Figure-12 Membership Grades of x o in the Sets A and B: μ A (x o ) =0.75 and μb(xo) =0.25

Size: px
Start display at page:

Download "Figure-12 Membership Grades of x o in the Sets A and B: μ A (x o ) =0.75 and μb(xo) =0.25"

Transcription

1 Membership Functions The membership function μ A (x) describes the membership of the elements x of the base set X in the fuzzy set A, whereby for μ A (x) a large class of functions can be taken. Reasonable functions are often piecewise linear functions, such as triangular or trapezoidal functions. The grade of membership μ A (x o ) of a membership function μ A (x) describes for the special element x=x o, to which grade it belongs to the fuzzy set A. This value is in the unit interval [0,1]. Of course, x o can simultaneously belong to another fuzzy set B, such that μ B (x o ) characterizes the grade of membership of x o to B. This case is shown in figure-12 Figure-12 Membership Grades of x o in the Sets A and B: μ A (x o ) =0.75 and μb(xo) =0.25 Fuzzy subset can also be discrete, the next example illustrates the fuzzy operations on discrete (sub)set. Example 12: Let A and B be discrete fuzzy subset of X = {-3,-2,- 1,0,1,2,3}. If A={(-3, 0.0), (-2, 0.3), (-1, 0.6), (0, 1.0), (1, 0.6), (2, 0.3), (3, 0.0)}, and B={(-3, 1.0), (-2, 0.5), (-1, 0.2), (0, 0.0), (1, 0.2), (2, 0.5), (3, 1.0)}, then A B (x) = max{ A (x), B (x)} A B (x) ={(-3, 1.0), (-2, 0.5), (-1, 0.6), (0, 1.0), (1, 0.6), (2, 0.5), (3,1.0)} and 19

2 A B (x) = min{ A (x), B (x)} A B (x) ={(-3, 0.0), (-2, 0.3), (-1, 0.2), (0, 0.0), (1, 0.2), (2, 0.3), (3,0.0)} And the negations of A and B are A={(-3, 1.0), (-2, 0.7), (-1, 0.4), (0, 0.0), (1, 0.4), (2, 0.7), (3, 1.0)}, and B={(-3, 0.0), (-2, 0.5), (-1, 0.8), (0, 1.0), (1, 0.8), (2, 0.5), (3, 0.0)} A graphical representation is shown in figure-13 Figure-13 A graphical representation of example 12 Example 13: Let us assume that A = "x considerable larger than 10", B = "x approximately 11," characterized by A = {(x, A (x)) x X} where 0 x) (1 ( x 10) A ( 2 1 ) x 10 x 10 B = {(x, B (x)) x X} where 20

3 B ( x) (1 ( x 11) 4 ) 1 Then A B min[(1 ( x 10) ( x) 0 2 ) 1,(1 ( x 11) 4 ) 1 x 10 x 10 (x considerably larger than 10 and approximately 11) A B ( x) max[(1 ( x 10) ),(1 ( x 11) ), x X Figure-14 depicts the above. Figure-14 Union and intersection of fuzzy sets Types of Membership Functions In principle any function of the form A:X [0,1] describes a membership function associated with a fuzzy set A that depends not only on the concept to be represented, but also on the context in which it is used. The graphs of the functions may have different shapes and may have specific properties. Whether a particular shape is suitable can be determined only in the application context. In certain cases, however, the meaning semantics captured by fuzzy sets is not too sensitive to variations in the shape, and simple functions are convenient. 21

4 In many practical instances fuzzy sets can be represented explicitly by families of parameterized functions, the most common being the following: 1. and L open shoulder functions 2. Triangular function 3. Trapezoidal Function 4. Gaussian Function 5. S-Function The membership function definitions for the above mentioned common membership functions are given in the following sections: 1- and L open shoulder functions Initially we will define two so called open membership functions. These are characterized as being non-decreasing and having values inside 0 and 1 only within a bounded interval. Firstly, we have functions with open right shoulders, : X [0, 1], and defined by two parameters according to the following: Correspondingly, we have functions with open left shoulders, L: X [0, 1], defined by: These two functions are shown in figure-15 and figure-16 22

5 Figure-15 -membership function Figure-16 L -membership function 2- Triangular function The triangular membership function ʌ: X [0, 1], is given by three parameters according to: Figure-17 ʌ- membership function Example 14: In control applications, it is common to use linguistic variables like negative big (NB), negative small (NS), zero (ZO), positive small (PS) and positive big (PB) to express measurement values in a fuzzy way. The arrangement with the membership functions to cover the 23

6 entire measurement space is then obtained using shoulders on respectively leftmost and rightmost functions and triangle function for the rest as shown in figure-18. Figure-18 the arrangement of membership functions for example Trapezoidal function The trapezoidal membership function, Π: X [0, 1], (shown in figure- 19), is given by four parameters according to Figure-19 Π - membership function 4- Gaussian function The membership definition for a Gaussian function G: [0, 1] is given by two parameters as : G( x :, ) e ( x ) 2 Where is the midpoint and reflects the slop value. Note that must be positive and that the function never reaches zero. The Gaussian 24

7 function can also be extended to have different left and right slops. We then have three parameters in 2 l ( x ) e, G( x :, l, r ) 2 r ( x ) e, x x Where l and r are, respectively, left and right slopes. Figure-20 G-membership function 5- Sigmoidal membership function (S-function) The typical sigmoidal membership function or S-function (shown in figure-21), : X [0, 1], needs two parameters, and can be expressed as Where is the midpoint and is the slop value at the inflexion point. Similarly, as in Gaussian, must be positive. This S-function never reaches neither 0 nor 1. Figure-21 - function Figure-22 S-function 25

8 Zadeh defined an S-function (shown in figure -22), using polynomials rather than exponential according to: Where = ( + γ)/2. This function again is more efficient when considering implementation. Singletons Strictly speaking, a fuzzy set A is a collection of ordered pairs A = {(x, μ(x))} Item x belongs to the universe and μ (x) is its grade of membership in A. A single pair (x,μ (x)) is called a fuzzy singleton; therefore the entire set can be considered as the union of its constituent singletons. It is often convenient to think of a set A just as a vector a = (μ(x1), μ(x2), μ(x3),., μ(xn)) It is understood then, that each position i (1,2,3,..,n) corresponds to a point in the universe of n points Linguistic Variables linguistic variables, are variables whose values are not numbers but words or sentences in a natural or artificial language. Just like an algebraic variable takes numbers as values, a linguistic variable takes words or sentences as values. - The set of values that it can take is called its term set. - Each value in the term set is a fuzzy variable defined over a base variable. - The base variable defines the universe of discourse for all the fuzzy variables in the term set. In short, the hierarchy is as follows: 26

9 linguistic variable fuzzy variable base variable. Linguistic variable definition: A linguistic variable can be defined by the following quintuple: Linguistic variable = (x, T(x), U, G, M) in which x: is the name of the variable T(x) (or simply T): denotes the term set of x, that is, the set of names of linguistic values of x. U: is the set of the universe of discourse, which defines the characteristics of the variables. G: is a syntactic rule (which usually has the form of a grammar) for generating the name (terms) in T(x). M: is a semantic rules which map terms in T(x) to fuzzy set in U. In order to facilitate the symbolism in what follows, some symbols will have two meanings wherever clarity allows this: x will denote the name of the variable ("the label") and the generic name of its values. Example 15: Let X be a linguistic variable with the label "Age" (i.e., the label of this variable is "Age" and the values of it will also be called "Age") with U= [0, 100]. Terms of this linguistic variable, which are again fuzzy sets, could be called "old," "young," "very old," and so on. The base-variable u is the age in years of life. M(X) is the rule that assigns a meaning, that is, a fuzzy set, to the terms. M (old) = {(u, old (u)) u [0, 100]} where T(x) will define the term set of the variable x, for instance, in this case, 27

10 T(Age) = (old, very old, not so old, more or less young, quite young, very young) Where G(x) is a rule which generates the (labels of terms) in the term set. Sketches of the above mentioned is show in the figure-23 Figure-23 Fuzzy logic and approximate reasoning The fuzzy linguistic terms often consist of two parts: 1- Fuzzy predicate (primary term), such as: expensive, old, rare, good, etc 2- Fuzzy modifier, such as: very, likely, almost impossible, etc. 1- Fuzzy predicate A predicate preposition in the classical logic has the following form: x is a man y is p x and y are variables, and man and p are crisp sets. The sets of individuals satisfying the predicates are written by man(x) and p(y). Definition (Fuzzy predicate): If the set defining the predicate of individual is a fuzzy set, the predicate is called a fuzzy predicate. For example: 28

11 z is expensive w is young The terms expensive and young are fuzzy terms. therefore, the sets expensive(z) and young(w) are fuzzy sets. When a fuzzy predicate x is P is given, we can interpret it in two ways: i) P(x) is a fuzzy set. The membership degree of x in the set P is ii) defined by the membership function P(x). P (x) is the satisfactory degree of x for the property P. therefore the truth value of the fuzzy predicate is defined by the membership function Modifiers or Hedges Truth value = P(x) The term set of the linguistic variable "Truth" has been defined differently by different authors. Baldwin, defines some of the terms shown in figure-24. Here for v [0,1] true (v) = v very true (v) =( true (v)) 2 fairly true (v) = ( true (v)) 1/2 false (v) = 1 - true (v) very false (v) = ( false (v)) 2 fairly false (v) = ( false (v)) 1/2 absolutely true( v) absolutely false( v) for v 1 otherwise for v 0 otherwise 29

12 Figure-24 Linguistic variable "Truth" (Baldwin s truth graph) Zadeh [1973] suggests for the term true the membership function where v=(l + a)/2 is called the crossover point, and a [0, 1] is a parameter that indicates the subjective judgment about the minimum value of v in order to consider a statement as "true" at all. The membership function of "false" is considered as the mirror image of "true," that is, 30

13 Figure-25 shows the terms true and false. Of course the membership functions of true and false, respectively, can also be chosen from the finite universe of truth values. Figure-25 The terms "Truth" and False The term set of the linguistic variable "Truth" is then defined as: T(Truth) = {true, not true, very true, not very true false, not false, very false,, not very true and not very false,...} The fuzzy sets (possibility distribution) of those terms can essentially be determined from the term true or the term false by applying appropriately the above-mentioned modifiers (hedges). Example 16: Let us consider the terms true and false, respectively, defined as the following possibility distributions: v(true) = {(.5,.6), (.6,.7), (.7,.8), (.8,.9), (.9, 1), (1, 1)} v(false) = v(not true) = {(.5,.6), (.4,.7), (.3,.8), (.2,.9), (.1, 1), (0, 1)} then v(very true) = {(.5,.36), (.6,.49), (.7,.64), (.8,.81), (.9, 1), (1, 1)} v(very false)={(.5,.36), (.4,.49), (.3,.64), (.2,.81), (.1, 1), (0, 1)} Definition (linguistic hedge or a modifier ): 31

14 A linguistic hedge or a modifier can be defined as an operation that modifies the meaning of a term or, more generally, of a fuzzy set. If A is a fuzzy set then the modifier m generates the (composite) term B = m(a). Mathematical models frequently used for modifiers are: concentration: con(a) (u) = ( A (u)) 2 dilation: dil(a) (u) = ( A (u)) 1/2 Generally the following linguistic hedges (modifiers) are associated with above-mentioned mathematical operators. If A is a term (a fuzzy set) then: very A = con(a) more or less A = dil(a) In figure-26 the term young is represented by membership function young (u), when we represent the term very young, we can use the square of young (u) as follows: very young (u) = ( young (u)) 2 The graph of membership function of very young is given in figure 26. Figure-26 Linguistic variable Age Example 17: Let us reconsider from example 15 the linguistic variable "Age". The term set shall be assumed to be T(Age) = {old, very old, very very old,...} The term set can now be generated recursively by using the following rule (algorithm): 32

15 G(Age): T i+1 = {old} {very T i } that is, T 0 = Ø T 1 = {old} T 2 = {old, very old} T 3 = {old, very old, very very old} For the semantic rule we only need to know the meaning of "old" and the meaning of the modifier "very" in order to determine the meaning of an arbitrary term of the term set. If one defines "very" as the concentration, then the terms of the term set of the structured linguistic variable "Age" can be determined, given that the membership function of the term "old" is known. Example 18: Let "Age" be a Boolean linguistic variable with the term set T(Age) = {young, not young, old, not old, very young, not young and not old, young or old,...} Identifying "and" with the intersection, "or" with the union, "not" with the complementation, and "very" with the concentration we can derive the meaning of different terms of the term set as follows: M(not young) = young M (not very young) = (young)2 M (young or old) = young old, etc. Given the two fuzzy sets (primary terms) M(young) = {(u, young (u)) u [0,100]} Where and M(old) = {(u, old (u)) u [0,100]} 33

16 where Then the membership function of the term young or old would, for instance, be 34

Chapter 4 Fuzzy Logic

Chapter 4 Fuzzy Logic 4.1 Introduction Chapter 4 Fuzzy Logic The human brain interprets the sensory information provided by organs. Fuzzy set theory focus on processing the information. Numerical computation can be performed

More information

Fuzzy Reasoning. Linguistic Variables

Fuzzy Reasoning. Linguistic Variables Fuzzy Reasoning Linguistic Variables Linguistic variable is an important concept in fuzzy logic and plays a key role in its applications, especially in the fuzzy expert system Linguistic variable is a

More information

Introduction to Fuzzy Logic. IJCAI2018 Tutorial

Introduction to Fuzzy Logic. IJCAI2018 Tutorial Introduction to Fuzzy Logic IJCAI2018 Tutorial 1 Crisp set vs. Fuzzy set A traditional crisp set A fuzzy set 2 Crisp set vs. Fuzzy set 3 Crisp Logic Example I Crisp logic is concerned with absolutes-true

More information

Fuzzy Systems (1/2) Francesco Masulli

Fuzzy Systems (1/2) Francesco Masulli (1/2) Francesco Masulli DIBRIS - University of Genova, ITALY & S.H.R.O. - Sbarro Institute for Cancer Research and Molecular Medicine Temple University, Philadelphia, PA, USA email: francesco.masulli@unige.it

More information

Neural Networks Lesson 9 - Fuzzy Logic

Neural Networks Lesson 9 - Fuzzy Logic Neural Networks Lesson 9 - Prof. Michele Scarpiniti INFOCOM Dpt. - Sapienza University of Rome http://ispac.ing.uniroma1.it/scarpiniti/index.htm michele.scarpiniti@uniroma1.it Rome, 26 November 2009 M.

More information

Fuzzy Logic : Introduction

Fuzzy Logic : Introduction Fuzzy Logic : Introduction Debasis Samanta IIT Kharagpur dsamanta@iitkgp.ac.in 23.01.2018 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 23.01.2018 1 / 69 What is Fuzzy logic? Fuzzy logic

More information

What is all the Fuzz about?

What is all the Fuzz about? What is all the Fuzz about? Fuzzy Systems CPSC 433 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary Fuzzy Systems in Knowledge Engineering Fuzzy

More information

CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER

CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER 60 CHAPTER 4 FREQUENCY STABILIZATION USING FUZZY LOGIC CONTROLLER 4.1 INTRODUCTION Problems in the real world quite often turn out to be complex owing to an element of uncertainty either in the parameters

More information

Fuzzy Sets and Systems. Lecture 1 (Introduction) Bu- Ali Sina University Computer Engineering Dep. Spring 2010

Fuzzy Sets and Systems. Lecture 1 (Introduction) Bu- Ali Sina University Computer Engineering Dep. Spring 2010 Fuzzy Sets and Systems Lecture 1 (Introduction) Bu- Ali Sina University Computer Engineering Dep. Spring 2010 Fuzzy sets and system Introduction and syllabus References Grading Fuzzy sets and system Syllabus

More information

What is all the Fuzz about?

What is all the Fuzz about? What is all the Fuzz about? Fuzzy Systems: Introduction CPSC 533 Christian Jacob Dept. of Computer Science Dept. of Biochemistry & Molecular Biology University of Calgary Fuzzy Systems in Knowledge Engineering

More information

Chapter 2: FUZZY SETS

Chapter 2: FUZZY SETS Ch.2: Fuzzy sets 1 Chapter 2: FUZZY SETS Introduction (2.1) Basic Definitions &Terminology (2.2) Set-theoretic Operations (2.3) Membership Function (MF) Formulation & Parameterization (2.4) Complement

More information

Contents. The Definition of Fuzzy Logic Rules. Fuzzy Logic and Functions. Fuzzy Sets, Statements, and Rules

Contents. The Definition of Fuzzy Logic Rules. Fuzzy Logic and Functions. Fuzzy Sets, Statements, and Rules Fuzzy Logic and Functions The Definition of Fuzzy Logic Membership Function Evolutionary Algorithms Constructive Induction Fuzzy logic Neural Nets Decision Trees and other Learning A person's height membership

More information

Chapter 7 Fuzzy Logic Controller

Chapter 7 Fuzzy Logic Controller Chapter 7 Fuzzy Logic Controller 7.1 Objective The objective of this section is to present the output of the system considered with a fuzzy logic controller to tune the firing angle of the SCRs present

More information

Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi

Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi Introduction to Fuzzy Logic and Fuzzy Systems Adel Nadjaran Toosi Fuzzy Slide 1 Objectives What Is Fuzzy Logic? Fuzzy sets Membership function Differences between Fuzzy and Probability? Fuzzy Inference.

More information

CHAPTER 5 FUZZY LOGIC CONTROL

CHAPTER 5 FUZZY LOGIC CONTROL 64 CHAPTER 5 FUZZY LOGIC CONTROL 5.1 Introduction Fuzzy logic is a soft computing tool for embedding structured human knowledge into workable algorithms. The idea of fuzzy logic was introduced by Dr. Lofti

More information

FUZZY LOGIC TECHNIQUES. on random processes. In such situations, fuzzy logic exhibits immense potential for

FUZZY LOGIC TECHNIQUES. on random processes. In such situations, fuzzy logic exhibits immense potential for FUZZY LOGIC TECHNIQUES 4.1: BASIC CONCEPT Problems in the real world are quite often very complex due to the element of uncertainty. Although probability theory has been an age old and effective tool to

More information

Unit V. Neural Fuzzy System

Unit V. Neural Fuzzy System Unit V Neural Fuzzy System 1 Fuzzy Set In the classical set, its characteristic function assigns a value of either 1 or 0 to each individual in the universal set, There by discriminating between members

More information

Fuzzy Mathematics. Fuzzy -Sets, -Relations, -Logic, -Graphs, -Mappings and The Extension Principle. Olaf Wolkenhauer. Control Systems Centre UMIST

Fuzzy Mathematics. Fuzzy -Sets, -Relations, -Logic, -Graphs, -Mappings and The Extension Principle. Olaf Wolkenhauer. Control Systems Centre UMIST Fuzzy Mathematics Fuzzy -Sets, -Relations, -Logic, -Graphs, -Mappings and The Extension Principle Olaf Wolkenhauer Control Systems Centre UMIST o.wolkenhauer@umist.ac.uk www.csc.umist.ac.uk/people/wolkenhauer.htm

More information

Simple Linear Interpolation Explains All Usual Choices in Fuzzy Techniques: Membership Functions, t-norms, t-conorms, and Defuzzification

Simple Linear Interpolation Explains All Usual Choices in Fuzzy Techniques: Membership Functions, t-norms, t-conorms, and Defuzzification Simple Linear Interpolation Explains All Usual Choices in Fuzzy Techniques: Membership Functions, t-norms, t-conorms, and Defuzzification Vladik Kreinovich, Jonathan Quijas, Esthela Gallardo, Caio De Sa

More information

Fuzzy Reasoning. Outline

Fuzzy Reasoning. Outline Fuzzy Reasoning Outline Introduction Bivalent & Multivalent Logics Fundamental fuzzy concepts Fuzzification Defuzzification Fuzzy Expert System Neuro-fuzzy System Introduction Fuzzy concept first introduced

More information

GEOG 5113 Special Topics in GIScience. Why is Classical set theory restricted? Contradiction & Excluded Middle. Fuzzy Set Theory in GIScience

GEOG 5113 Special Topics in GIScience. Why is Classical set theory restricted? Contradiction & Excluded Middle. Fuzzy Set Theory in GIScience GEOG 5113 Special Topics in GIScience Fuzzy Set Theory in GIScience -Basic Properties and Concepts of Fuzzy Sets- Why is Classical set theory restricted? Boundaries of classical sets are required to be

More information

Fuzzy Logic. This amounts to the use of a characteristic function f for a set A, where f(a)=1 if the element belongs to A, otherwise it is 0;

Fuzzy Logic. This amounts to the use of a characteristic function f for a set A, where f(a)=1 if the element belongs to A, otherwise it is 0; Fuzzy Logic Introduction: In Artificial Intelligence (AI) the ultimate goal is to create machines that think like humans. Human beings make decisions based on rules. Although, we may not be aware of it,

More information

Why Fuzzy? Definitions Bit of History Component of a fuzzy system Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation

Why Fuzzy? Definitions Bit of History Component of a fuzzy system Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation Contents Why Fuzzy? Definitions Bit of History Component of a fuzzy system Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation Linguistic Variables and Hedges INTELLIGENT CONTROLSYSTEM

More information

Introduction. Aleksandar Rakić Contents

Introduction. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction Aleksandar Rakić rakic@etf.rs Contents Definitions Bit of History Fuzzy Applications Fuzzy Sets Fuzzy Boundaries Fuzzy Representation Linguistic Variables and Hedges

More information

Computational Intelligence Lecture 12:Linguistic Variables and Fuzzy Rules

Computational Intelligence Lecture 12:Linguistic Variables and Fuzzy Rules Computational Intelligence Lecture 12:Linguistic Variables and Fuzzy Rules Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Computational

More information

Dra. Ma. del Pilar Gómez Gil Primavera 2014

Dra. Ma. del Pilar Gómez Gil Primavera 2014 C291-78 Tópicos Avanzados: Inteligencia Computacional I Introducción a la Lógica Difusa Dra. Ma. del Pilar Gómez Gil Primavera 2014 pgomez@inaoep.mx Ver: 08-Mar-2016 1 Este material ha sido tomado de varias

More information

Introduction to Intelligent Control Part 2

Introduction to Intelligent Control Part 2 ECE 4951 - Spring 2010 Introduction to Intelligent Control Part 2 Prof. Marian S. Stachowicz Laboratory for Intelligent Systems ECE Department, University of Minnesota Duluth January 19-21, 2010 Human-in-the-loop

More information

ARTIFICIAL INTELLIGENCE. Uncertainty: fuzzy systems

ARTIFICIAL INTELLIGENCE. Uncertainty: fuzzy systems INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Uncertainty: fuzzy systems Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said

Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said FUZZY LOGIC Fuzzy Logic Lotfi Zadeh (professor at UC Berkeley) wrote his original paper on fuzzy set theory. In various occasions, this is what he said Fuzzy logic is a means of presenting problems to

More information

Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning. DKS - Module 7. Why fuzzy thinking?

Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning. DKS - Module 7. Why fuzzy thinking? Fuzzy Systems Overview: Literature: Why Fuzzy Fuzzy Logic and Sets Fuzzy Reasoning chapter 4 DKS - Module 7 1 Why fuzzy thinking? Experts rely on common sense to solve problems Representation of vague,

More information

Intuitionistic fuzzification functions

Intuitionistic fuzzification functions Global Journal of Pure and Applied Mathematics. ISSN 973-1768 Volume 1, Number 16, pp. 111-17 Research India Publications http://www.ripublication.com/gjpam.htm Intuitionistic fuzzification functions C.

More information

Exploring Gaussian and Triangular Primary Membership Functions in Non-Stationary Fuzzy Sets

Exploring Gaussian and Triangular Primary Membership Functions in Non-Stationary Fuzzy Sets Exploring Gaussian and Triangular Primary Membership Functions in Non-Stationary Fuzzy Sets S. Musikasuwan and J.M. Garibaldi Automated Scheduling, Optimisation and Planning Group University of Nottingham,

More information

Review of Fuzzy Logical Database Models

Review of Fuzzy Logical Database Models IOSR Journal of Computer Engineering (IOSRJCE) ISSN: 2278-0661, ISBN: 2278-8727Volume 8, Issue 4 (Jan. - Feb. 2013), PP 24-30 Review of Fuzzy Logical Database Models Anupriya 1, Prof. Rahul Rishi 2 1 (Department

More information

Assessment of Human Skills Using Trapezoidal Fuzzy Numbers

Assessment of Human Skills Using Trapezoidal Fuzzy Numbers American Journal of Computational and Applied Mathematics 2015, 5(4): 111-116 DOI: 10.5923/j.ajcam.20150504.03 Assessment of Human Skills Using Trapezoidal Fuzzy Numbers Michael Gr. Voskoglou Department

More information

Study of Fuzzy Set Theory and Its Applications

Study of Fuzzy Set Theory and Its Applications IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 4 Ver. II (Jul. - Aug.2016), PP 148-154 www.iosrjournals.org Study of Fuzzy Set Theory and Its Applications

More information

FUZZY SQL for Linguistic Queries Poonam Rathee Department of Computer Science Aim &Act, Banasthali Vidyapeeth Rajasthan India

FUZZY SQL for Linguistic Queries Poonam Rathee Department of Computer Science Aim &Act, Banasthali Vidyapeeth Rajasthan India RESEARCH ARTICLE FUZZY SQL for Linguistic Queries Poonam Rathee Department of Computer Science Aim &Act, Banasthali Vidyapeeth Rajasthan India OPEN ACCESS ABSTRACT For Many Years, achieving unambiguous

More information

1. Fuzzy sets, fuzzy relational calculus, linguistic approximation

1. Fuzzy sets, fuzzy relational calculus, linguistic approximation 1. Fuzzy sets, fuzzy relational calculus, linguistic approximation 1.1. Fuzzy sets Let us consider a classical set U (Universum) and a real function : U --- L. As a fuzzy set A we understand a set of pairs

More information

Approximate Reasoning with Fuzzy Booleans

Approximate Reasoning with Fuzzy Booleans Approximate Reasoning with Fuzzy Booleans P.M. van den Broek Department of Computer Science, University of Twente,P.O.Box 217, 7500 AE Enschede, the Netherlands pimvdb@cs.utwente.nl J.A.R. Noppen Department

More information

CPS331 Lecture: Fuzzy Logic last revised October 11, Objectives: 1. To introduce fuzzy logic as a way of handling imprecise information

CPS331 Lecture: Fuzzy Logic last revised October 11, Objectives: 1. To introduce fuzzy logic as a way of handling imprecise information CPS331 Lecture: Fuzzy Logic last revised October 11, 2016 Objectives: 1. To introduce fuzzy logic as a way of handling imprecise information Materials: 1. Projectable of young membership function 2. Projectable

More information

Fuzzy Logic Approach towards Complex Solutions: A Review

Fuzzy Logic Approach towards Complex Solutions: A Review Fuzzy Logic Approach towards Complex Solutions: A Review 1 Arnab Acharyya, 2 Dipra Mitra 1 Technique Polytechnic Institute, 2 Technique Polytechnic Institute Email: 1 cst.arnab@gmail.com, 2 mitra.dipra@gmail.com

More information

Membership Value Assignment

Membership Value Assignment FUZZY SETS Membership Value Assignment There are possible more ways to assign membership values or function to fuzzy variables than there are to assign probability density functions to random variables

More information

Propositional Logic. Part I

Propositional Logic. Part I Part I Propositional Logic 1 Classical Logic and the Material Conditional 1.1 Introduction 1.1.1 The first purpose of this chapter is to review classical propositional logic, including semantic tableaux.

More information

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis Application of fuzzy set theory in image analysis Nataša Sladoje Centre for Image Analysis Our topics for today Crisp vs fuzzy Fuzzy sets and fuzzy membership functions Fuzzy set operators Approximate

More information

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a

ANFIS: ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEMS (J.S.R. Jang 1993,1995) bell x; a, b, c = 1 a ANFIS: ADAPTIVE-NETWORK-ASED FUZZ INFERENCE SSTEMS (J.S.R. Jang 993,995) Membership Functions triangular triangle( ; a, a b, c c) ma min = b a, c b, 0, trapezoidal trapezoid( ; a, b, a c, d d) ma min =

More information

Fuzzy Sets and Systems. Lecture 2 (Fuzzy Sets) Bu- Ali Sina University Computer Engineering Dep. Spring 2010

Fuzzy Sets and Systems. Lecture 2 (Fuzzy Sets) Bu- Ali Sina University Computer Engineering Dep. Spring 2010 Fuzzy Sets and Systems Lecture 2 (Fuzzy Sets) Bu- Ali Sina University Computer Engineering Dep. Spring 2010 Fuzzy Sets Formal definition: A fuzzy set A in X (universal set) is expressed as a set of ordered

More information

Notes on Fuzzy Set Ordination

Notes on Fuzzy Set Ordination Notes on Fuzzy Set Ordination Umer Zeeshan Ijaz School of Engineering, University of Glasgow, UK Umer.Ijaz@glasgow.ac.uk http://userweb.eng.gla.ac.uk/umer.ijaz May 3, 014 1 Introduction The membership

More information

FUZZY INFERENCE SYSTEMS

FUZZY INFERENCE SYSTEMS CHAPTER-IV FUZZY INFERENCE SYSTEMS Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The mapping then provides a basis from which decisions can

More information

COSC 6397 Big Data Analytics. Fuzzy Clustering. Some slides based on a lecture by Prof. Shishir Shah. Edgar Gabriel Spring 2015.

COSC 6397 Big Data Analytics. Fuzzy Clustering. Some slides based on a lecture by Prof. Shishir Shah. Edgar Gabriel Spring 2015. COSC 6397 Big Data Analytics Fuzzy Clustering Some slides based on a lecture by Prof. Shishir Shah Edgar Gabriel Spring 215 Clustering Clustering is a technique for finding similarity groups in data, called

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

Introduction 2 Fuzzy Sets & Fuzzy Rules. Aleksandar Rakić Contents

Introduction 2 Fuzzy Sets & Fuzzy Rules. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction 2 Fuzzy Sets & Fuzzy Rules Aleksandar Rakić rakic@etf.rs Contents Characteristics of Fuzzy Sets Operations Properties Fuzzy Rules Examples 2 1 Characteristics of Fuzzy

More information

FUZZY BOOLEAN ALGEBRAS AND LUKASIEWICZ LOGIC. Angel Garrido

FUZZY BOOLEAN ALGEBRAS AND LUKASIEWICZ LOGIC. Angel Garrido Acta Universitatis Apulensis ISSN: 1582-5329 No. 22/2010 pp. 101-111 FUZZY BOOLEAN ALGEBRAS AND LUKASIEWICZ LOGIC Angel Garrido Abstract. In this paper, we analyze the more adequate tools to solve many

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Musikasuwan, Salang (2013) Novel fuzzy techniques for modelling human decision making. PhD thesis, University of Nottingham.

Musikasuwan, Salang (2013) Novel fuzzy techniques for modelling human decision making. PhD thesis, University of Nottingham. Musikasuwan, Salang (213) Novel fuzzy techniques for modelling human decision making. PhD thesis, University of Nottingham. Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/13161/1/salang-phd-thesis.pdf

More information

Fuzzy Systems Handbook

Fuzzy Systems Handbook The Fuzzy Systems Handbook Second Edition Te^hnische Universitat to instmjnik AutomatisiaMngstechnlk Fachgebi^KQegelup^stheorie und D-S4283 Darrftstadt lnvfentar-ngxc? V 2^s TU Darmstadt FB ETiT 05C Figures

More information

计算智能 第 10 讲 : 模糊集理论 周水庚 计算机科学技术学院

计算智能 第 10 讲 : 模糊集理论 周水庚 计算机科学技术学院 计算智能 第 0 讲 : 模糊集理论 周水庚 计算机科学技术学院 207-5-9 Introduction to Fuzzy Set Theory Outline Fuzzy Sets Set-Theoretic Operations MF Formulation Extension Principle Fuzzy Relations Linguistic Variables Fuzzy Rules

More information

Granular Computing: A Paradigm in Information Processing Saroj K. Meher Center for Soft Computing Research Indian Statistical Institute, Kolkata

Granular Computing: A Paradigm in Information Processing Saroj K. Meher Center for Soft Computing Research Indian Statistical Institute, Kolkata Granular Computing: A Paradigm in Information Processing Saroj K. Meher Center for Soft Computing Research Indian Statistical Institute, Kolkata Granular computing (GrC): Outline Introduction Definitions

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

FUZZY SYSTEMS: Basics using MATLAB Fuzzy Toolbox. Heikki N. Koivo

FUZZY SYSTEMS: Basics using MATLAB Fuzzy Toolbox. Heikki N. Koivo FUZZY SYSTEMS: Basics using MATLAB Fuzzy Toolbox By Heikki N. Koivo 200 2.. Fuzzy sets Membership functions Fuzzy set Universal discourse U set of elements, {u}. Fuzzy set F in universal discourse U: Membership

More information

ON THEORY OF INTUITIONISTIC FUZZY SETS (OR VAGUE SETS)

ON THEORY OF INTUITIONISTIC FUZZY SETS (OR VAGUE SETS) International Journal of Fuzzy Systems On Theory and Rough of Intuitionistic Systems Fuzzy Sets (Or Vague Sets) 113 4(2), December 2011, pp. 113-117, Serials Publications, ISSN: 0974-858X ON THEORY OF

More information

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F 1 Logical Operations 1.1 And The and operator is a binary operator, denoted as, &,, or sometimes by just concatenating symbols, is true only if both parameters are true. A B A B F T F F F F The expression

More information

A Study on Triangular Type 2 Triangular Fuzzy Matrices

A Study on Triangular Type 2 Triangular Fuzzy Matrices International Journal of Fuzzy Mathematics and Systems. ISSN 2248-9940 Volume 4, Number 2 (2014), pp. 145-154 Research India Publications http://www.ripublication.com A Study on Triangular Type 2 Triangular

More information

ARTIFICIAL INTELLIGENCE - FUZZY LOGIC SYSTEMS

ARTIFICIAL INTELLIGENCE - FUZZY LOGIC SYSTEMS ARTIFICIAL INTELLIGENCE - FUZZY LOGIC SYSTEMS http://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_fuzzy_logic_systems.htm Copyright tutorialspoint.com Fuzzy Logic Systems FLS

More information

Lecture notes. Com Page 1

Lecture notes. Com Page 1 Lecture notes Com Page 1 Contents Lectures 1. Introduction to Computational Intelligence 2. Traditional computation 2.1. Sorting algorithms 2.2. Graph search algorithms 3. Supervised neural computation

More information

Fuzzy rule-based decision making model for classification of aquaculture farms

Fuzzy rule-based decision making model for classification of aquaculture farms Chapter 6 Fuzzy rule-based decision making model for classification of aquaculture farms This chapter presents the fundamentals of fuzzy logic, and development, implementation and validation of a fuzzy

More information

FUZZY SPECIFICATION IN SOFTWARE ENGINEERING

FUZZY SPECIFICATION IN SOFTWARE ENGINEERING 1 FUZZY SPECIFICATION IN SOFTWARE ENGINEERING V. LOPEZ Faculty of Informatics, Complutense University Madrid, Spain E-mail: ab vlopez@fdi.ucm.es www.fdi.ucm.es J. MONTERO Faculty of Mathematics, Complutense

More information

On JAM of Triangular Fuzzy Number Matrices

On JAM of Triangular Fuzzy Number Matrices 117 On JAM of Triangular Fuzzy Number Matrices C.Jaisankar 1 and R.Durgadevi 2 Department of Mathematics, A. V. C. College (Autonomous), Mannampandal 609305, India ABSTRACT The fuzzy set theory has been

More information

REASONING UNDER UNCERTAINTY: FUZZY LOGIC

REASONING UNDER UNCERTAINTY: FUZZY LOGIC REASONING UNDER UNCERTAINTY: FUZZY LOGIC Table of Content What is Fuzzy Logic? Brief History of Fuzzy Logic Current Applications of Fuzzy Logic Overview of Fuzzy Logic Forming Fuzzy Set Fuzzy Set Representation

More information

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May

IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. 1 Issue 3, May Optimization of fuzzy assignment model with triangular fuzzy numbers using Robust Ranking technique Dr. K. Kalaiarasi 1,Prof. S.Sindhu 2, Dr. M. Arunadevi 3 1 Associate Professor Dept. of Mathematics 2

More information

A Brief Idea on Fuzzy and Crisp Sets

A Brief Idea on Fuzzy and Crisp Sets International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) A Brief Idea on Fuzzy and Crisp Sets Rednam SS Jyothi 1, Eswar Patnala 2, K.Asish Vardhan 3 (Asst.Prof(c),Information Technology,

More information

Fuzzy logic. 1. Introduction. 2. Fuzzy sets. Radosªaw Warzocha. Wrocªaw, February 4, Denition Set operations

Fuzzy logic. 1. Introduction. 2. Fuzzy sets. Radosªaw Warzocha. Wrocªaw, February 4, Denition Set operations Fuzzy logic Radosªaw Warzocha Wrocªaw, February 4, 2014 1. Introduction A fuzzy concept appearing in works of many philosophers, eg. Hegel, Nietzche, Marx and Engels, is a concept the value of which can

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

SECTION 1.3: BASIC GRAPHS and SYMMETRY

SECTION 1.3: BASIC GRAPHS and SYMMETRY (Section.3: Basic Graphs and Symmetry).3. SECTION.3: BASIC GRAPHS and SYMMETRY LEARNING OBJECTIVES Know how to graph basic functions. Organize categories of basic graphs and recognize common properties,

More information

FUZZY INFERENCE. Siti Zaiton Mohd Hashim, PhD

FUZZY INFERENCE. Siti Zaiton Mohd Hashim, PhD FUZZY INFERENCE Siti Zaiton Mohd Hashim, PhD Fuzzy Inference Introduction Mamdani-style inference Sugeno-style inference Building a fuzzy expert system 9/29/20 2 Introduction Fuzzy inference is the process

More information

Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary

Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary Lecture 5 Fuzzy expert systems: Fuzzy inference Mamdani fuzzy inference Sugeno fuzzy inference Case study Summary Negnevitsky, Pearson Education, 25 Fuzzy inference The most commonly used fuzzy inference

More information

About the Tutorial. Audience. Prerequisites. Disclaimer& Copyright. Fuzzy Logic

About the Tutorial. Audience. Prerequisites. Disclaimer& Copyright. Fuzzy Logic About the Tutorial Fuzzy Logic resembles the human decision-making methodology and deals with vague and imprecise information. This is a very small tutorial that touches upon the very basic concepts of

More information

Computational Intelligence Lecture 10:Fuzzy Sets

Computational Intelligence Lecture 10:Fuzzy Sets Computational Intelligence Lecture 10:Fuzzy Sets Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 arzaneh Abdollahi Computational Intelligence Lecture

More information

Semantics via Syntax. f (4) = if define f (x) =2 x + 55.

Semantics via Syntax. f (4) = if define f (x) =2 x + 55. 1 Semantics via Syntax The specification of a programming language starts with its syntax. As every programmer knows, the syntax of a language comes in the shape of a variant of a BNF (Backus-Naur Form)

More information

Middle School Math Course 2

Middle School Math Course 2 Middle School Math Course 2 Correlation of the ALEKS course Middle School Math Course 2 to the Indiana Academic Standards for Mathematics Grade 7 (2014) 1: NUMBER SENSE = ALEKS course topic that addresses

More information

Section 16. The Subspace Topology

Section 16. The Subspace Topology 16. The Subspace Product Topology 1 Section 16. The Subspace Topology Note. Recall from Analysis 1 that a set of real numbers U is open relative to set X if there is an open set of real numbers O such

More information

Fuzzy Sets and Fuzzy Logic

Fuzzy Sets and Fuzzy Logic Fuzzy Sets and Fuzzy Logic KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur, Email: Outline traditional logic : {true,false} Crisp

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY

ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING WITH UNCERTAINTY ALGEBRAIC METHODS IN LOGIC AND IN COMPUTER SCIENCE BANACH CENTER PUBLICATIONS, VOLUME 28 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1993 ROUGH MEMBERSHIP FUNCTIONS: A TOOL FOR REASONING

More information

Voluntary State Curriculum Algebra II

Voluntary State Curriculum Algebra II Algebra II Goal 1: Integration into Broader Knowledge The student will develop, analyze, communicate, and apply models to real-world situations using the language of mathematics and appropriate technology.

More information

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET)

INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) INTERNATIONAL JOURNAL OF COMPUTER ENGINEERING & TECHNOLOGY (IJCET) ISSN 0976 6367(Print) ISSN 0976 6375(Online) Volume 3, Issue 2, July- September (2012), pp. 157-166 IAEME: www.iaeme.com/ijcet.html Journal

More information

Lecture 5. Logic I. Statement Logic

Lecture 5. Logic I. Statement Logic Ling 726: Mathematical Linguistics, Logic. Statement Logic V. Borschev and B. Partee, September 27, 2 p. Lecture 5. Logic I. Statement Logic. Statement Logic...... Goals..... Syntax of Statement Logic....2.

More information

Semantics of Fuzzy Sets in Rough Set Theory

Semantics of Fuzzy Sets in Rough Set Theory Semantics of Fuzzy Sets in Rough Set Theory Y.Y. Yao Department of Computer Science University of Regina Regina, Saskatchewan Canada S4S 0A2 E-mail: yyao@cs.uregina.ca URL: http://www.cs.uregina.ca/ yyao

More information

A fuzzy subset of a set A is any mapping f : A [0, 1], where [0, 1] is the real unit closed interval. the degree of membership of x to f

A fuzzy subset of a set A is any mapping f : A [0, 1], where [0, 1] is the real unit closed interval. the degree of membership of x to f Algebraic Theory of Automata and Logic Workshop Szeged, Hungary October 1, 2006 Fuzzy Sets The original Zadeh s definition of a fuzzy set is: A fuzzy subset of a set A is any mapping f : A [0, 1], where

More information

IPMU July 2-7, 2006 Paris, France

IPMU July 2-7, 2006 Paris, France IPMU July 2-7, 2006 Paris, France Information Processing and Management of Uncertainty in Knowledge-Based Systems Conceptual Design and Implementation of the Salem Chakhar 1 and Abelkader Telmoudi 2 1

More information

Fuzzy Sets and Fuzzy Logic. KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur,

Fuzzy Sets and Fuzzy Logic. KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur, Fuzzy Sets and Fuzzy Logic KR Chowdhary, Professor, Department of Computer Science & Engineering, MBM Engineering College, JNV University, Jodhpur, Outline traditional logic : {true,false} Crisp Logic

More information

Introduction 3 Fuzzy Inference. Aleksandar Rakić Contents

Introduction 3 Fuzzy Inference. Aleksandar Rakić Contents Beograd ETF Fuzzy logic Introduction 3 Fuzzy Inference Aleksandar Rakić rakic@etf.rs Contents Mamdani Fuzzy Inference Fuzzification of the input variables Rule evaluation Aggregation of rules output Defuzzification

More information

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012

CMPSCI 250: Introduction to Computation. Lecture #7: Quantifiers and Languages 6 February 2012 CMPSCI 250: Introduction to Computation Lecture #7: Quantifiers and Languages 6 February 2012 Quantifiers and Languages Quantifier Definitions Translating Quantifiers Types and the Universe of Discourse

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Truth Functional Properties on Truth Trees

Truth Functional Properties on Truth Trees Truth Functional Properties on Truth Trees Truth-functional: Truth Falsity Indeterminacy Entailment Validity Equivalence Consistency A set of sentences of SL is truth-functionally consistent if and only

More information

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set γ 1 γ 3 γ γ 3 γ γ 1 R (a) an unbounded Yin set (b) a bounded Yin set Fig..1: Jordan curve representation of a connected Yin set M R. A shaded region represents M and the dashed curves its boundary M that

More information

Mathematically Rigorous Software Design Review of mathematical prerequisites

Mathematically Rigorous Software Design Review of mathematical prerequisites Mathematically Rigorous Software Design 2002 September 27 Part 1: Boolean algebra 1. Define the Boolean functions and, or, not, implication ( ), equivalence ( ) and equals (=) by truth tables. 2. In an

More information

Fuzzy Set-Theoretical Approach for Comparing Objects with Fuzzy Attributes

Fuzzy Set-Theoretical Approach for Comparing Objects with Fuzzy Attributes Fuzzy Set-Theoretical Approach for Comparing Objects with Fuzzy Attributes Y. Bashon, D. Neagu, M.J. Ridley Department of Computing University of Bradford Bradford, BD7 DP, UK e-mail: {Y.Bashon, D.Neagu,

More information

(Refer Slide Time: 0:19)

(Refer Slide Time: 0:19) Theory of Computation. Professor somenath Biswas. Department of Computer Science & Engineering. Indian Institute of Technology, Kanpur. Lecture-15. Decision Problems for Regular Languages. (Refer Slide

More information

Fuzzy logic controllers

Fuzzy logic controllers Fuzzy logic controllers Digital fuzzy logic controllers Doru Todinca Department of Computers and Information Technology UPT Outline Hardware implementation of fuzzy inference The general scheme of the

More information

SOFTWARE ENGINEERING DESIGN I

SOFTWARE ENGINEERING DESIGN I 2 SOFTWARE ENGINEERING DESIGN I 3. Schemas and Theories The aim of this course is to learn how to write formal specifications of computer systems, using classical logic. The key descriptional technique

More information