tcsc 2016 Luca Brianza 1 Luca Brianza 19/07/16 INFN & University of Milano-Bicocca

Size: px
Start display at page:

Download "tcsc 2016 Luca Brianza 1 Luca Brianza 19/07/16 INFN & University of Milano-Bicocca"

Transcription

1 tcsc INFN & University of Milano-Bicocca

2 Outlook Amdahl s law Different ways of parallelism: - Asynchronous task execution - Threads Resource protection/thread safety - The problem - Low-level solution: locks, TLS - High-level solution: atomic operation

3 Amdahl s law Amdahl s law Maximum speed achievable by parallelizing a code: Bottom line: no need of cores!!!

4 Asynchronous task execution Asynchronous task execution (std::async) The easiest example Provided in the standard library std::future #include <future> #include <iostream> int lenghtycalculation(){ ; int main(){ std::future<int> result = std::async(lenghtycalculation); //do other work std::cout << result: << result.get() << std::endl; Calculation done in a separate thread, result retrieved when needed

5 Threads - Process: isolated instance of a program, with its own space in memory - Thread: light-weight process, which share memory with other threads living in the same process std::thread -> more powerful than std::async #include <thread> #include <iostream> void dosomething(void) { std::cout<< ciao <<std::endl; int main(){ std::thread t (dosomething); //do some work t.join(); return 0; Potential risk: they share the same memory! (see next slide)

6 Pitfalls #include <thread> #include <iostream> #include <vector> int counter=0; void f(void) { counter++; int main(){ std::vector<std::thread> v; v.reserve(10); for (int i=0; i<10; i++) v.emplace_back(std::thread(f)); for (auto& t:v) t.join(); std::cout<< counter: <<counter<<std::endl; $ g++ -o prog.cpp -std=c++14 -lpthread counter: 10 counter: 9 Undesired (and non-reproducible) results in execution Problem: threads share the same memory Different threads are accessing counter at the same time

7 Low-level solution: lock std::mutex gmutex; void g() { std::lock(gmutex); dowork(); std::unlock(gmutex); - The thread acquire the lock on the mutex -> only that thread can access it - The thread release the lock when work is done > Risk: deadlocks!! - Scoped locks: the proper way - When the scope is left, the object destroyed and the lock released std::mutex gmutex; void g() { std::lock_guard <std::mutex> lg(gmutex); dowork(); - In any case: not the smartest approach

8 Thread Local Storage (TLS) A private copy of the shared data is replicated for each thread Cons: memory usage In any case, still using the lockrelease mechanism.. #include <thread> #include <iostream> #include <vector> #include <mutex> thread_local int gcounter=0; std::mutex gmutex; void f(void) { gcounter++; std::lock_guard <std::mutex> lg(gmutex); int main(){ std::vector<std::thread> v; v.reserve(10); $ g++ -o prog.cpp -std=c++14 -lpthread counter: 10 counter: 10 for (int i=0; i<10; i++) v.emplace_back(std::thread(f)); for (auto& t:v) t.join(); std::cout<< counter: <<gcounter<<std::endl;

9 High-level solution: atomic operations Atomic operations: seen as a single-step by the other threads Resources protection: other threads cannot see the operation until it is done > two threads cannot work on gcounter at the same time Can be used with different types T #include <thread> #include <iostream> #include <vector> #include <atomic> int counter=0; thread_local int gcounter=0; void f(void) { counter++; gcounter++; int main(){ std::vector<std::thread> v; v.reserve(10); for (int i=0; i<10; i++) v.emplace_back(std::thread(f)); $ g++ -o prog.cpp -std=c++14 -lpthread counter: 10, atomic counter: 10 counter: 9, atomic counter: 10 for (auto& t:v) t.join(); std::cout<< counter: <<counter <<, atomic counter: <<gcounter<<std::endl;

10 Possible applications? WW analysis: ntuplizer starts from some big trees, apply some selections, and produce smaller trees for the lvj final state Idea: read multiple events at the same time Calibration: E/p code Idea: read multiple electrons at the same time

COMP6771 Advanced C++ Programming

COMP6771 Advanced C++ Programming 1. COMP6771 Advanced C++ Programming Week 10 Multithreading - Producer/Consumer Problem 2016 www.cse.unsw.edu.au/ cs6771 2. : C++11 Mutexes C++11 provides Mutex objects in the header file. General

More information

std::async() in C++11 Basic Multithreading

std::async() in C++11 Basic Multithreading MÜNSTER std::async() in C++11 Basic Multithreading 2. December 2015 std::thread MÜNSTER std::async() in C++11 2 /14 #include void hello(){ std::cout

More information

COMP6771 Advanced C++ Programming

COMP6771 Advanced C++ Programming 1. COMP6771 Advanced C++ Programming Week 9 Multithreading (continued) 2016 www.cse.unsw.edu.au/ cs6771 2. So Far Program Workflows: Sequential, Parallel, Embarrassingly Parallel Memory: Shared Memory,

More information

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen 1 Datenstrukturen und Algorithmen Exercise 12 FS 2018 Program of today 2 1 Feedback of last exercise 2 Repetition theory 3 Programming Tasks 1. Feedback of last exercise 3 Football Championship 4 Club

More information

COMP6771 Advanced C++ Programming

COMP6771 Advanced C++ Programming 1.... COMP6771 Advanced C++ Programming Week 9 Multithreading 2016 www.cse.unsw.edu.au/ cs6771 .... Single Threaded Programs All programs so far this semester have been single threaded They have a single

More information

Joe Hummel, PhD. U. of Illinois, Chicago

Joe Hummel, PhD. U. of Illinois, Chicago Joe Hummel, PhD U. of Illinois, Chicago jhummel2@uic.edu http://www.joehummel.net/downloads.html New standard of C++ has been ratified C++0x ==> C++11 Lots of new features We ll focus on concurrency features

More information

Multi-threaded Programming in C++

Multi-threaded Programming in C++ Multi-threaded Programming in C++ (2016/2017) Giuseppe Massari, Federico Terraneo giuseppe.massari@polimi.it federico.terraneo@polimi.it Outline 2/45 Introduction Multi-tasking implementations C++11 threading

More information

A <Basic> C++ Course. 12 lambda expressions and concurrency in C++11. Julien Deantoni

A <Basic> C++ Course. 12 lambda expressions and concurrency in C++11. Julien Deantoni A C++ Course 12 lambda expressions and concurrency in C++11 Julien Deantoni Lambda expressions A unnamed function (which is a std::function) Usable in many place like algorithms, thread, [capture](parameters)->return-type

More information

C++11 threads -- a simpler interface than pthreads Examples largely taken from https://latedev.wordpress.com/ 013/02/24/investigating-c11-threads/

C++11 threads -- a simpler interface than pthreads Examples largely taken from https://latedev.wordpress.com/ 013/02/24/investigating-c11-threads/ C++11 threads -- a simpler interface than pthreads Examples largely taken from https://latedev.wordpress.com/ 013/02/24/investigating-c11-threads/ #include #include using namespace

More information

The C++ Memory Model. Rainer Grimm Training, Coaching and Technology Consulting

The C++ Memory Model. Rainer Grimm Training, Coaching and Technology Consulting The C++ Memory Model Rainer Grimm Training, Coaching and Technology Consulting www.grimm-jaud.de Multithreading with C++ C++'s answers to the requirements of the multicore architectures. A well defined

More information

Joe Hummel, PhD. UC-Irvine

Joe Hummel, PhD. UC-Irvine Joe Hummel, PhD UC-Irvine hummelj@ics.uci.edu http://www.joehummel.net/downloads.html New standard of C++ has been ratified C++0x ==> C++11 Lots of new features We ll focus on concurrency features 2 Async

More information

Database Systems on Modern CPU Architectures

Database Systems on Modern CPU Architectures Database Systems on Modern CPU Architectures Introduction to Modern C++ Moritz Sichert Technische Universität München Department of Informatics Chair of Data Science and Engineering Overview Prerequisites:

More information

Multithreading in C++0x part 1: Starting Threads

Multithreading in C++0x part 1: Starting Threads https://www.justsoftwaresolutions.co.uk/threading/multithreading in c++0x part 1 starting threads.html 2009/02 ~ 2010/02 Multithreading in C++0x Part 1: Starting Threads Part 2: Starting Threads with Function

More information

C++ Programming Lecture 11 Software Engineering Group

C++ Programming Lecture 11 Software Engineering Group C++ Programming Lecture 11 Software Engineering Group Philipp D. Schubert Contents 1. High performance computing 2. High performance computing in C++ 1. std::thread 2. std::future 3. std::async 4. std::future

More information

Synchronising Threads

Synchronising Threads Synchronising Threads David Chisnall March 1, 2011 First Rule for Maintainable Concurrent Code No data may be both mutable and aliased Harder Problems Data is shared and mutable Access to it must be protected

More information

Multithreading done right? Rainer Grimm: Multithreading done right?

Multithreading done right? Rainer Grimm: Multithreading done right? Multithreading done right? Overview Threads Shared Variables Thread local data Condition Variables Tasks Memory Model Threads Needs a work package and run immediately The creator has to care of this child

More information

Concurrent programming in C++11

Concurrent programming in C++11 Concurrent programming in C++11 Multithreading is just one damn thing after, before, or simultaneous with another. --Andrei Alexandrescu Problems with C++98 memory model Double-checked locking pattern

More information

Parallel Computing. Prof. Marco Bertini

Parallel Computing. Prof. Marco Bertini Parallel Computing Prof. Marco Bertini Shared memory: C++ threads C++ multithreading It is possible to use Pthreads API within C++ programs. The C++11 standard has introduced support for multithreaded

More information

30. Parallel Programming IV

30. Parallel Programming IV 924 30. Parallel Programming IV Futures, Read-Modify-Write Instructions, Atomic Variables, Idea of lock-free programming [C++ Futures: Williams, Kap. 4.2.1-4.2.3] [C++ Atomic: Williams, Kap. 5.2.1-5.2.4,

More information

INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY. Instructors: Crista Lopes Copyright Instructors.

INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY. Instructors: Crista Lopes Copyright Instructors. INF 212 ANALYSIS OF PROG. LANGS CONCURRENCY Instructors: Crista Lopes Copyright Instructors. Basics Concurrent Programming More than one thing at a time Examples: Network server handling hundreds of clients

More information

C - Grundlagen und Konzepte

C - Grundlagen und Konzepte C - Grundlagen und Konzepte Threads Marcel Hellwig 1hellwig@informatik.uni-hamburg.de Universität Hamburg 5. Juli 2013 SOSE 13 cba This work is licensed under a Creative Commons Attribution-ShareAlike

More information

Let s go straight to some code to show how to fire off a function that runs in a separate thread:

Let s go straight to some code to show how to fire off a function that runs in a separate thread: Introduction to C++11 Threads In C++11 a wrapper Thread class is available. However, you still need to have a library that implements the thread class. Visual Studio supports C++11 threads, but some other

More information

C++ Programming Lecture 11 Software Engineering Group

C++ Programming Lecture 11 Software Engineering Group C++ Programming Lecture 11 Software Engineering Group Philipp D. Schubert Contents 1. High performance computing 2. High performance computing in C++ 3. Real example: matrix multiplication i. Important

More information

9/23/2014. Concurrent Programming. Book. Process. Exchange of data between threads/processes. Between Process. Thread.

9/23/2014. Concurrent Programming. Book. Process. Exchange of data between threads/processes. Between Process. Thread. Dr A Sahu Dept of Computer Science & Engineering IIT Guwahati Course Structure & Book Basic of thread and process Coordination and synchronization Example of Parallel Programming Shared memory : C/C++

More information

Coe628 Midterm Study Guide (2017)

Coe628 Midterm Study Guide (2017) Coe628 Study Guide 2017 1/6 Coe628 Midterm Study Guide (2017) The Questions 1. Multi-core state diagram A single CPU (core) has a state transition diagram indicating the possible process state changes

More information

Homework 4. Any questions?

Homework 4. Any questions? CSE333 SECTION 8 Homework 4 Any questions? STL Standard Template Library Has many pre-build container classes STL containers store by value, not by reference Should try to use this as much as possible

More information

HPX A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF ANY SCALE

HPX A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF ANY SCALE HPX A GENERAL PURPOSE C++ RUNTIME SYSTEM FOR PARALLEL AND DISTRIBUTED APPLICATIONS OF ANY SCALE The Venture Point TECHNOLOGY DEMANDS NEW RESPONSE 2 Technology Demands new Response 3 Technology Demands

More information

Supporting async use-cases for interrupt_token

Supporting async use-cases for interrupt_token Document No. P1287R0 Date 2018-10-08 Reply To Audience Lewis Baker < lbaker@fb.com > Kirk Shoop < kirkshoop@fb.com > SG1, LEWG Supporting async use-cases for interrupt_token Abstract The jthread paper

More information

Processes and Threads. Industrial Programming. Processes and Threads (cont'd) Processes and Threads (cont'd)

Processes and Threads. Industrial Programming. Processes and Threads (cont'd) Processes and Threads (cont'd) Processes and Threads Industrial Programming Lecture 5: C# Threading Introduction, Accessing Shared Resources Based on: An Introduction to programming with C# Threads By Andrew Birrell, Microsoft, 2005

More information

Introduction to Threads

Introduction to Threads Introduction to Threads What is a thread? A thread is an independent stream of instructions scheduled by the operating system to be executed It may be easier to think of this as a procedure that run independently

More information

Introduction to Lock-Free Programming. Olivier Goffart

Introduction to Lock-Free Programming. Olivier Goffart Introduction to Lock-Free Programming Olivier Goffart 2014 QStyleSheetStyle Itemviews Animation Framework QtScript (porting to JSC and V8) QObject, moc QML Debugger Modularisation... About Me About Me

More information

Concurrent programming in C++11

Concurrent programming in C++11 Concurrent programming in C++11 Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering Department University

More information

Systems Programming & Scripting

Systems Programming & Scripting Systems Programming & Scripting Lecture 10: C# Threading Introduction, Accessing Shared Resources Based on: An Introduction to programming with C# Threads By Andrew Birrell, Microsoft, 2005 Examples from

More information

Distributed Programming

Distributed Programming Distributed Programming Lecture 02 - Processes, Threads and Synchronization Edirlei Soares de Lima Programs and Processes What is a computer program? Is a sequence

More information

Parallelization, OpenMP

Parallelization, OpenMP ~ Parallelization, OpenMP Scientific Computing Winter 2016/2017 Lecture 26 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de made wit pandoc 1 / 18 Why parallelization? Computers became faster and faster

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

CS 450 Exam 2 Mon. 4/11/2016

CS 450 Exam 2 Mon. 4/11/2016 CS 450 Exam 2 Mon. 4/11/2016 Name: Rules and Hints You may use one handwritten 8.5 11 cheat sheet (front and back). This is the only additional resource you may consult during this exam. No calculators.

More information

CS 470 Spring Mike Lam, Professor. Advanced OpenMP

CS 470 Spring Mike Lam, Professor. Advanced OpenMP CS 470 Spring 2017 Mike Lam, Professor Advanced OpenMP Atomics OpenMP provides access to highly-efficient hardware synchronization mechanisms Use the atomic pragma to annotate a single statement Statement

More information

i219 Software Design Methodology 11. Software model checking Kazuhiro Ogata (JAIST) Outline of lecture

i219 Software Design Methodology 11. Software model checking Kazuhiro Ogata (JAIST) Outline of lecture i219 Software Design Methodology 11. Software model checking Kazuhiro Ogata (JAIST) Outline of lecture 2 Concurrency Model checking Java Pathfinder (JPF) Detecting race condition Bounded buffer problem

More information

Chenyu Zheng. CSCI 5828 Spring 2010 Prof. Kenneth M. Anderson University of Colorado at Boulder

Chenyu Zheng. CSCI 5828 Spring 2010 Prof. Kenneth M. Anderson University of Colorado at Boulder Chenyu Zheng CSCI 5828 Spring 2010 Prof. Kenneth M. Anderson University of Colorado at Boulder Actuality Introduction Concurrency framework in the 2010 new C++ standard History of multi-threading in C++

More information

JAVA CONCURRENCY FRAMEWORK. Kaushik Kanetkar

JAVA CONCURRENCY FRAMEWORK. Kaushik Kanetkar JAVA CONCURRENCY FRAMEWORK Kaushik Kanetkar Old days One CPU, executing one single program at a time No overlap of work/processes Lots of slack time CPU not completely utilized What is Concurrency Concurrency

More information

F. Tip and M. Weintraub CONCURRENCY

F. Tip and M. Weintraub CONCURRENCY F. Tip and M. Weintraub CONCURRENCY SHARED-MEMORY CONCURRENCY threads execute concurrently threads communicate values via shared memory synchronization using locks 2 PITFALLS data races atomicity violations

More information

Modern C++ Old Dog, New Tricks Todd L.

Modern C++ Old Dog, New Tricks Todd L. StoneTor Modern C++ Old Dog, New Tricks Todd L. Montgomery @toddlmontgomery C++ is so old Languages are Tools Learning Tools is Good There are only two kinds of languages: the ones people complain about

More information

Threads, Synchronization, and Scheduling. Eric Wu

Threads, Synchronization, and Scheduling. Eric Wu Threads, Synchronization, and Scheduling Eric Wu (ericwu@cs) Topics for Today Project 2 Due tomorrow! Project 3 Due Feb. 17 th! Threads Synchronization Scheduling Project 2 Troubleshooting: Stock kernel

More information

Sharing Objects Ch. 3

Sharing Objects Ch. 3 Sharing Objects Ch. 3 Visibility What is the source of the issue? Volatile Dekker s algorithm Publication and Escape Thread Confinement Immutability Techniques of safe publication Assignment 1 Visibility

More information

Scientific Computing WS 2017/2018. Lecture 25. Jürgen Fuhrmann Lecture 25 Slide 1

Scientific Computing WS 2017/2018. Lecture 25. Jürgen Fuhrmann Lecture 25 Slide 1 Scientific Computing WS 2017/2018 Lecture 25 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 25 Slide 1 Why parallelization? Computers became faster and faster without that... [Source: spiralgen.com]

More information

Synchronization Spinlocks - Semaphores

Synchronization Spinlocks - Semaphores CS 4410 Operating Systems Synchronization Spinlocks - Semaphores Summer 2013 Cornell University 1 Today How can I synchronize the execution of multiple threads of the same process? Example Race condition

More information

Lecture 4. Threads vs. Processes. fork() Threads. Pthreads. Threads in C. Thread Programming January 21, 2005

Lecture 4. Threads vs. Processes. fork() Threads. Pthreads. Threads in C. Thread Programming January 21, 2005 Threads vs. Processes Lecture 4 Thread Programming January 21, 2005 fork() is expensive (time, memory) Interprocess communication is hard. Threads are lightweight processes: one process can contain several

More information

ECE 3574: Applied Software Design. Threads

ECE 3574: Applied Software Design. Threads ECE 3574: Applied Software Design Threads Today we are going to start looking at threads, multiple executing programs within the same process that share the code segment and heap, but have separate stacks.

More information

COMP 346 WINTER Tutorial 2 SHARED DATA MANIPULATION AND SYNCHRONIZATION

COMP 346 WINTER Tutorial 2 SHARED DATA MANIPULATION AND SYNCHRONIZATION COMP 346 WINTER 2018 1 Tutorial 2 SHARED DATA MANIPULATION AND SYNCHRONIZATION REVIEW - MULTITHREADING MODELS 2 Some operating system provide a combined user level thread and Kernel level thread facility.

More information

CMSC 132: Object-Oriented Programming II

CMSC 132: Object-Oriented Programming II CMSC 132: Object-Oriented Programming II Synchronization in Java Department of Computer Science University of Maryland, College Park Multithreading Overview Motivation & background Threads Creating Java

More information

The C++ Standard Library

The C++ Standard Library The C++ Standard Library What every professional C++ programmer should know about the C++ standard library. Rainer This book is for sale at http://leanpub.com/cpplibrary-write This version was published

More information

Solution: a lock (a/k/a mutex) public: virtual void unlock() =0;

Solution: a lock (a/k/a mutex) public: virtual void unlock() =0; 1 Solution: a lock (a/k/a mutex) class BasicLock { public: virtual void lock() =0; virtual void unlock() =0; ; 2 Using a lock class Counter { public: int get_and_inc() { lock_.lock(); int old = count_;

More information

Lecture 10 Midterm review

Lecture 10 Midterm review Lecture 10 Midterm review Announcements The midterm is on Tue Feb 9 th in class 4Bring photo ID 4You may bring a single sheet of notebook sized paper 8x10 inches with notes on both sides (A4 OK) 4You may

More information

Last Class: Synchronization

Last Class: Synchronization Last Class: Synchronization Synchronization primitives are required to ensure that only one thread executes in a critical section at a time. Concurrent programs Low-level atomic operations (hardware) load/store

More information

Agenda. Highlight issues with multi threaded programming Introduce thread synchronization primitives Introduce thread safe collections

Agenda. Highlight issues with multi threaded programming Introduce thread synchronization primitives Introduce thread safe collections Thread Safety Agenda Highlight issues with multi threaded programming Introduce thread synchronization primitives Introduce thread safe collections 2 2 Need for Synchronization Creating threads is easy

More information

More Functions. Pass by Value. Example: Exchange two numbers. Storage Classes. Passing Parameters by Reference. Pass by value and by reference

More Functions. Pass by Value. Example: Exchange two numbers. Storage Classes. Passing Parameters by Reference. Pass by value and by reference Pass by Value More Functions Different location in memory Changes to the parameters inside the function body have no effect outside of the function. 2 Passing Parameters by Reference Example: Exchange

More information

Software Transactional Memory Pure functional approach

Software Transactional Memory Pure functional approach Software Transactional Memory Pure functional approach Alexander Granin graninas@gmail.com C++ Russia 2018, Saint Petersburg struct Presentation Introduction1 Functional programming in C++ Introduction2

More information

Concurrency in Java Prof. Stephen A. Edwards

Concurrency in Java Prof. Stephen A. Edwards Concurrency in Java Prof. Stephen A. Edwards The Java Language Developed by James Gosling et al. at Sun Microsystems in the early 1990s Originally called Oak, first intended application was as an OS for

More information

C# Threading. Hans-Wolfgang Loidl School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh

C# Threading. Hans-Wolfgang Loidl School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh C# Threading Hans-Wolfgang Loidl School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh Semester 1 2018/19 0 Based on: "An Introduction to programming with

More information

Shared-Memory Programming

Shared-Memory Programming Shared-Memory Programming 1. Threads 2. Mutual Exclusion 3. Thread Scheduling 4. Thread Interfaces 4.1. POSIX Threads 4.2. C++ Threads 4.3. OpenMP 4.4. Threading Building Blocks 5. Side Effects of Hardware

More information

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007

Computation Abstractions. Processes vs. Threads. So, What Is a Thread? CMSC 433 Programming Language Technologies and Paradigms Spring 2007 CMSC 433 Programming Language Technologies and Paradigms Spring 2007 Threads and Synchronization May 8, 2007 Computation Abstractions t1 t1 t4 t2 t1 t2 t5 t3 p1 p2 p3 p4 CPU 1 CPU 2 A computer Processes

More information

ECE 462 Exam 3. 11:30AM-12:20PM, November 17, 2010

ECE 462 Exam 3. 11:30AM-12:20PM, November 17, 2010 ECE 462 Exam 3 11:30AM-12:20PM, November 17, 2010 I will not receive nor provide aid to any other student for this exam. Signature: You must sign here. Otherwise, the exam is not graded. This exam is printed

More information

CMSC 433 Programming Language Technologies and Paradigms. Concurrency

CMSC 433 Programming Language Technologies and Paradigms. Concurrency CMSC 433 Programming Language Technologies and Paradigms Concurrency What is Concurrency? Simple definition Sequential programs have one thread of control Concurrent programs have many Concurrency vs.

More information

Lecture 24: Java Threads,Java synchronized statement

Lecture 24: Java Threads,Java synchronized statement COMP 322: Fundamentals of Parallel Programming Lecture 24: Java Threads,Java synchronized statement Zoran Budimlić and Mack Joyner {zoran, mjoyner@rice.edu http://comp322.rice.edu COMP 322 Lecture 24 9

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 Process creation in UNIX All processes have a unique process id getpid(),

More information

Slide Set 14. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

Slide Set 14. for ENCM 339 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary Slide Set 14 for ENCM 339 Fall 2016 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary November 2016 ENCM 339 Fall 2016 Slide Set 14 slide 2/35

More information

Fundamentals of Programming Session 12

Fundamentals of Programming Session 12 Fundamentals of Programming Session 12 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2014 These slides have been created using Deitel s slides Sharif University of Technology Outlines

More information

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5

CS 153 Lab4 and 5. Kishore Kumar Pusukuri. Kishore Kumar Pusukuri CS 153 Lab4 and 5 CS 153 Lab4 and 5 Kishore Kumar Pusukuri Outline Introduction A thread is a straightforward concept : a single sequential flow of control. In traditional operating systems, each process has an address

More information

Functions and Recursion

Functions and Recursion Functions and Recursion 1 Storage Classes Scope Rules Functions with Empty Parameter Lists Inline Functions References and Reference Parameters Default Arguments Unary Scope Resolution Operator Function

More information

Object-Oriented Programming for Scientific Computing

Object-Oriented Programming for Scientific Computing Object-Oriented Programming for Scientific Computing Smart Pointers and Constness Ole Klein Interdisciplinary Center for Scientific Computing Heidelberg University ole.klein@iwr.uni-heidelberg.de Summer

More information

HPX The C++ Standards Library for Concurrency and Parallelism. Hartmut Kaiser

HPX The C++ Standards Library for Concurrency and Parallelism. Hartmut Kaiser HPX The C++ Standards Library for Concurrency and Hartmut Kaiser (hkaiser@cct.lsu.edu) HPX A General Purpose Runtime System The C++ Standards Library for Concurrency and Exposes a coherent and uniform,

More information

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University

CS 333 Introduction to Operating Systems. Class 3 Threads & Concurrency. Jonathan Walpole Computer Science Portland State University CS 333 Introduction to Operating Systems Class 3 Threads & Concurrency Jonathan Walpole Computer Science Portland State University 1 The Process Concept 2 The Process Concept Process a program in execution

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

COMP346 Winter Tutorial 4 Synchronization Semaphores

COMP346 Winter Tutorial 4 Synchronization Semaphores COMP346 Winter 2015 Tutorial 4 Synchronization Semaphores 1 Topics Synchronization in Details Semaphores Introducing Semaphore.java 2 Synchronization What is it? An act of communication between unrelated

More information

A Proposal to Add a Logical Const Wrapper to the Standard Library Technical Report

A Proposal to Add a Logical Const Wrapper to the Standard Library Technical Report Doc number: N3973 Date: 2014-05-12 Project: Programming Language C++, Library Evolution Working Group Reply-to: Jonathan Coe Robert Mill A Proposal to Add a Logical

More information

Cache Coherence and Atomic Operations in Hardware

Cache Coherence and Atomic Operations in Hardware Cache Coherence and Atomic Operations in Hardware Previously, we introduced multi-core parallelism. Today we ll look at 2 things: 1. Cache coherence 2. Instruction support for synchronization. And some

More information

UEE1303(1070) S12: Object-Oriented Programming Advanced Topics of Class

UEE1303(1070) S12: Object-Oriented Programming Advanced Topics of Class UEE1303(1070) S12: Object-Oriented Programming Advanced Topics of Class What you will learn from Lab 6 In this laboratory, you will learn the advance topics of object-oriented programming using class.

More information

Paradigmas de Computação Paralela

Paradigmas de Computação Paralela Paradigmas de Computação Paralela Concurrent/Parallel Programming in OO /Java João Luís Ferreira Sobral jls@... Specification of concurrency/parallelism Benefits from concurrent programming Programs that

More information

Threads Synchronization

Threads Synchronization Synchronization Threads Synchronization Threads share memory so communication can be based on shared references. This is a very effective way to communicate but is prone to two types of errors: Interference

More information

Parallelising serial applications. Darryl Gove Compiler Performance Engineering

Parallelising serial applications. Darryl Gove Compiler Performance Engineering Parallelising serial applications Darryl Gove Compiler Performance Engineering Topics Process Tools Expectations 2 Profile Compile with debug info > -g [C/Fortran] > -g0 [C++] > Enables mapping of disassembly

More information

Week 3. Locks & Semaphores

Week 3. Locks & Semaphores Week 3 Locks & Semaphores Synchronization Mechanisms Locks Very primitive constructs with minimal semantics Semaphores A generalization of locks Easy to understand, hard to program with Condition Variables

More information

C++ Concurrency in Action

C++ Concurrency in Action C++ Concurrency in Action Practical Multithreading ANTHONY WILLIAMS 11 MANNING Shelter Island contents preface xv acknowledgments xvii about this booh xix about the cover illustration xxii ~1 Hello, world

More information

ASYNCHRONOUS COMPUTING IN C++

ASYNCHRONOUS COMPUTING IN C++ http://stellar-goup.org ASYNCHRONOUS COMPUTING IN C++ Hartmut Kaiser (Hartmut.Kaiser@gmail.com) CppCon 2014 WHAT IS ASYNCHRONOUS COMPUTING? Spawning off some work without immediately waiting for the work

More information

C Functions. Object created and destroyed within its block auto: default for local variables

C Functions. Object created and destroyed within its block auto: default for local variables 1 5 C Functions 5.12 Storage Classes 2 Automatic storage Object created and destroyed within its block auto: default for local variables auto double x, y; Static storage Variables exist for entire program

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

MATH 676. Finite element methods in scientific computing

MATH 676. Finite element methods in scientific computing MATH 676 Finite element methods in scientific computing Wolfgang Bangerth, Texas A&M University Lecture 41.25: Parallelization on a cluster of distributed memory machines Part 2: Debugging with MPI Debugging

More information

Exam Issued: December 18, 2015, 09:00 Hand in: December 18, 2015, 12:00

Exam Issued: December 18, 2015, 09:00 Hand in: December 18, 2015, 12:00 P. Koumoutsakos, M. Troyer ETH Zentrum, CTL F 11 CH-8092 Zürich High Performance Computing for Science and Engineering I Exam Issued: December 18, 2015, 09:00 Hand in: December 18, 2015, 12:00 Fall semester

More information

Exercise Session Week 8

Exercise Session Week 8 Chair of Software Engineering Java and C# in Depth Carlo A. Furia, Marco Piccioni, Bertrand Meyer Exercise Session Week 8 Java 8 release date Was early September 2013 Currently moved to March 2014 http://openjdk.java.net/projects/jdk8/milestones

More information

An Introduction to Parallel Systems

An Introduction to Parallel Systems Lecture 4 - Shared Resource Parallelism University of Bath December 6, 2007 When Week 1 Introduction Who, What, Why, Where, When? Week 2 Data Parallelism and Vector Processors Week 3 Message Passing Systems

More information

CS 470 Spring Mike Lam, Professor. Advanced OpenMP

CS 470 Spring Mike Lam, Professor. Advanced OpenMP CS 470 Spring 2018 Mike Lam, Professor Advanced OpenMP Atomics OpenMP provides access to highly-efficient hardware synchronization mechanisms Use the atomic pragma to annotate a single statement Statement

More information

Parallel Numerical Algorithms 2016 Report 2

Parallel Numerical Algorithms 2016 Report 2 Parallel Numerical Algorithms 2016 Report 2 Assignments (i) Perk Performance of Core i7 4500U When using FMA instruction of AVX 2 Single precision floating point number: 32 FLOPS/Clock * 3.0 GHz * 2Core

More information

C++ Pub Quiz. A 90 minute quiz session ACCU April by Olve Maudal, with Lars Gullik Bjønnes. Sponsored by:

C++ Pub Quiz. A 90 minute quiz session ACCU April by Olve Maudal, with Lars Gullik Bjønnes. Sponsored by: C++ Pub Quiz by Olve Maudal, with Lars Gullik Bjønnes + + Sponsored by: A 90 minute quiz session ACCU April 2013 Here is my development environment: (Mac OS 10.8.2, x86_64) bash-3.2$ myc++ -v Using built-in

More information

COMP6771 Advanced C++ Programming

COMP6771 Advanced C++ Programming 1.... COMP6771 Advanced C++ Programming Week 5 Part One: Exception Handling 2016 www.cse.unsw.edu.au/ cs6771 2.... Memory Management & Exception Handling.1 Part I: Exception Handling Exception objects

More information

Introduction to Programming session 24

Introduction to Programming session 24 Introduction to Programming session 24 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2010 These slides are created using Deitel sslides Sharif Universityof Technology Outlines Introduction

More information

Lock Yourself Out. Ruud van der Pas. Distinguished Engineer SPARC Microelectronics. Santa Clara, CA, USA

Lock Yourself Out. Ruud van der Pas. Distinguished Engineer SPARC Microelectronics. Santa Clara, CA, USA Lock Yourself Out Distinguished Engineer SPARC Microelectronics Santa Clara, CA, USA SC 17 Talk at OpenMP Booth Tuesday, November 14, 2017 1 Heads Up! Mini Tutorial! If you have a question Our friendly

More information

BYOD - WOCHE 2 AGENDA. Organization. Templates RAII. Smart Pointers

BYOD - WOCHE 2 AGENDA. Organization. Templates RAII. Smart Pointers WOCHE 2 BYOD AGENDA Organization Templates RAII Smart Pointers 2 ORGANIZATION If you have not joined us at Piazza piazza.com/hpi.uni-potsdam.de/fall2017/byod Any problems during setup? 3 TEMPLATES - FUNCTIONS

More information

CSE 374 Programming Concepts & Tools

CSE 374 Programming Concepts & Tools CSE 374 Programming Concepts & Tools Hal Perkins Fall 2017 Lecture 22 Shared-Memory Concurrency 1 Administrivia HW7 due Thursday night, 11 pm (+ late days if you still have any & want to use them) Course

More information

What's wrong with Semaphores?

What's wrong with Semaphores? Next: Monitors and Condition Variables What is wrong with semaphores? Monitors What are they? How do we implement monitors? Two types of monitors: Mesa and Hoare Compare semaphore and monitors Lecture

More information

A Proposal to Add a Const-Propagating Wrapper to the Standard Library

A Proposal to Add a Const-Propagating Wrapper to the Standard Library Doc number: N4057 Revises: N3973 Date: 2014-07-02 Project: Programming Language C++, Library Evolution Working Group Reply-to: Jonathan Coe Robert Mill A Proposal

More information