Arithmetic. Chapter 3 Computer Organization and Design

Size: px
Start display at page:

Download "Arithmetic. Chapter 3 Computer Organization and Design"

Transcription

1 Arithmetic Chapter 3 Computer Organization and Design

2 Addition Addition is similar to decimals = Subtraction (negate) =

3 Over(under)flow For signed addition If signs are the same It has to agree with the arguments If signs different There can be no over(under)flow.

4 Over(under)flow For signed subtraction If signs are the same There can be no over(under)flow If signs are different It has to match the subtractant (zero?)

5 Over(under)flow For unsigned addition If result smaller than the argument, it is overflow For unsigned subtraction If the result is greater than the subtractant it is overflow

6 In practice... MIPS signed ops can cause overflow Causes exception and saves the offending instruction in Exception PC (mfc0) Unsigned ops will not cause C ignores integer overflows.

7 Multimedia Operations Operations like MMX, SSE, etc Graphics and image processing often work with 8 or 16 bits Treat a 32 bit register as 4 8 bit registers or 2 16 bits registers. Break the carry chain

8 Multiplication 1000 x =

9 Hardware Multiplicant Adder Multiplier Product Control

10 Can we speed up? All operations could be done in parallel Have a cascade of adders and add them all Gate delays will be a problem Have a tree of additions Logarithmic time Use carry save adders

11 Cascade of Adders multiplier multiplicant & & & Adder & Adder Adder

12 Tree of Adders mplier3*mcant mplier2*mcant mplier1*mcant mplier0*mcant Adder Adder Adder Pr7 Pr6 2 Pr1 Pr0

13 Division unsigned long int rem, ldvsr; int i; rem = divident; ldvsr = ((long)divisor)<<31; quot = 0; for (i=1; i<32; i++){ quot = quot<<1; if (rem>=ldvsr){ rem =ldvsr; quot+=1; } }

14 Doing it faster Hard! The reason is that we do not know the reminder in advance to compare Cannot unroll the loop Can do it with octals or hex Resembles the pen an pencil decimal method Tricky on hardware

15 Multiply on MIPS Result can be up to 64 bits All registers are 32 bits MIPS uses two special registers Hi, Lo And two special commands mfhi (move from hi) mflo (move from lo)

16 Divide on MIPS Similar problem We need a 32 bit register for quotient Another for remainder We use the same registers Hi, Lo, Hi: remainder Lo: quotient

17 Signed Mult/Div We have two versions mult/multu and div/divu for signed and unsigned. For signed mult CPU converts to positive and remembers the signs If signs the same result is positive o/w negative

18 Signed Mult/Div Division is tricky Follows the formula Divident = q * divisor + r For example 7 = 2 * = ( 2)* 3 + ( 1) 7 = 2 *( 3)+ ( 1) 7 = ( 2)*( 3)+ 1

19 The Rule If divident and divisor have same sign Quotient is positive If divident and divisor have different sign Quotient is negative The sign of the reminder... Matches the divident

20 Floating point So far we dealt with integers A.K.A. Fixed point In mathematics we have reals We can only approximate reals We do not distinguish rationals and irrationals We follow the scientific notation The one preferred by scientists

21 Scientific notation 32.43*10 2 =.3243 For computer use we improve it * = We further improve it (normalize) * = Since the first bit is always 1 We make it implicit (do not include it in the representation)

22 Representation * We need Sign Fraction Exponent We need to compromise between space for fraction and space for exponent We care more for accuracy that representing large numbers

23 MIPS Representation (32 bits) Sign: 1 bit, 0: positive, 1: negative Exponent: 8 bits biased complement of 2 Fraction: 23 bits sign and magnitude Overflow: too big (positive) or too small (negative) to be represented Underflow: too small (positive) or too big (negative) to be represented

24 MIPS Representation (64 bits) Sign: 1 bit Exponent: 11 bits Fraction: 52 bits.

25 IEEE 754 Floating point std Introduced to facilitate the exchange of floating point numbers, increase portability and imporve the quality of computation. MIPS follows IEEE 754 Has implicit leading bit is represented as and the leading 1 is implied Definition: significant

26 Special Numbers How do we represent zero? We can't if we have implicit leading bit We define zero to be (all zeros) The exponent is biased (add 127 or 1023) For normalized numbers ( 1) sign * ( 1+ Fraction ) * 2 (exponent bias) For de normalized numbers (when exponent has the smallest value) ( 1) sign * ( Fraction ) * 2 (exponent bias)

27 Special Numbers Infinity (positive or negative) Exponent 255, fraction 0 Not a Number (NaN) Exponent 255, fraction not zero Division by zero gives infinity Infinity minus infinity gives NaN

28 Comparisons in Floating Point Placement of sign, bias of exponent chosen to make comparison a bit simpler. No need to convert to a different representation

29 Floating Point Addition Add 1.111*2 1 and 1.011*2 1. Step 1: shift the smallest in abs. val. to make exponents the same *2 1. Step 2: Add the fractions = Step 3: Normalize *2 1 = *2 2 = Step 4: Round (Might need to jump to Step: 3)

30 Floating Point Multiplication 1.100*2 1 * 1.110*2 2 Step 1: add the exponents: 1 2 = 3 Step 2: multiply the significands 1.100*1.110 = Step 3: Normalize and check for overflow *2 3 Step 4: Round: 1.011*2 3 Step 5: Adjust signs

31 Example void mm(double x[ ][ ], double y[ ][ ], double z[ ][ ]) { int, i, j, k; for (i=0; i!=32; i++) for (j=0; i!=32; j++) for (k=0; k!=32; k++) x[i][j] += y[i][k] * z[k][j]; }

32 Example void mm(double x[ ][ ], double y[ ][ ], double z[ ][ ]) Mm: ; save s0, s1, s2 on stack addi $sp, 12 { int, i, j, k; for (i=0; i!=32; i++) sw $s2, 8($sp) for (j=0; i!=32; j++) sw $s1, 4($sp) for (k=0; k!=32; k++) sw $s0, 0($sp) mmexit: ; restore from stack } x[i][j] += y[i][k] * z[k][j]; lw lw lw $s2, 8($sp) $s1, 4($sp) $s0, 0($sp) addi $sp, 12 jr $ra

33 li $t1, 32 # mat. size li $s0, 0 # i=0 Example L1: li $s1, 0 # j = 0 void mm(double x[ ][ ], double y[ ][ ], double z[ ][ ]) L2: li $s2, 0 # k = 0 { sll $t2, $s0, 5 # i rows int, i, j, k; addu $t2, $t2, $s1 # j elements for (i=0; i!=32; i++) sll $t2, $t2, 3 # doubles are 8 bytes for (j=0; i!=32; j++) addu $t2, $a0, $t2 # for (k=0; k!=32; k++) l.d $f4, 0($t2) x[i][j] += y[i][k] * z[k][j]; L3: sll $t0, $s2, 5 # Load z[k][j] }... l.d $f16, 0($t0)... # Load y[i][k] mul.d $f16, $f18, $f16 add.d $f4, $f4, $f16 # f4 += y[i][k]*z[k][j] addiu $s2,$s2, 1 bne s.d $s2, $t1, L3 $f4, 0($t2)... bne $s0, $t1, L1

34 Floating point instructions add.s, sub.s, mul.s div.s add.d sub.d, mul.d div.d lwc1, swc1, mfc1, mtc1 c.lt.s, c.gt.s, c.eq.s, c.ne.s, c.le.s, c.ge.s c.lt.d, c.gt.d, c.eq.d, c.ne.d, c.le.d, c.ge.d bc1t, bc1f

35 Floating point registers f0..f3: return results f4..f11, f16..f19: temporary f12..f15: arguments f20..f31: saved temporary

36 Accuracy To round properly we need to cary extra bits (typically two) Many architectures have multiply and add in one instruction A += b*c Floating point arithmetic is not associative ( ) 10 10!= 1

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Floating Point COE 38 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Floating-Point Numbers IEEE 754 Floating-Point

More information

CSCI 402: Computer Architectures. Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI Homework 4 Assigned on Feb 22, Thursday Due Time: 11:59pm, March 5 on Monday

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Thomas Polzer Institut für Technische Informatik

Thomas Polzer Institut für Technische Informatik Thomas Polzer tpolzer@ecs.tuwien.ac.at Institut für Technische Informatik Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers VO

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

Computer Organization and Structure. Bing-Yu Chen National Taiwan University

Computer Organization and Structure. Bing-Yu Chen National Taiwan University Computer Organization and Structure Bing-Yu Chen National Taiwan University Arithmetic for Computers Addition and Subtraction Gate Logic and K-Map Method Constructing a Basic ALU Arithmetic Logic Unit

More information

Chapter 3. Arithmetic Text: P&H rev

Chapter 3. Arithmetic Text: P&H rev Chapter 3 Arithmetic Text: P&H rev3.29.16 Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Written Homework 3. Floating-Point Example (1/2)

Written Homework 3. Floating-Point Example (1/2) Written Homework 3 Assigned on Tuesday, Feb 19 Due Time: 11:59pm, Feb 26 on Tuesday Problems: 3.22, 3.23, 3.24, 3.41, 3.43 Note: You have 1 week to work on homework 3. 3 Floating-Point Example (1/2) Q:

More information

Arithmetic for Computers. Hwansoo Han

Arithmetic for Computers. Hwansoo Han Arithmetic for Computers Hwansoo Han Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic ICS 233 Computer Architecture and Assembly Language Dr. Aiman El-Maleh College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals [Adapted from

More information

Chapter 3 Arithmetic for Computers

Chapter 3 Arithmetic for Computers Chapter 3 Arithmetic for Computers 1 Outline Signed and unsigned numbers (Sec. 3.2) Addition and subtraction (Sec. 3.3) Multiplication (Sec. 3.4) Division (Sec. 3.5) Floating point (Sec. 3.6) 2 Representation

More information

Floating Point Arithmetic. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Floating Point Arithmetic. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Floating Point Arithmetic Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Floating Point (1) Representation for non-integral numbers Including very

More information

Signed Multiplication Multiply the positives Negate result if signs of operand are different

Signed Multiplication Multiply the positives Negate result if signs of operand are different Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result

More information

3.5 Floating Point: Overview

3.5 Floating Point: Overview 3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer

More information

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point

Computer Architecture and IC Design Lab. Chapter 3 Part 2 Arithmetic for Computers Floating Point Chapter 3 Part 2 Arithmetic for Computers Floating Point Floating Point Representation for non integral numbers Including very small and very large numbers 4,600,000,000 or 4.6 x 10 9 0.0000000000000000000000000166

More information

Computer Architecture. Chapter 3: Arithmetic for Computers

Computer Architecture. Chapter 3: Arithmetic for Computers 182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin

More information

Lecture 13: (Integer Multiplication and Division) FLOATING POINT NUMBERS

Lecture 13: (Integer Multiplication and Division) FLOATING POINT NUMBERS Lecture 13: (Integer Multiplication and Division) FLOATING POINT NUMBERS Lecture 13 Floating Point I (1) Fall 2005 Integer Multiplication (1/3) Paper and pencil example (unsigned): Multiplicand 1000 8

More information

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 3: Arithmetic

5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner. Topic 3: Arithmetic 5DV118 Computer Organization and Architecture Umeå University Department of Computing Science Stephen J. Hegner Topic 3: Arithmetic These slides are mostly taken verbatim, or with minor changes, from those

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

TDT4255 Computer Design. Lecture 4. Magnus Jahre

TDT4255 Computer Design. Lecture 4. Magnus Jahre 1 TDT4255 Computer Design Lecture 4 Magnus Jahre 2 Chapter 3 Computer Arithmetic ti Acknowledgement: Slides are adapted from Morgan Kaufmann companion material 3 Arithmetic for Computers Operations on

More information

Chapter 3 Arithmetic for Computers (Part 2)

Chapter 3 Arithmetic for Computers (Part 2) Department of Electr rical Eng ineering, Chapter 3 Arithmetic for Computers (Part 2) 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Eng ineering, Feng-Chia Unive

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University Computer Architecture Chapter 3 Fall 2005 Department of Computer Science Kent State University Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point

More information

Review: MIPS Organization

Review: MIPS Organization 1 MIPS Arithmetic Review: MIPS Organization Processor Memory src1 addr 5 src2 addr 5 dst addr 5 write data Register File registers ($zero - $ra) bits src1 data src2 data read/write addr 1 1100 2 30 words

More information

xx.yyyy Lecture #11 Floating Point II Summary (single precision): Precision and Accuracy Fractional Powers of 2 Representation of Fractions

xx.yyyy Lecture #11 Floating Point II Summary (single precision): Precision and Accuracy Fractional Powers of 2 Representation of Fractions CS61C L11 Floating Point II (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #11 Floating Point II 2007-7-12 Scott Beamer, Instructor Sony & Nintendo make E3 News www.nytimes.com Review

More information

Lecture 10: Floating Point, Digital Design

Lecture 10: Floating Point, Digital Design Lecture 10: Floating Point, Digital Design Today s topics: FP arithmetic Intro to Boolean functions 1 Examples Final representation: (-1) S x (1 + Fraction) x 2 (Exponent Bias) Represent -0.75 ten in single

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Boolean Algebra Boolean algebra is the basic math used in digital circuits and computers.

More information

IEEE Standard 754 for Binary Floating-Point Arithmetic.

IEEE Standard 754 for Binary Floating-Point Arithmetic. CS61C L11 Floating Point II (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #11 Floating Point II 2005-10-05 There is one handout today at the front and back of the room! Lecturer

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Boolean Algebra. Chapter 3. Boolean Algebra. Chapter 3 Arithmetic for Computers 1. Fundamental Boolean Operations. Arithmetic for Computers

Boolean Algebra. Chapter 3. Boolean Algebra. Chapter 3 Arithmetic for Computers 1. Fundamental Boolean Operations. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #11 Floating Point II Scott Beamer, Instructor Sony & Nintendo make E3 News 2007-7-12 CS61C L11 Floating Point II (1) www.nytimes.com Review

More information

MIPS Integer ALU Requirements

MIPS Integer ALU Requirements MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set

More information

CS61C Floating Point Operations & Multiply/Divide. Lecture 9. February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson)

CS61C Floating Point Operations & Multiply/Divide. Lecture 9. February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) CS61C Floating Point Operations & Multiply/Divide Lecture 9 February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html cs 61C L9 FP.1 Review 1/2

More information

Review 1/2 Big Idea: Instructions determine meaning of data; nothing inherent inside the data Characters: ASCII takes one byte

Review 1/2 Big Idea: Instructions determine meaning of data; nothing inherent inside the data Characters: ASCII takes one byte CS61C Floating Point Operations & Multiply/Divide Lecture 9 February 17, 1999 Dave Patterson (http.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs61c/schedule.html Review 1/2 Big Idea: Instructions

More information

Integer Subtraction. Chapter 3. Overflow conditions. Arithmetic for Computers. Signed Addition. Integer Addition. Arithmetic for Computers

Integer Subtraction. Chapter 3. Overflow conditions. Arithmetic for Computers. Signed Addition. Integer Addition. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Integer Subtraction Chapter 3 Arithmetic for Computers Add negation of second operand Example: 7 6 = 7 + ( 6) +7: 0000 0000

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

Chapter Three. Arithmetic

Chapter Three. Arithmetic Chapter Three 1 Arithmetic Where we've been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W4-W

CSE 2021 Computer Organization. Hugh Chesser, CSEB 1012U W4-W CE 01 Computer Organization Hugh Chesser, CEB 101U Agenda for Today 1. Floating Point Addition, Multiplication. FP Instructions. Quiz 1 Patterson: ections. Floating Point: ingle Precision 1. In MIP, decimal

More information

Chapter Two MIPS Arithmetic

Chapter Two MIPS Arithmetic Chapter Two MIPS Arithmetic Computer Organization Review Binary Representation Used for all data and instructions Fixed size values: 8, 16, 32, 64 Hexadecimal Sign extension Base and virtual machines.

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Arithmetic for Computers James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy Arithmetic for

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32-bit registers

More information

9 Floating-Point. 9.1 Objectives. 9.2 Floating-Point Number Representation. Value = ± (1.F) 2 2 E Bias

9 Floating-Point. 9.1 Objectives. 9.2 Floating-Point Number Representation. Value = ± (1.F) 2 2 E Bias 9 Floating-Point 9.1 Objectives After completing this lab, you will: Understand Floating-Point Number Representation (IEEE 754 Standard) Understand the MIPS Floating-Point Unit Write Programs using the

More information

Arithmetic for Computers. Integer Addition. Chapter 3

Arithmetic for Computers. Integer Addition. Chapter 3 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 15: Midterm 1 Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Basics Midterm to cover Book Sections (inclusive) 1.1 1.5

More information

The MIPS R2000 Instruction Set

The MIPS R2000 Instruction Set The MIPS R2000 Instruction Set Arithmetic and Logical Instructions In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer). The immediate forms of the instructions

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 3. Arithmetic for Computers COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 3 Arithmetic for Computers Arithmetic for Computers Operations on integers Addition and subtraction Multiplication

More information

Fast Arithmetic. Philipp Koehn. 19 October 2016

Fast Arithmetic. Philipp Koehn. 19 October 2016 Fast Arithmetic Philipp Koehn 19 October 2016 1 arithmetic Addition (Immediate) 2 Load immediately one number (s0 = 2) li $s0, 2 Add 4 ($s1 = $s0 + 4 = 6) addi $s1, $s0, 4 Subtract 3 ($s2 = $s1-3 = 3)

More information

Computer Architecture Set Four. Arithmetic

Computer Architecture Set Four. Arithmetic Computer Architecture Set Four Arithmetic Arithmetic Where we ve been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What

More information

Format. 10 multiple choice 8 points each. 1 short answer 20 points. Same basic principals as the midterm

Format. 10 multiple choice 8 points each. 1 short answer 20 points. Same basic principals as the midterm Final Review Format 10 multiple choice 8 points each Make sure to show your work Can write a description to the side as to why you think your answer is correct for possible partial credit 1 short answer

More information

Integer Multiplication and Division

Integer Multiplication and Division Integer Multiplication and Division COE 301 Computer Organization Prof. Muhamed Mudawar College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals Presentation Outline

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

ECE 331 Hardware Organization and Design. Professor Jay Taneja UMass ECE - Discussion 5 2/22/2018

ECE 331 Hardware Organization and Design. Professor Jay Taneja UMass ECE - Discussion 5 2/22/2018 ECE 331 Hardware Organization and Design Professor Jay Taneja UMass ECE - jtaneja@umass.edu Discussion 5 2/22/2018 Today s Discussion Topics Program Concepts Floating Point Floating Point Conversion Floating

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 13 & 14 Dr. Kinga Lipskoch Fall 2017 Frame Pointer (1) The stack is also used to store variables that are local to function, but

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } L11 Floating Point 1 What is the problem? Many numeric applications require numbers over a VERY large range. (e.g. nanoseconds to centuries)

More information

Floating Point Numbers. Lecture 9 CAP

Floating Point Numbers. Lecture 9 CAP Floating Point Numbers Lecture 9 CAP 3103 06-16-2014 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? 2 N things, and no more! They could be Unsigned integers:

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 4. L12 Multiplication 1 Why Floating Point? Aren t Integers enough? Many applications require numbers with a VERY

More information

Lecture 10: Floating Point, Digital Design

Lecture 10: Floating Point, Digital Design Lecture 10: Floating Point, Digital Design Today s topics: FP arithmetic Intro to Boolean functions 1 Examples Final representation: (-1) S x (1 + Fraction) x 2 (Exponent Bias) Represent -0.75 ten in single

More information

Arithmetic for Computers

Arithmetic for Computers MIPS Arithmetic Instructions Cptr280 Dr Curtis Nelson Arithmetic for Computers Operations on integers Addition and subtraction; Multiplication and division; Dealing with overflow; Signed vs. unsigned numbers.

More information

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Lecture 8: Addition, Multiplication & Division

Lecture 8: Addition, Multiplication & Division Lecture 8: Addition, Multiplication & Division Today s topics: Signed/Unsigned Addition Multiplication Division 1 Signed / Unsigned The hardware recognizes two formats: unsigned (corresponding to the C

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

Slide Set 11. for ENCM 369 Winter 2015 Lecture Section 01. Steve Norman, PhD, PEng

Slide Set 11. for ENCM 369 Winter 2015 Lecture Section 01. Steve Norman, PhD, PEng Slide Set 11 for ENCM 369 Winter 2015 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2015 ENCM 369 W15 Section

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

More information

NUMBER OPERATIONS. Mahdi Nazm Bojnordi. CS/ECE 3810: Computer Organization. Assistant Professor School of Computing University of Utah

NUMBER OPERATIONS. Mahdi Nazm Bojnordi. CS/ECE 3810: Computer Organization. Assistant Professor School of Computing University of Utah NUMBER OPERATIONS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 3810: Computer Organization Overview Homework 4 is due tonight Verify your uploaded file before the

More information

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal.

Math in MIPS. Subtracting a binary number from another binary number also bears an uncanny resemblance to the way it s done in decimal. Page < 1 > Math in MIPS Adding and Subtracting Numbers Adding two binary numbers together is very similar to the method used with decimal numbers, except simpler. When you add two binary numbers together,

More information

Chapter 3. Arithmetic for Computers

Chapter 3. Arithmetic for Computers Chapter 3 Arithmetic for Computers Arithmetic for Computers Unsigned vs. Signed Integers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2)

Overview. Introduction to the MIPS ISA. MIPS ISA Overview. Overview (2) Introduction to the MIPS ISA Overview Remember that the machine only understands very basic instructions (machine instructions) It is the compiler s job to translate your high-level (e.g. C program) into

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

ICS DEPARTMENT ICS 233 COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE. Midterm Exam. First Semester (141) Time: 1:00-3:30 PM. Student Name : _KEY

ICS DEPARTMENT ICS 233 COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE. Midterm Exam. First Semester (141) Time: 1:00-3:30 PM. Student Name : _KEY Page 1 of 14 Nov. 22, 2014 ICS DEPARTMENT ICS 233 COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE Midterm Exam First Semester (141) Time: 1:00-3:30 PM Student Name : _KEY Student ID. : Question Max Points Score

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Arithmetic for Computers (3) Fengguang Song Department of Computer & Information Science IUPUI 3.5 Today s Contents Floating point numbers: 2.5, 10.1, 100.2, etc.. How

More information

Integer Arithmetic. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Integer Arithmetic. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Integer Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Computer Science 61C Spring Friedland and Weaver. Instruction Encoding

Computer Science 61C Spring Friedland and Weaver. Instruction Encoding Instruction Encoding 1 Instruction Formats I-format: used for instructions with immediates, lw and sw (since offset counts as an immediate), and branches (beq and bne) since branches are "relative" to

More information

CENG3420 L05: Arithmetic and Logic Unit

CENG3420 L05: Arithmetic and Logic Unit CENG3420 L05: Arithmetic and Logic Unit Bei Yu byu@cse.cuhk.edu.hk (Latest update: January 25, 2018) Spring 2018 1 / 53 Overview Overview Addition Multiplication & Division Shift Floating Point Number

More information

MIPS Assembly Programming

MIPS Assembly Programming COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2

More information

Number Systems and Their Representations

Number Systems and Their Representations Number Representations Cptr280 Dr Curtis Nelson Number Systems and Their Representations In this presentation you will learn about: Representation of numbers in computers; Signed vs. unsigned numbers;

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 15

CO Computer Architecture and Programming Languages CAPL. Lecture 15 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 15 Dr. Kinga Lipskoch Fall 2017 How to Compute a Binary Float Decimal fraction: 8.703125 Integral part: 8 1000 Fraction part: 0.703125

More information

CS222: Processor Design

CS222: Processor Design CS222: Processor Design Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Class: Floating points: Add, Sub, Mul,Div, Rounding Processor Design: Introduction

More information

CENG 3420 Lecture 05: Arithmetic and Logic Unit

CENG 3420 Lecture 05: Arithmetic and Logic Unit CENG 3420 Lecture 05: Arithmetic and Logic Unit Bei Yu byu@cse.cuhk.edu.hk CENG3420 L05.1 Spring 2017 Outline q 1. Overview q 2. Addition q 3. Multiplication & Division q 4. Shift q 5. Floating Point Number

More information

EE260: Logic Design, Spring n Integer multiplication. n Booth s algorithm. n Integer division. n Restoring, non-restoring

EE260: Logic Design, Spring n Integer multiplication. n Booth s algorithm. n Integer division. n Restoring, non-restoring EE 260: Introduction to Digital Design Arithmetic II Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa Overview n Integer multiplication n Booth s algorithm n Integer division

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Data Representation ti and Arithmetic for Computers Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Questions What do you know about

More information

Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

More information

Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) (aritmeettis-looginen yksikkö) Does all

More information

Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) Does all work in CPU (aritmeettis-looginen

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures

Homework 3. Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) CSCI 402: Computer Architectures Homework 3 Assigned on 02/15 Due time: midnight on 02/21 (1 WEEK only!) B.2 B.11 B.14 (hint: use multiplexors) 1 CSCI 402: Computer Architectures Arithmetic for Computers (2) Fengguang Song Department

More information

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

More information

Compiling Techniques

Compiling Techniques Lecture 10: An Introduction to MIPS assembly 18 October 2016 Table of contents 1 Overview 2 3 Assembly program template.data Data segment: constant and variable definitions go here (including statically

More information

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK Computer (Literacy Skills Number representations and memory Lubomír Bulej KDSS MFF UK Number representations? What for? Recall: computer works with binary numbers Groups of zeroes and ones 8 bits (byte,

More information