CE58957 demonstrates how to implement the fade and toggle feature to the backlight LEDs of CapSense buttons.

Size: px
Start display at page:

Download "CE58957 demonstrates how to implement the fade and toggle feature to the backlight LEDs of CapSense buttons."

Transcription

1 Objective CapSense Sigma Delta (CSD) with LED Backlight Fading on CY8C24x94 CE58957 Code Example Name: Example_CSD_BacklightFading_24x94 Programming Language: C Associated Part Families: CY8C24x94 Software Version: PSoC Designer TM 5.1 SP 2 Build 2306 Related Hardware: CY x94 UCC and CY3280-BSM Author: Arvind M CE58957 demonstrates how to implement the fade and toggle feature to the backlight LEDs of CapSense buttons. Overview The backlight LED of a CapSense button indicates the ON/OFF status of that button. Backlight LED switches ON/OFF alternatively (toggling feature) each time you activate the button. Normal backlight LEDs switch between on and off states immediately. However, it looks stylish when the backlight LED switches from OFF to ON state slowly with smooth increments in brightness (fading feature). If a PWM is used to drive the LEDs, brightness is controlled and the fading effect is seen. This code example implements the toggling and fading feature of backlight LEDs. The code example incorporates CapSense (CSD) and Timer (to generate PWM signal) user modules. You can easily adjust the fading duration and LED ON/OFF state duty cycles. The toggling and fading feature can be added to your code example using the firmware in this code example. User Module List and Placement The following table lists user modules used in this code example and the hardware resources occupied by each user module. User Module CSD (with PRS8 and clock prescaler) Timer8 SHADOWREGS_P0 SHADOWREGS_P1 SHADOWREGS_P2 SHADOWREGS_P3 Placement ACB01, DBB00, and DBB01 DBB01 None None None None User Module Parameter Settings The following tables show the user module parameter settings for each of the user modules used in the code example. CSD Finger Threshold 100 Noise Threshold 40 Baseline Update Threshold 100 Sensors Autoreset Disabled When the Difference Count crosses Finger Threshold plus Hysteresis, the button is in ON condition. If the Difference Count is less than this, it is treated as noise; BaseLine Update Algorithm puts it into the Update Bucket. When the noise increases, the Update Bucket is filled; every time it crosses this threshold, baseline is incremented by 1 and the algorithm continues. When the parameter is set to disabled, the baseline is updated only when raw count and baseline difference is below the Noise Threshold. Hysteresis 15 It takes care of false ON and OFF situations when the button is pressed. Debounce 3 Negative Noise Threshold 20 If the Difference Count is more than Finger Threshold for less than 'Debounce' number of samples, it is not taken as a button press. If the Raw Count is below baseline and the Difference Count is more than this threshold, the baseline does not update. September 12, 2011 Document No Rev. *B 1

2 CSD Low Baseline Reset 50 Scanning Speed Normal Decides the speed of scanning process. If the Raw Count is below baseline and Difference Count is more than Negative Noise Threshold for the samples given by this parameter, the baseline is reset to new Raw Count. Resolution 12 Higher the resolution, higher is the sensitivity. Ref Value 2 This parameter sets the comparator reference value. PRS polynomial Short This parameter decides the repeat period of PRS. Prescaler Period 4 This parameter sets the prescaler period register and determines the precharge switch output frequency. Shield Electrode Out None Shield electrode is not used in this code example. Note These parameters for CSD are set to work without overlay on the CapSense buttons. For overlay on CapSense buttons in the board, use the calibration flowchart provided at the end of this document to set the CSD parameters. Timer8 Clock CPU_32_KHz Internal 32 khz oscillator output is selected as clock input to the timer. Capture Low A rising edge on this input causes the Count register to be transferred to the Compare register. This feature is not required in this application and is held at constant low. Terminal Count Out None This is auxiliary counter output. This output is not routed to any pin. Compare Out None This output is also not routed to any pin. Period 3 Compare Value 0 This value is loaded into the Period register. The period is automatically reloaded when the timer reaches zero. This value is loaded into the Compare register and sets the count point in the timer period when a compare event is triggered. Compare Type Less Than Or Equal This parameter sets the compare function type "less than" or "less than or equal". Interrupt Type Terminal Count Terminal Count event is selected as the interrupt trigger source. Clock Sync TC_Pulse Width Sync to SysClk Full Clock This parameter is used to control clock skew and ensure proper operation when reading and writing PSoC block register values. Refer the user module data sheet for more information. This parameter provides the means of specifying whether the terminal count output pulse is one clock cycle wide or one half clock cycle wide. Invert Capture Normal When "Normal" is selected, the capture input is active-high. SHADOWREGS_P0 Shadow Port Port_0 This parameter selects the port for which a shadow register is created. SHADOWREGS_P1 Shadow Port Port_1 This parameter selects the port for which a shadow register is created. SHADOWREGS_P2 Shadow Port Port_2 This parameter selects the port for which a shadow register is created. SHADOWREGS_P3 Shadow Port Port_3 This parameter selects the port for which a shadow register is created. Note Shadow registers are required for all ports in which LEDs are connected. This generates macros to drive the LEDs and avoid changes in the code when changing the LED port pin. September 12, 2011 Document No Rev. *B 2

3 Global Resources Important Global Resources Power Setting [Vcc/SysClk frequency] 5.0V/24 MHz Selects 5V operation and 24 MHz SysClk CPU_Clock SysClk/2 Selects 12 MHz as CPU clock Note Other parameters are left at their default value. Hardware Connections The schematic diagram for the code example is as follows. CY x94 Universal CapSense Controller board along with CY3280-BSM Simple Button Module Kit is suitable for this code example. Cmod is connected to P0[5] and Rb is connected to p3[1]. CY3280-BSM kit has 10 CapSense buttons with 10 backlight LEDs. All backlight LEDs are active low type. A 560 ohm resistor is connected in series with each CapSense button to reduce RF interference. One Kohm resistor in series with LED limits the current flow. CapSense buttons pin assignment used in this code example: Button 0 P0[3] Button 1 P1[2] Button 2 P2[2] Button 3 P2[7] Button 4 P1[4] Button 5 P0[2] Button 6 P2[1] Button 7 P1[6] Button 8 P0[6] Button 9 P2[0] September 12, 2011 Document No Rev. *B 3

4 Backlight LEDs pin assignment used in this code example: LED 0 P0[1] LED 1 P3[3] LED 2 P2[4] LED 3 P2[5] LED 4 P1[3] LED 5 P2[6] LED 6 P2[3] LED 7 P3[0] LED 8 P0[4] LED 9 P3[2] Operation On reset, all hardware settings from the device configuration are loaded into the device and main.c is executed. The following operations are performed by firmware. Initialization In the beginning of main(), the global interrupt is enabled; then CapSense user module is initialized. FadingStart() function is called which declares various variables and starts the timer required for fading. Infinite while loop After initialization, in an infinite while loop all CapSense buttons are scanned, baselines are updated, and the UpdateFading() function is called. The UpdateFading() function checks the status of all CapSense buttons and calculates status (ON/OFF) of all the backlight LEDs. Then it calculates the duty cycles of all LEDs and determines which LED must be faded. It loads the calculated duty cycles into an array called bdcycle[]. This array is used by timer ISR to generate the PWM signals on all LED port pins. Only one LED fades at a time. For example, when you touch a CapSense button, its backlight LED starts fading. While it is fading, if you touch another button, the previous LED immediately goes to end of fading and the current LED starts fading. PWM generation using timer ISR Initially all LED output pins are set to high (assuming active low LEDs). The FadeTimer generates interrupts periodically at every 125 µs interval. Each time the interrupt is generated, execution jumps to an ISR. In the ISR, a variable named bdcctr is incremented by one. Eventually, when the variable value reaches 100, it is reinitialized back to zero. Each time bdcctr is incremented, its value is compared with all the elements of bdcycle[] array. If any array element is equal to bdcctr, the corresponding LED output pin is set to low. This generates different PWMs on different pins. Controlling fading parameters Duty cycle of LEDs during ON/OFF state is set using HIGHDC and LOWDC parameters. For example, if HIGHDC = 80 and LOWDC = 5, all LED outputs are at 5% duty cycle initially. When a CapSense button is touched, its backlight LED output fades from 5% to 80% duty cycle and vice versa when the button is touched again. These two parameters are found in BackLightControl.h file of code example. When fading, the duty cycle changes in steps. The step size can be changed to change the fading time. Lower the step size, longer is the fading time. Lesser step size has smoother fading. The step size parameters are found in BackLightControl.h file. You can also set the fade time by setting the time period of a step (in multiples of 12.5 ms). Higher step time causes longer fading time. Step time parameter is found in BackLightControl.inc file. You can select whether the LEDs are active high or active low type. This parameter is located in BackLightControl.inc file. September 12, 2011 Document No Rev. *B 4

5 Adding Backlight Fading Feature to a New Code Example If you have your application code example already developed and you intend to include backlight fading, then follow the below procedure Prerequisites: The CapSense User Module should be placed and renamed as Capsense. CapSense buttons should be assigned to pins using the CapSense wizard. Number of CapSense buttons should not exceed 16. The Capsense User Module should be tuned. Procedure: Place a Timer8 User Module and rename it as FadeTimer. Set the parameters of FadeTimer to the following values: Clock = CPU_32_KHz Capture = Low TerminalCountOut = None CompareOut = None Period = 3 CompareValue = 0 CompareType = Less Than Or Equal InterruptType = Terminal Count Clock Sync = Sync To SysClk TC_PulseWidth = Full Clock InvertCapture = Normal In the Pinout window in device editor, set all the pins that are used for backlight LED output to Strong drive mode. Rename the LED port pins as LED0, LED1, LED2, and so on. For example, consider that there are four CapSense buttons: SW0, SW1, and SW3 have backlight LEDs, but SW2 does not have backlight LED. Then, rename the three LED port pins as LED0, LED1, and LED3. Place SHADOWREGS user modules to all LED ports. For example, if the three LEDs are connected to P1[3], P0[5], and P1[7] then SHADOWREGS must be placed for port1 and port0. Create four new files and include in the code example: BackLightFadingINT.asm, BackLightFading.c, BackLightControl.inc, and BackLightControl.h Copy the contents of these four files from Example_CSD_BacklightFading_Toggle_24x94 code example and paste them into your code example. In main.c file of your code example include BackLightControl.h (#include BackLightControl.h ). In main(), after calling Capsense_Start() API call the function FadingStart() to initialize the timer and other variables used for fading. In while(1) loop, after calling Capsense_ScanAllSensors() and Capsense_UpdateAllBaselines() APIs, call the function UpdateFading(). Now generate the code example. Open FadeTimerINT.asm file. Under _FadeTimer_ISR: type an assembly language instruction Ljmp Fading. Build the code example and download it to the device. September 12, 2011 Document No Rev. *B 5

6 CSD Calibration For optimum performance, the CSD parameters must be tuned with the actual CapSense hardware and overlay. The following flowchart shows the steps for calibrating CSD. 1. Start with the default settings of the CSD User Module. 2. Using I 2 C-USB bridge or UART and the actual hardware and overlay, capture the raw counts, baseline, and difference counts for the sensors. 3. Coarse Tuning: Check if the Signal-to-Noise Ratio (SNR) is greater than 5. If SNR is less than 5, increase SNR by following recommended PCB guidelines, increasing the CSD resolution and reducing its scan speed. For PCB guidelines, refer application note AN2394, CapSense Best Practices. For details about SNR, refer application note AN2403, Capacitance Sensing - Signal-to-Noise Ratio Requirement for CapSense Applications. 4. Fine Tuning: Check if SNR is greater than 8. If less than 8, reduce the Ref Value parameter to increase SNR. 5. Check if total scan time for all sensors meet the requirement. Otherwise, reduce resolution and/or increase scan speed. These parameters also affect SNR, so go back to step 3. With a couple of passes, arrive at the optimum resolution and scan speed parameters that produce the best SNR and the desired scan time. 6. Capture the difference counts when the button is activated. Set the finger threshold parameter to 75% of the peak. 7. Set the noise threshold to 40% of the peak value. 8. Set the negative noise threshold to half the noise threshold. 9. Set finger thresholds for individual sensors, if necessary. To do this, write to the CSD_baBtnFThreshold array in firmware. September 12, 2011 Document No Rev. *B 6

7 10. Set the baseline update threshold according to requirements. The frequency to update the baseline must be determined based on the code example. The baseline must be a slow moving reference that helps to reduce the affects of noise and temperature on the capacitive sensor. Fast update baseline rates: This can create problems if a user moves a finger SLOWLY to the button. This is called Baselining out the finger. Slow update baseline rates: This can leave the buttons vulnerable to temperature fluctuations and can lead to Button Lock. 11. Set AutoReset and Debounce parameters as required. Refer the CSD User Module data sheet for details of these parameters. 12. For all other parameters, refer the user module data sheet. September 12, 2011 Document No Rev. *B 7

8 Document History Document Title: CapSense Sigma Delta (CSD) with LED Backlight Fading on CY8C24x94 CE58957 Document Number: Revision ECN Orig. of Change Submission Date ** ARVM 02/05/2010 New example project Description of Change *A ARVM 01/12/2011 Changes made in the example project 1) Added more comments to the f/w code 2) Updated to work with latest PD version Changes made in the document 1) Changed software version to "PD5.1 (FCS) Build 1875" 2) Minor modifications in "Adding Backlight Fading Feature to a New Project" section. *B ZINE 09/12/2011 Updated software version to PSoC Designer TM 5.1 SP 2 Build Changed all example project to code example. PSoC is a registered trademark of Cypress Semiconductor Corp. "Programmable System-on-Chip" and PSoC Designer are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their respective owners. Cypress Semiconductor 198 Champion Court San Jose, CA Phone: Fax: Cypress Semiconductor Corporation, The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. September 12, 2011 Document No Rev. *B 8

The following table lists user modules used in this code example and the hardware resources occupied by each user module.

The following table lists user modules used in this code example and the hardware resources occupied by each user module. CSA Software Filters with EzI2Cs Slave on CY8C20xx6 CE63794 Code Example Name: Example_CSA_EzI 2 Cs_Filters_20xx6 Programming Language: C Associated Part Families: CY8C20xx6 Software Version: PD5.1 (SP2)

More information

CE PSoC 4: Time-Stamped ADC Data Transfer Using DMA

CE PSoC 4: Time-Stamped ADC Data Transfer Using DMA CE97091- PSoC 4: Time-Stamped ADC Data Transfer Using DMA Objective This code example uses a DMA channel with two descriptors to implement a time-stamped ADC data transfer. It uses the Watch Dog Timer

More information

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. 1.60 Features Up to 8-bit General Description The allows the firmware to read digital signals. When to Use a Use the when the firmware needs to query the state of internal digital signals. Input/Output

More information

PSoC 1 I 2 C Bootloader

PSoC 1 I 2 C Bootloader Objective Project Name: PSoC1_I2C_Bootloader Programming Language: C Associated Part: All PSoC 1 Families Software Version: PD 5.2 SP1 Related Hardware: CY3210 PSoC Eval1 Board Author: Jie Yuan This project

More information

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show.

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show. 1.60 Features Up to 8-bit General Description The allows the firmware to output digital signals. When to Use a Use a when the firmware needs to interact with a digital system. You can also use the as a

More information

Filter_ADC_VDAC_poll Example Project Features. General Description. Development Kit Configuration

Filter_ADC_VDAC_poll Example Project Features. General Description. Development Kit Configuration 1.10 Features FIR low-pass filter at 6 khz with Blackman window, 85 taps Demonstrates the polling mode of the Filter component AC-coupled input provided bias with internal Opamp for maximum swing DMA used

More information

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. 1.70 Features Up to 8-bit General Description The allows the firmware to read digital signals. When to Use a Use the when the firmware needs to query the state of internal digital signals. Input/Output

More information

Comparator (Comp) Features. General Description. When to use a Comparator 1.60

Comparator (Comp) Features. General Description. When to use a Comparator 1.60 1.60 Features Low input offset User controlled offset calibration Multiple speed modes Low power mode Output routable to digital logic blocks or pins Selectable output polarity Configurable operation mode

More information

Writing to Internal Flash in PSoC 3 and PSoC 5

Writing to Internal Flash in PSoC 3 and PSoC 5 Writing to Internal Flash in PSoC 3 and PSoC 5 Code Example Objective CE62384 demonstrates how to write to the internal flash to change its contents during run time. CE62384 Associated Part Families: CY8C3xxx

More information

AN SIO Tips and Tricks in PSoC 3 / PSoC 5. Application Note Abstract. Introduction

AN SIO Tips and Tricks in PSoC 3 / PSoC 5. Application Note Abstract. Introduction SIO Tips and Tricks in PSoC 3 / PSoC 5 Application Note Abstract AN60580 Author: Pavankumar Vibhute Associated Project: Yes Associated Part Family: CY8C38xxxx Software Version: PSoC Creator Associated

More information

16-Bit Hardware Density Modulated PWM Data Sheet

16-Bit Hardware Density Modulated PWM Data Sheet 1. 16-Bit Hardware Density Modulated PWM User Module Data Sheet 16-Bit Hardware Density Modulated PWM Data Sheet DMM16HW DMM16HW Copyright 2009 Cypress Semiconductor Corporation. All Rights Reserved. PSoC

More information

CY7C603xx CYWUSB

CY7C603xx CYWUSB Datasheet CMP V 1.2 001-13261 Rev. *J Comparator Copyright 2001-2012 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog SC Flash RAM

More information

Cypress HX2VL Configuration Utility Blaster User Guide

Cypress HX2VL Configuration Utility Blaster User Guide Cypress HX2VL Configuration Utility Blaster User Guide Spec. # 001- Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

Voltage Reference (Vref) Features. General Description. Input/Output Connections. When to Use a Vref Voltage references and supplies

Voltage Reference (Vref) Features. General Description. Input/Output Connections. When to Use a Vref Voltage references and supplies PSoC Creator Component Datasheet Voltage Reference (Vref) 1.60 Features Voltage references and supplies Multiple options Bandgap principle to achieve temperature, and voltage stability General Description

More information

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show.

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show. 1.70 Features Up to 8-bit General Description The allows the firmware to output digital signals. When to Use a Use a when the firmware needs to interact with a digital system. You can also use the as a

More information

CE56273 Associated Part Families: CY8C38xx/CY8C55xx Software: PSoC Creator Related Hardware: CY8CKIT-001 Author: Anu M D

CE56273 Associated Part Families: CY8C38xx/CY8C55xx Software: PSoC Creator Related Hardware: CY8CKIT-001 Author: Anu M D Objective CE56273 SPI With DMA in PSoC 3 / PSoC 5 CE56273 Associated Part Families: CY8C38xx/CY8C55xx Software: PSoC Creator Related Hardware: CY8CKIT-001 Author: Anu M D This code example demonstrates

More information

HX2VL Development Kit Guide. Doc. # Rev. *A

HX2VL Development Kit Guide. Doc. # Rev. *A HX2VL Development Kit Guide Doc. # 001-73960 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights

More information

PSoC 4 Low Power Comparator (LPComp) Features. General Description. When to Use a LPComp 2.0. Low input offset. User controlled offset calibration

PSoC 4 Low Power Comparator (LPComp) Features. General Description. When to Use a LPComp 2.0. Low input offset. User controlled offset calibration 2.0 Features Low input offset User controlled offset calibration Multiple speed modes Low-power mode Wake from low power modes Multiple interrupt and output modes General Description The Low Power Comparator

More information

DMX512 Receiver Datasheet DMX512Rx V 1.0. Features and Overview

DMX512 Receiver Datasheet DMX512Rx V 1.0. Features and Overview Datasheet DMX512Rx V 1.0 001-14404 Rev. *G DMX512 Receiver Copyright 2007-2014 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog

More information

HX2VL Development Kit Guide. Doc. # Rev. **

HX2VL Development Kit Guide. Doc. # Rev. ** HX2VL Development Kit Guide Doc. # 001-73960 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights

More information

24-Bit Pseudo Random Sequence Generator Data Sheet

24-Bit Pseudo Random Sequence Generator Data Sheet 48. 24-Bit Pseudo Random Sequence Generator 24-Bit Pseudo Random Sequence Generator Data Sheet Copyright 2000-2009 Cypress Semiconductor Corporation. All Rights Reserved. PRS24 PSoC Blocks API Memory (Bytes)

More information

Shadow Registers Datasheet ShadowRegs V 1.1. Features and Overview

Shadow Registers Datasheet ShadowRegs V 1.1. Features and Overview Datasheet ShadowRegs V 1.1 001-16962 Rev. *H Shadow Registers Copyright 2007-2013 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog

More information

Programmable Threshold Comparator Data Sheet

Programmable Threshold Comparator Data Sheet 10. Programmable Threshold Comparator Programmable Threshold Comparator Data Sheet Copyright 2001-2009 Cypress Semiconductor Corporation. All Rights Reserved. CMPPRG Resources CY8C29/27/24/22xxx, CY8C23x33,

More information

LPF (Optional) CY8C24x93. Without LPF and ISR to 3* With LPF only** to 3* With ISR only to 3*

LPF (Optional) CY8C24x93. Without LPF and ISR to 3* With LPF only** to 3* With ISR only to 3* Datasheet CMP V 1.00 001-85893 Rev. ** Comparator Copyright 2013 Cypress Semiconductor Corporation. All Rights Reserved. PSoC Resources API Memory (Bytes) UM Configurations CMP LPF (Optional) Analog Interrupt

More information

4 to 1 Analog Multiplexer Data Sheet

4 to 1 Analog Multiplexer Data Sheet 26. 4 to 1 Analog Multiplexer Copyright 2001-2009 Cypress Semiconductor Corporation. All Rights Reserved. 4 to 1 Analog Multiplexer Data Sheet 4 to 1 MUX Resources CY8C29/27/24/22/21xxx, CY8C23x33, CY8CLED02/04/08/16,

More information

Reviving Bit-slice Technology in a Programmable Fashion

Reviving Bit-slice Technology in a Programmable Fashion By Andrew Siska, Applications Engineer Sr Staff, and Meng He, Product Marketing Engineer Sr, Cypress Semiconductor Corp. The term Bit Slicing was once dominant in history books as a technique for constructing

More information

Cypress HX2VL Configuration Utility Blaster User Guide

Cypress HX2VL Configuration Utility Blaster User Guide Cypress HX2VL Configuration Utility Blaster User Guide Doc. # 001-70672 Rev. *B Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec No: 001-17581 Spec Title: WIRELESSUSB(TM) LP RDK JAPANESE RADIO LAW TESTING AND VERIFICATION - AN17581 Replaced by: NONE AN17581 WirelessUSB LP RDK Japanese Radio Law Testing

More information

8 to 1 Analog Multiplexer Datasheet AMux8 V 1.1. Features and Overview

8 to 1 Analog Multiplexer Datasheet AMux8 V 1.1. Features and Overview Datasheet AMux8 V 1.1 001-13257 Rev. *J 8 to 1 Analog Multiplexer Copyright 2001-2015 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec Number: 001-65252 Spec Title: AN1071 Single Versus Multiple Transaction Translator Sunset Owner: RSKV Replaced By: None Single Versus Multiple Transaction Translator Application

More information

For one or more fully configured, functional example projects that use this user module go to

For one or more fully configured, functional example projects that use this user module go to Datasheet RefMux V 1.3 001-13584 Rev. *H Reference Multiplexer Copyright 2003-2012 Cypress Semiconductor Corporation. All Rights Reserved. PSoC Blocks API Memory (Bytes) Resources Digital Analog CT Analog

More information

Incremental ADC Data Sheet

Incremental ADC Data Sheet 4. Incremental ADC Incremental ADC Data Sheet Copyright 2008-2009 Cypress Semiconductor Corporation. All Rights Reserved. ADCINC PSoC Resources Blocks API Memory Pins (per CapSense I2C/SPI Timer Comparator

More information

Preliminary. Gas Sensor Analog Front End Datasheet GasSensorAFE V Features and Overview. This datasheet contains Preliminary information.

Preliminary. Gas Sensor Analog Front End Datasheet GasSensorAFE V Features and Overview. This datasheet contains Preliminary information. Preliminary Gas Sensor Analog Front End Datasheet GasSensorAFE V 1.10 001-81375 Rev. *A GasSensorAFE Copyright 2012-2013 Cypress Semiconductor Corporation. All Rights Reserved. This datasheet contains

More information

PSoC Creator Component Datasheet

PSoC Creator Component Datasheet 1.30 Features Supports 4-wire resistive touchscreen interface Supports the Delta Sigma Converter for both the PSoC 3 and PSoC 5 devices Supports the ADC Successive Approximation Register for PSoC 5 devices

More information

This Application Note demonstrates an SPI-LIN slave bridge using a PSoC device. Demonstration projects are included.

This Application Note demonstrates an SPI-LIN slave bridge using a PSoC device. Demonstration projects are included. Communication - SPI-LIN Slave Bridge Application Note Abstract AN0 Author: Valeriy Kyrynyuk Associated Project: Yes Associated Part Family: CY8C7 GET FREE SAMPLES HERE Software Version: PSoC Designer.

More information

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. **

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. ** CY3675 CYClockMaker Programming Kit Guide Doc. # 001-52414 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec No: 002-04992 Spec Title: Installation of the LAN Adapter Replaced by: NONE Installation of the LAN Adapter Doc. No. 002-04992 Rev. *A Cypress Semiconductor 198 Champion Court

More information

The color of the Clock component waveform symbol will change based on the clock's domain (as shown in the DWR Clock Editor), as follows:

The color of the Clock component waveform symbol will change based on the clock's domain (as shown in the DWR Clock Editor), as follows: 1.60 Features Quickly defines new clocks Refers to system or design-wide clocks Configures the clock frequency tolerance General Description The component provides two key features: it provides allows

More information

GPIF II Designer - Quick Start Guide

GPIF II Designer - Quick Start Guide GPIF II Designer - Quick Start Guide 1. Introduction Welcome to GPIF II Designer - a software tool to configure the processor port of EZ-USB FX3 to connect to any external device. This application generates

More information

CY3660-enCoRe V and encore V LV DVK Kit Guide

CY3660-enCoRe V and encore V LV DVK Kit Guide CY3660-enCoRe V and encore V LV DVK Kit Guide Doc. # 001-41500 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

Clock Programming Kit

Clock Programming Kit Clock Programming Kit Clock Programming Kit Features Supports these field-programmable clock generators: CY2077FS, CY2077FZ, CY22050KF, CY22150KF, CY22381F, CY22392F, CY22393F, CY22394F, CY22395F, CY23FP12,

More information

AN EZ-USB FX3 I 2 C Boot Option. Application Note Abstract. Introduction. FX3 Boot Options

AN EZ-USB FX3 I 2 C Boot Option. Application Note Abstract. Introduction. FX3 Boot Options EZ-USB FX3 I 2 C Boot Option Application Note Abstract AN68914 Author: Shruti Maheshwari Associated Project: No Associated Part Family: EZ-USB FX3 Software Version: None Associated Application Notes: None

More information

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. *C

CYClockMaker Programming Kit Guide CY3675. Doc. # Rev. *C CY3675 CYClockMaker Programming Kit Guide Doc. # 001-52414 Rev. *C Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

Programmable Gain Amplifier Datasheet PGA V 3.2. Features and Overview

Programmable Gain Amplifier Datasheet PGA V 3.2. Features and Overview Datasheet PGA V 3.2 001-13575 Rev. *I Programmable Gain Amplifier Copyright 2002-2014 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT

More information

Supported Devices: CY8C28x13, CY8C28x33, CY8C28x43, CY8C28x45, CY8C28x52, CY8C21x45, CY8C22x45, CY8C24x93. CY8C24x

Supported Devices: CY8C28x13, CY8C28x33, CY8C28x43, CY8C28x45, CY8C28x52, CY8C21x45, CY8C22x45, CY8C24x93. CY8C24x Current DAC Datasheet IDAC V 1.00 001-85892 Rev. ** 6-Bit Voltage Output DAC Copyright 2013 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog

More information

Use the IDAC8 when a fixed or programmable current source is required in an application.

Use the IDAC8 when a fixed or programmable current source is required in an application. PSoC Creator Component Data Sheet 8-Bit Current Digital to Analog Converter (IDAC8) 1.50 Features Three ranges 2040 ua, 255 ua, and 32.875 ua Software or clock driven output strobe Data source may be CPU,

More information

Base Timer Channel (BT) Features. General Description. When to Use a PDL_BT Component 1.0

Base Timer Channel (BT) Features. General Description. When to Use a PDL_BT Component 1.0 1.0 Features Four operating modes 16-bit PWM Timer 16-bit PPG Timer 16/32-bit Reload Timer 16/32-bit PWC Timer Trigger generation for ADC conversion General The Peripheral Driver Library (PDL) Base Timer

More information

FTG Programming Kit CY3670. Spec. # Rev. *C

FTG Programming Kit CY3670. Spec. # Rev. *C CY3670 Spec. # 38-07410 Rev. *C Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com Copyrights Copyrights Cypress

More information

Next-Generation Hot-Swap Controllers

Next-Generation Hot-Swap Controllers Next-Generation Hot-Swap Controllers By Jim Davis, Product Mktg Engineer Staff, Cypress Semiconductor Corp. Current hot-swap controllers are great at what they do: simple yet reliable monitoring of critical

More information

User Guide. EZ-Click 2.0. Document # Rev *C

User Guide. EZ-Click 2.0. Document # Rev *C EZ-Click 2.0 User Guide Document # 001-90407 Rev *C Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.541.4736 Phone (Intl): 408.943.2600 http://www.cypress.com Copyrights

More information

AN1090. NoBL : The Fast SRAM Architecture. Introduction. NoBL SRAM Description. Abstract. NoBL SRAM Operation

AN1090. NoBL : The Fast SRAM Architecture. Introduction. NoBL SRAM Description. Abstract. NoBL SRAM Operation AN1090 NoBL : The Fast SRAM Architecture Associated Project: No Associated Part Family: All NoBL SRAMs Software Version: None Related Application Notes: None Abstract AN1090 describes the operation of

More information

144-Mbit QDR -II SRAM 2-Word Burst Architecture

144-Mbit QDR -II SRAM 2-Word Burst Architecture ADVAE Y71610V, Y71625V Y71612V, Y71614V 144-Mbit QDR -II SRAM 2-Word Burst Architecture Features Separate independent read and write data ports Supports concurrent transactions 333 MHz clock for high bandwidth

More information

PSoC Programmer 3.12 Release Notes

PSoC Programmer 3.12 Release Notes PSoC Programmer 3.12 Release Notes Release Date: July 28, 2010 Thank you for your interest in PSoC Programmer 3.12. These release notes list all new features, installation requirements, supported devices

More information

Capable of adjusting detection timings for start bit and data bit

Capable of adjusting detection timings for start bit and data bit PSoC Creator Component Datasheet Remote Control (PDL_RC) 1.0 Features Up to 2 Channels HDMI-CEC/ High Definition Multimedia Interface Consumer Electronics Control transmitter/receiver SIRCS/Sony Infrared

More information

CapSense I 2 C/SPI Timer Flash RAM

CapSense I 2 C/SPI Timer Flash RAM Datasheet SPIS V 2.5 001-13679 Rev. *K SPI Slave Copyright 2002-2015 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) CapSense I 2 C/SPI Timer Flash RAM

More information

PSoC Designer Release Notes

PSoC Designer Release Notes Version 5.4 Content Pack 1 Release Date: 14 July 2014 Thank you for your interest in PSoC Designer. PSoC Designer is a complete Integrated Development Environment (IDE) for designing with PSoC 1 devices.

More information

12-Mbit (512 K 24) Static RAM

12-Mbit (512 K 24) Static RAM 12-Mbit (512 K 24) Static RAM Features High speed t AA = 10 ns Low active power I CC = 175 ma at 10 ns Low CMOS standby power I SB2 = 25 ma Operating voltages of 3.3 ± 0.3V 2.0V data retention Automatic

More information

Programmer User Guide

Programmer User Guide Programmer User Guide Programmer Guide 3.06 Spec. # 001-51796 Rev. *A Cypress Semiconductor 3901 North First Street San Jose, CA 95134 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

Comparator (Comp) Features. General Description. When to use a Comparator Low input offset. User controlled offset calibration

Comparator (Comp) Features. General Description. When to use a Comparator Low input offset. User controlled offset calibration 1.50 Features Low input offset User controlled offset calibration Multiple speed modes Low power mode Output routable to digital logic blocks or pins Selectable output polarity Configurable operation mode

More information

EZ-USB FX3 Development Kit Guide

EZ-USB FX3 Development Kit Guide CYUSB3KIT-001 EZ-USB FX3 Development Kit Guide Doc. #: 001-70237 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

CE95314 PSoC 3, PSoC 4, and PSoC 5LP EZI2C

CE95314 PSoC 3, PSoC 4, and PSoC 5LP EZI2C CE95314 PSoC 3, PSoC 4, and PSoC 5LP EZI2C Objective These code examples demonstrate the usage of the EZI2C slave and I 2 C master Components in PSoC 3, PSoC 4, and PSoC 5LP. Overview These code examples

More information

PSoC Designer Quick Start Guide

PSoC Designer Quick Start Guide Installation PSoC Designer Quick Start Guide PSoC Designer is available for download at http://www.cypress.com/go/designer. You can also download an ISO image to create an installation CD. Each Starter

More information

PSoC 6 Current Digital to Analog Converter (IDAC7)

PSoC 6 Current Digital to Analog Converter (IDAC7) 1.0 Features Six current ranges (4.96 ua to 635 ua) Sink or Source current 7-bit resolution Two IDACs can be put in parallel to form an 8-bit IDAC Add external resistor for VDAC functionality General Description

More information

PSoC Blocks. CY8C20xx6/6A/6AS/6H/6L, CY8C20xx7/7S, CY7C643xx, CY7C604xx, CYONS2xxx, CYONSxNxxxx, CYRF89x35, CY8C20065, CY8C24x93, CY7C69xxx

PSoC Blocks. CY8C20xx6/6A/6AS/6H/6L, CY8C20xx7/7S, CY7C643xx, CY7C604xx, CYONS2xxx, CYONSxNxxxx, CYRF89x35, CY8C20065, CY8C24x93, CY7C69xxx Datasheet ADCINC V 3.00 001-45836 Rev. *H Incremental ADC Copyright 2008-2013 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) CapSense I2C/SPI Timer Comparator

More information

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. 1.50 Features Up to 8-bit General Description The allows the firmware to read digital signals. When to Use a Use the when the firmware needs to query the state of internal digital signals. Input/Output

More information

This section describes the various input and output connections for the Voltage Fault Detector.

This section describes the various input and output connections for the Voltage Fault Detector. PSoC Creator Component Datasheet Voltage Fault Detector (VFD) 2.10 Features monitor up to 32 voltage inputs user-defined over and under voltage limits simply outputs a good/bad status result General Description

More information

This section describes the various input and output connections for the SysInt Component.

This section describes the various input and output connections for the SysInt Component. 1.0 Features Generating interrupts from hardware signals Assigning interrupts to a CPU core Configuring interrupt priority Interrupt vectoring and control General Description The Component is a graphical

More information

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show.

This optional pin is present if the Mode parameter is set to SyncMode or PulseMode. Otherwise, the clock input does not show. 1.50 Features Up to 8-bit General Description The allows the firmware to output digital signals. When to Use a Use a when the firmware needs to interact with a digital system. You can also use the as a

More information

This input determines the next value of the output. The output does not change until the next rising edge of the clock.

This input determines the next value of the output. The output does not change until the next rising edge of the clock. 1.30 Features Asynchronous reset or preset Synchronous reset, preset, or both Configurable width for array of s General Description The stores a digital value. When to Use a Use the to implement sequential

More information

Multifunction Serial Interface (PDL_MFS) Features. General Description. When to Use a PDL_MFS Component. Quick Start 1.0

Multifunction Serial Interface (PDL_MFS) Features. General Description. When to Use a PDL_MFS Component. Quick Start 1.0 1.0 Features Configures the Multi-Function Serial (MFS) Interface to one of the following modes: UART (Asynchronous normal serial interface) Clock synchronous serial interface (SPI and I 2 S can be supported)

More information

Digital Logic Gates. Features. General Description. Input/Output Connections. When to Use a Logic Gate. Input 1. Input 2. Inputs 3-8 * 1.

Digital Logic Gates. Features. General Description. Input/Output Connections. When to Use a Logic Gate. Input 1. Input 2. Inputs 3-8 * 1. 1.0 Features Industry-standard logic gates Configurable number of inputs up to 8 Optional array of gates General Description Logic gates provide basic boolean operations. The output of a logic gate is

More information

Automatic reload of the period to the count register on terminal count

Automatic reload of the period to the count register on terminal count 1.0 Features 7-bit read/write period register 7-bit count register that is read/write Automatic reload of the period to the count register on terminal count Routed load and enable signals General Description

More information

CY8C29/27/24/23/21xxx, CY8CLED02/04/08/16, CY8CLED0xD, CY8CLED0xG, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28xxx. Main UM

CY8C29/27/24/23/21xxx, CY8CLED02/04/08/16, CY8CLED0xD, CY8CLED0xG, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28xxx. Main UM Datasheet OneWire V 1.1 001-43362 Rev. *I OneWire Copyright 2008-2014 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog SC Flash

More information

Release Notes SRN065 PSoC Programmer Version Release Date: November 9, 2009

Release Notes SRN065 PSoC Programmer Version Release Date: November 9, 2009 Release Notes SRN065 PSoC Programmer Version 3.10.1 Release Date: November 9, 2009 Thank you for your interest in PSoC Programmer version 3.10. These release notes list the installation requirements and

More information

W H I T E P A P E R. Timing Uncertainty in High Performance Clock Distribution. Introduction

W H I T E P A P E R. Timing Uncertainty in High Performance Clock Distribution. Introduction W H I T E P A P E R Brijesh A Shah, Cypress Semiconductor Corp. Timing Uncertainty in High Performance Clock Distribution Abstract Several factors contribute to the timing uncertainty when using fanout

More information

Use the Status Register when the firmware needs to query the state of internal digital signals.

Use the Status Register when the firmware needs to query the state of internal digital signals. PSoC Creator Component Datasheet Status Register 1.80 Features Up to 8-bit Status Register Interrupt support General Description The Status Register allows the firmware to read digital signals. When to

More information

CE CY8CKIT-042-BLE F-RAM Data Logger

CE CY8CKIT-042-BLE F-RAM Data Logger CE210988 - CY8CKIT-042-BLE F-RAM Data Logger Objective This example project is based on a PSoC Creator starter design for the PSoC 4 device. It demonstrates how F-RAM can be used with the PSoC to capture

More information

PSoC 4 Current Digital to Analog Converter (IDAC)

PSoC 4 Current Digital to Analog Converter (IDAC) PSoC Creator Component Datasheet PSoC 4 Current Digital to Analog Converter (IDAC) 1.10 Features 7 or 8-bit resolution 7-bit range: 0 to 152.4 or 304.8 µa 8-bit range: 0 to 306 or 612 µa Current sink or

More information

32-Bit Counter Datasheet Counter32 V 2.5. Features and Overview

32-Bit Counter Datasheet Counter32 V 2.5. Features and Overview Datasheet Counter32 V 2.5 001-13265 Rev. *J 32-Bit Counter Copyright 2002-2012 Cypress Semiconductor Corporation. All Rights Reserved. Resources PSoC Blocks API Memory (Bytes) Digital Analog CT Analog

More information

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores

4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores 4K x 8 Dual-Port Static RAM and 4K x 8 Dual-Port SRAM with Semaphores Features True dual-ported memory cells, which allow simultaneous reads of the same memory location 4K x 8 organization 0.65 micron

More information

Setting Oscillation Stabilization Wait Time of the main clock (CLKMO) and sub clock (CLKSO)

Setting Oscillation Stabilization Wait Time of the main clock (CLKMO) and sub clock (CLKSO) 1.0 Features Selecting Clock mode Internal Bus Clock Frequency Division Control PLL Clock Control Setting Oscillation Stabilization Wait Time of the main clock (CLKMO) and sub clock (CLKSO) Interrupts

More information

FM3 MB9B100A/300A/400A/500A Series Inverter Solution GUI User Guide

FM3 MB9B100A/300A/400A/500A Series Inverter Solution GUI User Guide FM3 MB9B100A/300A/400A/500A Series Inverter Solution GUI User Guide Doc. No. 002-04375 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 http://www.cypress.com Copyrights Copyrights

More information

Bootloader project - project with Bootloader and Communication components

Bootloader project - project with Bootloader and Communication components PSoC Creator Component Datasheet Bootloader and Bootloadable 1.10 Features Separate Bootloader and Bootloadable components Configurable set of supported commands Flexible component configuration General

More information

EZ I 2 C Slave. Features. General Description. When to use a EZ I 2 C Slave 1.50

EZ I 2 C Slave. Features. General Description. When to use a EZ I 2 C Slave 1.50 PSoC Creator Component Data Sheet EZ I 2 C Slave 1.50 Features Industry standard Philips I 2 C bus compatible interface Emulates common I 2 C EEPROM interface Only two pins (SDA and SCL) required to interface

More information

PSoC Programmer Release Notes

PSoC Programmer Release Notes PSoC Programmer Release Notes Version 3.16 Release Date: September 12, 2012 Thank you for your interest in the PSoC Programmer. The release notes lists all the new features, installation requirements,

More information

PSoC Creator Quick Start Guide

PSoC Creator Quick Start Guide PSoC Creator Quick Start Guide Install Download PSoC Creator from www.cypress.com/psoccreator, or install from a kit CD. For assistance, go to http://www.cypress.com/go/support For features, system requirements,

More information

PSoC 4 Voltage Comparator (Comp) Features. General Description. When to Use Comparator Low input offset. User controlled offset calibration

PSoC 4 Voltage Comparator (Comp) Features. General Description. When to Use Comparator Low input offset. User controlled offset calibration PSoC Creator Component Datasheet PSoC 4 Voltage Comparator (Comp) 1.10 Features Low input offset User controlled offset calibration Multiple speed modes Operates in Deep Sleep power mode Output routable

More information

Libraries Guide. Arithmetic Libraries User Guide. Document #: Rev. *A

Libraries Guide. Arithmetic Libraries User Guide. Document #: Rev. *A Libraries Guide Arithmetic Libraries User Guide Document #: 001-44477 Rev. *A Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 Phone (Intnl): 408.943.2600 http://www.cypress.com

More information

One 32-bit counter that can be free running or generate periodic interrupts

One 32-bit counter that can be free running or generate periodic interrupts PSoC Creator Component Datasheet Multi-Counter Watchdog (MCWDT_PDL) 1.0 Features Configures up to three counters in a multi-counter watchdog (MCWDT) block Two 16-bit counters that can be free running,

More information

This section describes the various input and output connections for the Voltage Fault Detector.

This section describes the various input and output connections for the Voltage Fault Detector. PSoC Creator Component Datasheet Voltage Fault Detector (VFD) 2.20 Features Monitor up to 32 voltage inputs User-defined over and under voltage limits Simply outputs a good/bad status result General Description

More information

Digital Multiplexer and Demultiplexer. Features. General Description. Input/Output Connections. When to Use a Multiplexer. Multiplexer 1.

Digital Multiplexer and Demultiplexer. Features. General Description. Input/Output Connections. When to Use a Multiplexer. Multiplexer 1. PSoC Creator Component Datasheet Digital Multiplexer and Demultiplexer 1.10 Features Digital Multiplexer Digital Demultiplexer Up to 16 channels General Description The Multiplexer component is used to

More information

THIS SPEC IS OBSOLETE

THIS SPEC IS OBSOLETE THIS SPEC IS OBSOLETE Spec Number: 001-84741 Spec Title: PSoC 5 to PSoC 5LP Migration Guide Sunset Owner: MKEA Replaced By: None AN84741 Author: Mark Ainsworth Associated Project: No Associated Part Family:

More information

F²MC-8FX Family MB95200H/210H Series Capacitance Touch Sensor

F²MC-8FX Family MB95200H/210H Series Capacitance Touch Sensor AN205062 Associated Part Family: MB95200H/210H Series This Application Note describes Cypress TSC solution, and explains how to use TSC library and TSC GUI. Contents 1 Introduction... 1 2 Cypress Capacitance

More information

CY3280-BBM Universal CapSense TM Prototyping Module Kit Quick Start

CY3280-BBM Universal CapSense TM Prototyping Module Kit Quick Start CY3280-BBM Universal CapSense TM Prototyping Module Kit Quick Start Doc. # 001-43368 Rev. ** Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709 Phone (USA): 800.858.1810 (Intnl): 408.943.2600

More information

The AMuxSeq is capable of having between 2 and 32 analog inputs. The paired inputs are present when the MuxType parameter is set to "Differential.

The AMuxSeq is capable of having between 2 and 32 analog inputs. The paired inputs are present when the MuxType parameter is set to Differential. 1.20 Features Single or differential inputs Adjustable between 2 and 32 inputs Software controlled Inputs may be pins or internal sources No simultaneous connections Bidirectional (passive) General Description

More information

PSoC Programmer Release Notes

PSoC Programmer Release Notes SRN97283 Version 3.23.1 PSoC Programmer Release Notes Release Date: June 12, 2015 Thank you for your interest in PSoC Programmer. These release notes list all the new features, installation requirements,

More information

AN PSoC 3 and PSoC 5 SFF-8485 Serial GPIO (SGPIO) Initiator Interface. Application Note Abstract. Introduction

AN PSoC 3 and PSoC 5 SFF-8485 Serial GPIO (SGPIO) Initiator Interface. Application Note Abstract. Introduction PSoC 3 and PSoC 5 SFF-8485 Serial GPIO (SGPIO) Initiator Interface Application Note Abstract AN66019 Author: Jason Konstas Associated Project: Yes Associated Part Family: All PSoC 3 and PSoC 5 parts Software

More information

Optional Pause Pulse for constant frame length of 282 clock ticks

Optional Pause Pulse for constant frame length of 282 clock ticks PSoC Creator Component Datasheet Single Edge Nibble Transmission (SENT_TX) 1.0 Features Compliant with SAE J2716 APR2016 (Issued 2007-04, Revised 2016-04) without any serial message formats Selectable

More information

1-Mbit (64K x 16) Static RAM

1-Mbit (64K x 16) Static RAM 1-Mbit (64K x 16) Static RAM Features Temperature ranges Commercial: 0 C to 70 C Industrial: 40 C to 85 C Automotive-A: 40 C to 85 C Automotive-E: 40 C to 125 C Pin and function compatible with CY7C1021BV33

More information

Voltage Fault Detector (VFD) Features. General Description. Input/Output Connections. When to Use a VFD. Clock Input 2.30

Voltage Fault Detector (VFD) Features. General Description. Input/Output Connections. When to Use a VFD. Clock Input 2.30 PSoC Creator Component Datasheet Voltage Fault Detector (VFD) 2.30 Features Monitor up to 32 voltage inputs User-defined over and under voltage limits Simply outputs a good/bad status result Programmable

More information