

This is CS50. Harvard University Fall Quiz 0 Answer Key Quiz 0 Answer Key Answers other than the below may be possible. Binary Bulbs. 0. Bit- Sized Questions. 1. Because 0 is non- negative, we need to set aside one pattern of bits (000) for it, which leaves

More information