CSCI 2212: Intermediate Programming / C Storage Class and Dynamic Allocation

Size: px
Start display at page:

Download "CSCI 2212: Intermediate Programming / C Storage Class and Dynamic Allocation"

Transcription

1 ... 1/30 CSCI 2212: Intermediate Programming / C Storage Class and Dynamic Allocation Alice E. Fischer October 23, 2015

2 ... 2/30 Outline Storage Class Dynamic Allocation in C Dynamic Allocation in C++ Using Dynamic Arrays FlexArrays in C An Application of FlexArrays Low-level Memory Operations

3 ... 3/30 Storage Class Storage Class

4 ... 4/30 Storage Class Storage Class Keyword auto static extern Meaning The default. Used for parameters and local variables. Allocated by every function call and deallocated by every function return. This implements a block-structured memory. For variables that must not come and go every time a function is called or returns. Unusual but important. Used in large complex programs to let code from one module use a variable in a different module. Dynamic storage is used when an object must outlast the block that created it.

5 ... 5/30 Storage Class Your Address Space This is the classic model for four kinds of memory management sharing one user s address space. Laid out at compile time. Created & initialized at load time Objects are created by malloc or calloc and recycled by free Your executable code and literals. Read only Static variables heap: Dynamic allocation A stack frame is created by each function call and deleted by each function return run-time stack: parameters and local variables

6 ... 6/30 Dynamic Allocation in C Dynamic Allocation in C malloc(): memory allocation calloc(): cleared memory allocation realloc(): resize an allocated area (larger or smaller) free(): recycle the allocation

7 ... 7/30 Dynamic Allocation in C Allocation Functions - malloc() and calloc() These functions and size_t are defined in (standard library) stdlib.h void* malloc( size_t sz ); Mass memory allocation. Return a pointer to an uninitialized block of dynamic memory that is sz bytes long. void* calloc ( size_t n, size_t sz ); Cleared memory allocation. Allocate a dynamic array of n objects each of size sz bytes. Initialize all bits to 0. Return a pointer to the first byte of the array.

8 ... 8/30 Dynamic Allocation in C Results of malloc() and calloc() The shaded space is allocated by the system for its own use. It is initialized to the number of bytes in the allocated area. p int* p = malloc( 10* sizeof(int)); 44?????????? q int* q = calloc( 4, sizeof(double));

9 ... 9/30 Dynamic Allocation in C Declaration and Initialization An array of arrays is declared with two subscripts and initialized by a series of array initializers: short multtable[4][4] = { {1, 2, 3, 4 }, {2, 4, 6, 8 }, {3, 6, 9, 12}, {4, 8, 12,16} } ; multtable [0] [1] [2] [3] [0] [1] [2] [3] To refer to an array slot, the row subscript is given first: multtable[2][3] is 12.

10 ... 10/30 Dynamic Allocation in C Example: Using dynamic memory for strings. When we use strings in our data structures, we often use dynamic allocation to get an array that is exactly the right size for each input string we get. Read the string into a buffer that is long enough for the longest expected input. If the buffer is 81 chars, read the string using " %80[^\n]" Use strlen to measure the string: len = strlen( buffer ); Allocate space for the string and a terminator: char* name = malloc( (len+1) * sizeof(char) ); Copy the data into the new memory: strcpy( name, buffer );

11 ... 11/30 Dynamic Allocation in C Dynamic String Allocation buffer Margaret Thatcher\0 name Margaret Thatcher\0 Allocated on the run-time stack Allocated in the dynamic heap

12 ... 12/30 Dynamic Allocation in C Allocation Functions - free() void free( void* pt ); Recycle a memory block. This function works on a memory block that was previously allocated by malloc() or calloc(). It returns the block of memory starting at pt, to the operating system for eventual reuse. A block should be freed after it no longer is needed by the program. It must not be accessed after the call to free().

13 ... 13/30 Dynamic Allocation in C Allocation Functions - realloc() void* realloc( void* pt, size_t sz ); Mass memory reallocation or resizing. This function works on a memory block that was previously allocated by malloc() or calloc(). Given a new number of bytes, sz, that is different from the current size of pt s block, resize the block to the new length. If the new length is longer, and if adjacent storage is available, simply extend the block size. If the old block cannot be extended, allocate a new big-enough block elsewhere and copy the entire contents of the old block to the new one. Free the old block.

14 ... 14/30 Dynamic Allocation in C Operation of realloc p max = 4 p = malloc (max * sizeof(int) ); 20???? Later, when the array is full and more data must be stored: p max *= 2; p = realloc (p, max * sizeof(int) ); ???? The reallocated array may be at the same memory address as the original, or it may be located somewhere else. in memory.

15 ... 15/30 Dynamic Allocation in C++ Dynamic Allocation in C++ new new[] delete delete[]

16 ... 16/30 Dynamic Allocation in C++ Allocation Operator - new This operator is part of the core language. Basic syntax: void* new typename; Allocates storage for an object of the required type, plus overhead. Then it calls the type s constructor, and returns a non-null pointer to the first byte of the new object. Create an object of type Book, initialized with the default constructor: Book* p1 = new Book; Create an object of type Book, initialized with parameters: Book* p2 = new Book(name, price); On failure, new throws a bad_alloc exception.

17 ... 17/30 Dynamic Allocation in C++ Allocation Operator - new[] Used to allocate an array of objects void* new TypeName[n] ; Allocate a dynamic array of n objects of the named type. Initialize all of these objects using the default constructor for the type. Return a pointer to the first byte of the array. Prior to the first byte of the array will be two long integers for use when the array is freed: 1. the total length of the allocation, including overhead 2. the number of objects in the array.

18 ... 18/30 Dynamic Allocation in C++ Deallocation Operator - delete This operator is part of the core language. It deletes a single object. Basic syntax: delete pp; where pp is a pointer to an object created by calling new. The system will use the number stored in the location prior to the first byte of the object and return that many bytes to the pool of reusable storage. You must not try to use an object after you delete it. If you never call new in your program, you must never call delete.

19 ... 19/30 Dynamic Allocation in C++ Deallocation Operator - delete[] Deallocate an array of objects and call the destructor for each object in the array. Basic syntax: delete pa; where pa is a pointer to an array of objects created by new[]. pa must point at the first byte of the first array slot, not somewhere in the middle of the array. The system will use the two numbers stored in the locations prior to the first byte of the array: 1. First, the number of objects in the array is used to loop through the array and call the base-type destructor for each object in it. This is necessary if the constructor or functions for the base type of the array ever attach new parts to the objects in the array. 2. Then the total allocation size is used to return the array, itself, to the reusable storage pool.

20 ... 20/30 Using Dynamic Arrays Using Dynamic Arrays FlexArrays An Application of FlexArrays

21 ... 21/30 Using Dynamic Arrays FlexArrays in C FlexArray: A growing array of objects We can use realloc to create arrays that grow (like a vector in C++). When the data array is full, and we need to store more data into it, we simply tell it to grow. To grow, it will call realloc() to double its current capacity and copy the data into the new space. Then the new data can be stored in slot n, the first slot of the extended portion of the array. typedef struct { int n, max; BT* data; } FlexArray;

22 ... 22/30 Using Dynamic Arrays FlexArrays in C FlexArray Functions #define MAX 10 void setup( FlexArray* f ) { f->max = MAX; f->n = 0; f->data = malloc( MAX * sizeof(bt) ); } void grow( FlexArray* f ) { f->max *= 2; f->data = realloc(f->data, f->max*sizeof(bt)); } void insert( FlexArray* f, BT b ) { if (f->max == f->n) grow(f); f->data[n++] = b; }

23 ... 23/30 Using Dynamic Arrays An Application of FlexArrays The Username List This example introduces a dynamic FlexArray used to store username/password pairs. Features: One file, main.c, contains main. We have the tools module (tools.h and tools.c), as usual, In addition, we have a third code module (flex.h and flex.c) that defines FlexArrays and the base type, User. In a fully developed application, the User definitions would be in their own module with.h and.c files. The subdirectory also contains the input file. Here, we simply read the file of data and print it out. In a real application, functionality could be added

24 ... 24/30 Using Dynamic Arrays An Application of FlexArrays A FlexArray of Users is created in the Username program. After setup, line 21. EUsers 0 4 After adding 4 users, line 54. andy beth charlie daphne EUsers 4 4 homebody2 noandyes DoubleDipper chickchaser101

25 ... 25/30 Using Dynamic Arrays An Application of FlexArrays The FlexArray grows at run time. EUsers 4 8 When the fifth line is read the array grows: andy beth charlie daphne noandyes homebody2 DoubleDipper chickchaser101 The array will grow again when the 9th data item is read.

26 ... 26/30 Using Dynamic Arrays An Application of FlexArrays Using the FlexArray Module The FlexArray code can be used in your own programs with very little modification. In flex.h, istead of the typedef for User, define the type of object you will be using in your program. Change the typedef for BT to name your new type instead of user. In flex.c, go to the printk() function and change it to print the parts of your new type in an attractive format. If possible, print it on one line. Add the modified flex.c and flex.h to your project.

27 ... 27/30 Low-level Memory Operations IV. Low-level Memory Operations

28 ... 28/30 Low-level Memory Operations Generic Operations The ctype and string libraries support operations specific for characters and strings. There are also generic operations that work on any type of data: memset, memcpy and memmove store into memory. memchr is like strnchr. memcmp is like strncmp. These low-level functions were used to implement the string library functions, but they can also be used for other purposes. They give us an efficient way to do simple things with blocks of bits.

29 ... 29/30 Low-level Memory Operations Store into Memory void* memset(void *b, int c, size_t len); Write len bytes of value c (converted to an unsigned char) to the byte string b. void* memcpy(void* dest,const void* src,size_t n) Copies n bytes from src into dest and returns the address src. This may not work correctly for overlapping memory regions but often is faster than memmove(). void* memmove(void* to,const void* src,size_t n) Copies n characters from src into to and returns the address src. This works correctly for overlapping memory regions.

30 ... 30/30 Low-level Memory Operations Search and Compare void* memchr(const void *s, int c, size_t n) Locate the first occurrence of c (converted to an unsigned char) in string s. Return a pointer to that byte, or NULL if no such byte exists within n bytes. int memcmp(const void *p,const void *q,size_t n) Compare the first n byes starting at address p to the first n bytes starting at q. Return a negative value if p is lexicographically less than q, 0 if they are equal, or a positive value if p is greater than q.

CSCI 6610: Intermediate Programming / C Chapter 12 Strings

CSCI 6610: Intermediate Programming / C Chapter 12 Strings ... 1/26 CSCI 6610: Intermediate Programming / C Chapter 12 Alice E. Fischer February 10, 2016 ... 2/26 Outline The C String Library String Processing in C Compare and Search in C C++ String Functions

More information

Dynamic Data Structures. CSCI 112: Programming in C

Dynamic Data Structures. CSCI 112: Programming in C Dynamic Data Structures CSCI 112: Programming in C 1 It s all about flexibility In the programs we ve made so far, the compiler knows at compile time exactly how much memory to allocate for each variable

More information

Lecture 8 Dynamic Memory Allocation

Lecture 8 Dynamic Memory Allocation Lecture 8 Dynamic Memory Allocation CS240 1 Memory Computer programs manipulate an abstraction of the computer s memory subsystem Memory: on the hardware side 3 @ http://computer.howstuffworks.com/computer-memory.htm/printable

More information

C Programming Basics II

C Programming Basics II C Programming Basics II Xianyi Zeng xzeng@utep.edu Department of Mathematical Sciences The University of Texas at El Paso. September 20, 2016. Pointers and Passing by Address Upon declaring a variable,

More information

Dynamic Allocation in C

Dynamic Allocation in C Dynamic Allocation in C C Pointers and Arrays 1 The previous examples involved only targets that were declared as local variables. For serious development, we must also be able to create variables dynamically,

More information

CS Programming In C

CS Programming In C CS 24000 - Programming In C Week Seven: More on memory operations, and structures. Union, function pointer, and bit operations Zhiyuan Li Department of Computer Science Purdue University, USA 2 Academic

More information

Dynamic Allocation in C

Dynamic Allocation in C Dynamic Allocation in C 1 The previous examples involved only targets that were declared as local variables. For serious development, we must also be able to create variables dynamically, as the program

More information

CS 610: Intermediate Programming: C/C++ Making Programs General An Introduction to Linked Lists

CS 610: Intermediate Programming: C/C++ Making Programs General An Introduction to Linked Lists ... 1/17 CS 610: Intermediate Programming: C/C++ Making Programs General An Introduction to Linked Lists Alice E. Fischer Spring 2016 ... 2/17 Outline Generic Functions Command Line Arguments Review for

More information

In Java we have the keyword null, which is the value of an uninitialized reference type

In Java we have the keyword null, which is the value of an uninitialized reference type + More on Pointers + Null pointers In Java we have the keyword null, which is the value of an uninitialized reference type In C we sometimes use NULL, but its just a macro for the integer 0 Pointers are

More information

CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) Allocating Space

CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) Allocating Space CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) Allocating Space Dynamic Memory Allocation All variables, arrays, structures and unions that we worked with so far are statically allocated,

More information

CSCI 2212: Intermediate Programming / C Review, Chapters 10 and 11

CSCI 2212: Intermediate Programming / C Review, Chapters 10 and 11 ... 1/16 CSCI 2212: Intermediate Programming / C Review, Chapters 10 and 11 Alice E. Fischer February 3, 2016 ... 2/16 Outline Basic Types and Diagrams ... 3/16 Basic Types and Diagrams Types in C C has

More information

ECE551 Midterm. There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly.

ECE551 Midterm. There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. Name: ECE551 Midterm NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual work. You

More information

Reading Assignment. Strings. K.N. King Chapter 13. K.N. King Sections 23.4, Supplementary reading. Harbison & Steele Chapter 12, 13, 14

Reading Assignment. Strings. K.N. King Chapter 13. K.N. King Sections 23.4, Supplementary reading. Harbison & Steele Chapter 12, 13, 14 Reading Assignment Strings char identifier [ size ] ; char * identifier ; K.N. King Chapter 13 K.N. King Sections 23.4, 23.5 Supplementary reading Harbison & Steele Chapter 12, 13, 14 Strings are ultimately

More information

Memory Management. CSC215 Lecture

Memory Management. CSC215 Lecture Memory Management CSC215 Lecture Outline Static vs Dynamic Allocation Dynamic allocation functions malloc, realloc, calloc, free Implementation Common errors Static Allocation Allocation of memory at compile-time

More information

Dynamic Memory. R. Inkulu (Dynamic Memory) 1 / 19

Dynamic Memory. R. Inkulu  (Dynamic Memory) 1 / 19 Dynamic Memory R. Inkulu http://www.iitg.ac.in/rinkulu/ (Dynamic Memory) 1 / 19 Types of memory allocations auto local * allocated on stack and uninitialized by default * accessible in the function that

More information

C Structures & Dynamic Memory Management

C Structures & Dynamic Memory Management C Structures & Dynamic Memory Management Goals of this Lecture Help you learn about: Structures and unions Dynamic memory management Note: Will be covered in precepts as well We look at them in more detail

More information

C: Pointers, Arrays, and strings. Department of Computer Science College of Engineering Boise State University. August 25, /36

C: Pointers, Arrays, and strings. Department of Computer Science College of Engineering Boise State University. August 25, /36 Department of Computer Science College of Engineering Boise State University August 25, 2017 1/36 Pointers and Arrays A pointer is a variable that stores the address of another variable. Pointers are similar

More information

Programs in memory. The layout of memory is roughly:

Programs in memory. The layout of memory is roughly: Memory 1 Programs in memory 2 The layout of memory is roughly: Virtual memory means that memory is allocated in pages or segments, accessed as if adjacent - the platform looks after this, so your program

More information

Arrays and Pointers (part 1)

Arrays and Pointers (part 1) Arrays and Pointers (part 1) CSE 2031 Fall 2012 Arrays Grouping of data of the same type. Loops commonly used for manipulation. Programmers set array sizes explicitly. Arrays: Example Syntax type name[size];

More information

by Pearson Education, Inc. All Rights Reserved.

by Pearson Education, Inc. All Rights Reserved. The string-handling library () provides many useful functions for manipulating string data (copying strings and concatenating strings), comparing strings, searching strings for characters and

More information

Pointers (part 1) What are pointers? EECS We have seen pointers before. scanf( %f, &inches );! 25 September 2017

Pointers (part 1) What are pointers? EECS We have seen pointers before. scanf( %f, &inches );! 25 September 2017 Pointers (part 1) EECS 2031 25 September 2017 1 What are pointers? We have seen pointers before. scanf( %f, &inches );! 2 1 Example char c; c = getchar(); printf( %c, c); char c; char *p; c = getchar();

More information

Understanding Pointers

Understanding Pointers Division of Mathematics and Computer Science Maryville College Pointers and Addresses Memory is organized into a big array. Every data item occupies one or more cells. A pointer stores an address. A pointer

More information

ECE551 Midterm Version 1

ECE551 Midterm Version 1 Name: ECE551 Midterm Version 1 NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual

More information

ECE 2400 Computer Systems Programming Fall 2018 Topic 6: C Dynamic Allocation

ECE 2400 Computer Systems Programming Fall 2018 Topic 6: C Dynamic Allocation ECE 2400 Computer Systems Programming Fall 2018 Topic 6: C Dynamic Allocation School of Electrical and Computer Engineering Cornell University revision: 2018-10-11-00-22 1 Bookcase Analogy 2 2 Using malloc

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation The process of allocating memory at run time is known as dynamic memory allocation. C does not Inherently have this facility, there are four library routines known as memory management

More information

advanced data types (2) typedef. today advanced data types (3) enum. mon 23 sep 2002 defining your own types using typedef

advanced data types (2) typedef. today advanced data types (3) enum. mon 23 sep 2002 defining your own types using typedef today advanced data types (1) typedef. mon 23 sep 2002 homework #1 due today homework #2 out today quiz #1 next class 30-45 minutes long one page of notes topics: C advanced data types dynamic memory allocation

More information

Computer Programming: Skills & Concepts (CP) Strings

Computer Programming: Skills & Concepts (CP) Strings CP 14 slide 1 Tuesday 31 October 2017 Computer Programming: Skills & Concepts (CP) Strings Ajitha Rajan Tuesday 31 October 2017 Last lecture Input handling char CP 14 slide 2 Tuesday 31 October 2017 Today

More information

ECE551 Midterm Version 2

ECE551 Midterm Version 2 Name: ECE551 Midterm Version 2 NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual

More information

Fall 2018 Discussion 2: September 3, 2018

Fall 2018 Discussion 2: September 3, 2018 CS 61C C Basics Fall 2018 Discussion 2: September 3, 2018 1 C C is syntactically similar to Java, but there are a few key differences: 1. C is function-oriented, not object-oriented; there are no objects.

More information

Dynamic memory. EECS 211 Winter 2019

Dynamic memory. EECS 211 Winter 2019 Dynamic memory EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/06dynamic.tgz tar zx $ cd 06dynamic 3 Oops! I made a mistake. In C, the declaration struct circle read_circle();

More information

Memory Management in C (Dynamic Strings) Personal Software Engineering

Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Management in C (Dynamic Strings) Personal Software Engineering Memory Organization Function Call Frames The Stack The call stack grows from the top of memory down. sp Available for allocation The

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

ECE551 Midterm Version 1

ECE551 Midterm Version 1 Name: ECE551 Midterm Version 1 NetID: There are 7 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual

More information

APS105. Malloc and 2D Arrays. Textbook Chapters 6.4, Datatype Size

APS105. Malloc and 2D Arrays. Textbook Chapters 6.4, Datatype Size APS105 Malloc and 2D Arrays Textbook Chapters 6.4, 10.2 Datatype Size Datatypes have varying size: char: 1B int: 4B double: 8B int sizeof(): a builtin function that returns size of a type int x =

More information

DAY 3. CS3600, Northeastern University. Alan Mislove

DAY 3. CS3600, Northeastern University. Alan Mislove C BOOTCAMP DAY 3 CS3600, Northeastern University Slides adapted from Anandha Gopalan s CS132 course at Univ. of Pittsburgh and Pascal Meunier s course at Purdue Memory management 2 Memory management Two

More information

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100

Q1: /8 Q2: /30 Q3: /30 Q4: /32. Total: /100 ECE 2035(A) Programming for Hardware/Software Systems Fall 2013 Exam Three November 20 th 2013 Name: Q1: /8 Q2: /30 Q3: /30 Q4: /32 Total: /100 1/10 For functional call related questions, let s assume

More information

Contents of Lecture 3

Contents of Lecture 3 Contents of Lecture 3 Repetition of matrices double a[3][4]; double* b; double** c; Terminology Linkage Types Conversions Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 1 / 33 A global matrix: double a[3][4]

More information

C++ PROGRAMMING LANGUAGE: DYNAMIC MEMORY ALLOCATION AND EXCEPTION IN C++. CAAM 519, CHAPTER 15

C++ PROGRAMMING LANGUAGE: DYNAMIC MEMORY ALLOCATION AND EXCEPTION IN C++. CAAM 519, CHAPTER 15 C++ PROGRAMMING LANGUAGE: DYNAMIC MEMORY ALLOCATION AND EXCEPTION IN C++. CAAM 519, CHAPTER 15 This chapter introduces the notion of dynamic memory allocation of variables and objects in a C++ program.

More information

Kurt Schmidt. October 30, 2018

Kurt Schmidt. October 30, 2018 to Structs Dept. of Computer Science, Drexel University October 30, 2018 Array Objectives to Structs Intended audience: Student who has working knowledge of Python To gain some experience with a statically-typed

More information

Dynamic Memory Management. Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island

Dynamic Memory Management. Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island Dynamic Memory Management Bin Li Assistant Professor Dept. of Electrical, Computer and Biomedical Engineering University of Rhode Island 1 Dynamic Memory Allocation Dynamic memory allocation is used to

More information

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12 Week 9 Part 1 Kyle Dewey Overview Dynamic allocation continued Heap versus stack Memory-related bugs Exam #2 Dynamic Allocation Recall... Dynamic memory allocation allows us to request memory on the fly

More information

Programming. Pointers, Multi-dimensional Arrays and Memory Management

Programming. Pointers, Multi-dimensional Arrays and Memory Management Programming Pointers, Multi-dimensional Arrays and Memory Management Summary } Computer Memory } Pointers } Declaration, assignment, arithmetic and operators } Casting and printing pointers } Relationship

More information

Memory Allocation. General Questions

Memory Allocation. General Questions General Questions 1 Memory Allocation 1. Which header file should be included to use functions like malloc() and calloc()? A. memory.h B. stdlib.h C. string.h D. dos.h 2. What function should be used to

More information

o Code, executable, and process o Main memory vs. virtual memory

o Code, executable, and process o Main memory vs. virtual memory Goals for Today s Lecture Memory Allocation Prof. David August COS 217 Behind the scenes of running a program o Code, executable, and process o Main memory vs. virtual memory Memory layout for UNIX processes,

More information

Memory, Arrays & Pointers

Memory, Arrays & Pointers 1 Memory, Arrays & Pointers Memory int main() { char c; int i,j; double x; c i j x 2 Arrays Defines a block of consecutive cells int main() { int i; int a[3]; i a[0] a[1] a[2] Arrays - the [ ] operator

More information

Arrays and Memory Management

Arrays and Memory Management Arrays and Memory Management 1 Pointing to Different Size Objects Modern machines are byte-addressable Hardware s memory composed of 8-bit storage cells, each has a unique address A C pointer is just abstracted

More information

Arrays and Pointers (part 1)

Arrays and Pointers (part 1) Arrays and Pointers (part 1) CSE 2031 Fall 2010 17 October 2010 1 Arrays Grouping of data of the same type. Loops commonly used for manipulation. Programmers set array sizes explicitly. 2 1 Arrays: Example

More information

ECE 551D Spring 2018 Midterm Exam

ECE 551D Spring 2018 Midterm Exam Name: ECE 551D Spring 2018 Midterm Exam NetID: There are 6 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam must be individual

More information

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory.

Dynamic Memory & ADTs in C. The heap. Readings: CP:AMA 17.1, 17.2, 17.3, The primary goal of this section is to be able to use dynamic memory. Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

Dynamic Memory & ADTs in C

Dynamic Memory & ADTs in C Dynamic Memory & ADTs in C Readings: CP:AMA 17.1, 17.2, 17.3, 17.4 The primary goal of this section is to be able to use dynamic memory. CS 136 Winter 2018 10: Dynamic Memory & ADTs 1 The heap The heap

More information

Memory (Stack and Heap)

Memory (Stack and Heap) Memory (Stack and Heap) Praktikum C-Programmierung Nathanael Hübbe, Eugen Betke, Michael Kuhn, Jakob Lüttgau, Jannek Squar Wissenschaftliches Rechnen Fachbereich Informatik Universität Hamburg 2018-12-03

More information

Advanced Pointer Topics

Advanced Pointer Topics Advanced Pointer Topics Pointers to Pointers A pointer variable is a variable that takes some memory address as its value. Therefore, you can have another pointer pointing to it. int x; int * px; int **

More information

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays C Arrays This handout was written by Nick Parlante and Julie Zelenski. As you recall, a C array is formed by laying out all the elements

More information

Binghamton University. CS-211 Fall Dynamic Memory

Binghamton University. CS-211 Fall Dynamic Memory Dynamic Memory Static Memory Define variables when we write code When we write the code we decide What the type of the variable is How big array sizes will be etc. These cannot change when we run the code!

More information

CP2 Revision. theme: dynamic datatypes & data structures

CP2 Revision. theme: dynamic datatypes & data structures CP2 Revision theme: dynamic datatypes & data structures structs can hold any combination of datatypes handled as single entity struct { }; ;

More information

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming Jagannath Institute of Management Sciences Lajpat Nagar BCA II Sem C Programming UNIT I Pointers: Introduction to Pointers, Pointer Notation,Decalaration and Initialization, Accessing variable through

More information

CS201 Some Important Definitions

CS201 Some Important Definitions CS201 Some Important Definitions For Viva Preparation 1. What is a program? A program is a precise sequence of steps to solve a particular problem. 2. What is a class? We write a C++ program using data

More information

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples:

Declaring Pointers. Declaration of pointers <type> *variable <type> *variable = initial-value Examples: 1 Programming in C Pointer Variable A variable that stores a memory address Allows C programs to simulate call-by-reference Allows a programmer to create and manipulate dynamic data structures Must be

More information

Memory. Memory Topics. Passing by Value. Passing by Reference. Dynamic Memory Allocation. Passing a Pointer to a Pointer. Related Memory Functions

Memory. Memory Topics. Passing by Value. Passing by Reference. Dynamic Memory Allocation. Passing a Pointer to a Pointer. Related Memory Functions Memory Memory Memory Topics Passing by Value Passing by Reference Dynamic Memory Allocation Passing a Pointer to a Pointer Related Memory Functions Memory file:///c /Documents%20and%20Settings/Jack%20Straub/My...hool%20Work/AdvancedC/Binders/040Memory/110Memory.html

More information

Lecture 05 Pointers ctd..

Lecture 05 Pointers ctd.. Lecture 05 Pointers ctd.. Note: some notes here are the same as ones in lecture 04 1 Introduction A pointer is an address in the memory. One of the unique advantages of using C is that it provides direct

More information

Memory Management I. two kinds of memory: stack and heap

Memory Management I. two kinds of memory: stack and heap Memory Management I two kinds of memory: stack and heap stack memory: essentially all non-pointer (why not pointers? there s a caveat) variables and pre-declared arrays of fixed (i.e. fixed before compilation)

More information

Heap Arrays. Steven R. Bagley

Heap Arrays. Steven R. Bagley Heap Arrays Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index a[42] = 35; Variables and arrays have a type int, char, double,

More information

C strings. (Reek, Ch. 9) 1 CS 3090: Safety Critical Programming in C

C strings. (Reek, Ch. 9) 1 CS 3090: Safety Critical Programming in C C strings (Reek, Ch. 9) 1 Review of strings Sequence of zero or more characters, terminated by NUL (literally, the integer value 0) NUL terminates a string, but isn t part of it important for strlen()

More information

C Pointers. Abdelghani Bellaachia, CSCI 1121 Page: 1

C Pointers. Abdelghani Bellaachia, CSCI 1121 Page: 1 C Pointers 1. Objective... 2 2. Introduction... 2 3. Pointer Variable Declarations and Initialization... 3 4. Reference operator (&) and Dereference operator (*) 6 5. Relation between Arrays and Pointers...

More information

Chapter 2 (Dynamic variable (i.e. pointer), Static variable)

Chapter 2 (Dynamic variable (i.e. pointer), Static variable) Chapter 2 (Dynamic variable (i.e. pointer), Static variable) August_04 A2. Identify and explain the error in the program below. [4] #include int *pptr; void fun1() { int num; num=25; pptr= &num;

More information

Arrays and Pointers. CSE 2031 Fall November 11, 2013

Arrays and Pointers. CSE 2031 Fall November 11, 2013 Arrays and Pointers CSE 2031 Fall 2013 November 11, 2013 1 Arrays l Grouping of data of the same type. l Loops commonly used for manipulation. l Programmers set array sizes explicitly. 2 Arrays: Example

More information

CS 222: Pointers and Manual Memory Management

CS 222: Pointers and Manual Memory Management CS 222: Pointers and Manual Memory Management Chris Kauffman Week 4-1 Logistics Reading Ch 8 (pointers) Review 6-7 as well Exam 1 Back Today Get it in class or during office hours later HW 3 due tonight

More information

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures

CS113: Lecture 9. Topics: Dynamic Allocation. Dynamic Data Structures CS113: Lecture 9 Topics: Dynamic Allocation Dynamic Data Structures 1 What s wrong with this? char *big_array( char fill ) { char a[1000]; int i; for( i = 0; i < 1000; i++ ) a[i] = fill; return a; void

More information

CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0)

CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) CS11001/CS11002 Programming and Data Structures (PDS) (Theory: 3-1-0) Dynamic Memory Allocation All variables, arrays, structures and unions that we worked with so far are statically allocated, meaning

More information

CS 137 Part 6. ASCII, Characters, Strings and Unicode. November 3rd, 2017

CS 137 Part 6. ASCII, Characters, Strings and Unicode. November 3rd, 2017 CS 137 Part 6 ASCII, Characters, Strings and Unicode November 3rd, 2017 Characters Syntax char c; We ve already seen this briefly earlier in the term. In C, this is an 8-bit integer. The integer can be

More information

COMP26120: Linked List in C (2018/19) Lucas Cordeiro

COMP26120: Linked List in C (2018/19) Lucas Cordeiro COMP26120: Linked List in C (2018/19) Lucas Cordeiro lucas.cordeiro@manchester.ac.uk Linked List Lucas Cordeiro (Formal Methods Group) lucas.cordeiro@manchester.ac.uk Office: 2.28 Office hours: 10-11 Tuesday,

More information

C: Arrays, and strings. Department of Computer Science College of Engineering Boise State University. September 11, /16

C: Arrays, and strings. Department of Computer Science College of Engineering Boise State University. September 11, /16 Department of Computer Science College of Engineering Boise State University September 11, 2017 1/16 1-dimensional Arrays Arrays can be statically declared in C, such as: int A [100]; The space for this

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

CS201- Introduction to Programming Current Quizzes

CS201- Introduction to Programming Current Quizzes CS201- Introduction to Programming Current Quizzes Q.1 char name [] = Hello World ; In the above statement, a memory of characters will be allocated 13 11 12 (Ans) Q.2 A function is a block of statements

More information

Arrays, Pointers and Memory Management

Arrays, Pointers and Memory Management Arrays, Pointers and Memory Management EECS 2031 Summer 2014 Przemyslaw Pawluk May 20, 2014 Answer to the question from last week strct->field Returns the value of field in the structure pointed to by

More information

Lecture 3 Memory and Pointers

Lecture 3 Memory and Pointers Lecture 3 Memory and Pointers Lets think about memory We can think of memory as a series of empty slots Each cell in the slot will hold 1 Byte To identify which cell something is in we need an identifier.

More information

CSC209H Lecture 4. Dan Zingaro. January 28, 2015

CSC209H Lecture 4. Dan Zingaro. January 28, 2015 CSC209H Lecture 4 Dan Zingaro January 28, 2015 Strings (King Ch 13) String literals are enclosed in double quotes A string literal of n characters is represented as a n+1-character char array C adds a

More information

CS 322 Operating Systems Practice Midterm Questions

CS 322 Operating Systems Practice Midterm Questions ! CS 322 Operating Systems 1. Processes go through the following states in their lifetime. time slice ends Consider the following events and answer the questions that follow. Assume there are 5 processes,

More information

Memory Organization. The machine code and data associated with it are in the code segment

Memory Organization. The machine code and data associated with it are in the code segment Memory Management Memory Organization During run time, variables can be stored in one of three pools : 1. Stack 2. Global area (Static heap) 3. Dynamic heap The machine code and data associated with it

More information

Reminder: compiling & linking

Reminder: compiling & linking Reminder: compiling & linking source file 1 object file 1 source file 2 compilation object file 2 library object file 1 linking (relocation + linking) load file source file N object file N library object

More information

ECE 551D Spring 2018 Midterm Exam

ECE 551D Spring 2018 Midterm Exam Name: SOLUTIONS ECE 551D Spring 2018 Midterm Exam NetID: There are 6 questions, with the point values as shown below. You have 75 minutes with a total of 75 points. Pace yourself accordingly. This exam

More information

The C++ Object Lifecycle. EECS 211 Winter 2019

The C++ Object Lifecycle. EECS 211 Winter 2019 The C++ Object Lifecycle EECS 211 Winter 2019 2 Initial code setup $ cd eecs211 $ curl $URL211/lec/09lifecycle.tgz tar zx $ cd 09lifecycle 3 Road map Owned string type concept Faking it An owned string

More information

Arrays and Pointers. Arrays. Arrays: Example. Arrays: Definition and Access. Arrays Stored in Memory. Initialization. EECS 2031 Fall 2014.

Arrays and Pointers. Arrays. Arrays: Example. Arrays: Definition and Access. Arrays Stored in Memory. Initialization. EECS 2031 Fall 2014. Arrays Arrays and Pointers l Grouping of data of the same type. l Loops commonly used for manipulation. l Programmers set array sizes explicitly. EECS 2031 Fall 2014 November 11, 2013 1 2 Arrays: Example

More information

Object-Oriented Principles and Practice / C++

Object-Oriented Principles and Practice / C++ Object-Oriented Principles and Practice / C++ Alice E. Fischer May 13, 2013 OOPP / C++ Lecture 7... 1/27 Construction and Destruction Allocation and Deallocation Move Semantics Template Classes Example:

More information

edunepal_info

edunepal_info facebook.com/edunepal.info @ edunepal_info C interview questions (1 125) C interview questions are given with the answers in this website. We have given C interview questions faced by freshers and experienced

More information

CS 241 Data Organization Binary Trees

CS 241 Data Organization Binary Trees CS 241 Data Organization Binary Trees Brooke Chenoweth University of New Mexico Fall 2017 Binary Tree: Kernighan and Ritchie 6.5 Read a file and count the occurrences of each word. now is the time for

More information

Arrays, Strings, and Pointers

Arrays, Strings, and Pointers Arrays, Strings, and Pointers Jan Faigl Department of Computer Science Faculty of Electrical Engineering Czech Technical University in Prague Lecture 04 BE5B99CPL C Programming Language Jan Faigl, 2017

More information

Heap Arrays and Linked Lists. Steven R. Bagley

Heap Arrays and Linked Lists. Steven R. Bagley Heap Arrays and Linked Lists Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index Variables and arrays have a type Create our

More information

Cpt S 122 Data Structures. Data Structures

Cpt S 122 Data Structures. Data Structures Cpt S 122 Data Structures Data Structures Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Topics Introduction Self Referential Structures Dynamic Memory Allocation

More information

CS24 Week 2 Lecture 1

CS24 Week 2 Lecture 1 CS24 Week 2 Lecture 1 Kyle Dewey Overview C Review Void pointers Allocation structs void* (Void Pointers) void* Like any other pointer, it refers to some memory address However, it has no associated type,

More information

Lecture 3 Memory and Pointers

Lecture 3 Memory and Pointers Lecture 3 Memory and Pointers Lets think about memory We can think of memory as a series of empty slots Each cell in the slot will hold 1 Byte To identify which cell something is in we need an identifier.

More information

14. Memory API. Operating System: Three Easy Pieces

14. Memory API. Operating System: Three Easy Pieces 14. Memory API Oerating System: Three Easy Pieces 1 Memory API: malloc() #include void* malloc(size_t size) Allocate a memory region on the hea. w Argument size_t size : size of the memory block(in

More information

CS 107 Lecture 5: Arrays. and Pointers in C. Monday, January 22, Stanford University. Computer Science Department

CS 107 Lecture 5: Arrays. and Pointers in C. Monday, January 22, Stanford University. Computer Science Department CS 107 Address Value Lecture 5: Arrays 8 and Pointers in C 0x128 3 0x120 Monday, January 22, 2018 9 0x118 Computer Systems Winter 2018-4 Stanford University 0x110 Computer Science Department 2 Reading:

More information

cout << "How many numbers would you like to type? "; cin >> memsize; p = new int[memsize];

cout << How many numbers would you like to type? ; cin >> memsize; p = new int[memsize]; 1 C++ Dynamic Allocation Memory needs were determined before program execution by defining the variables needed. Sometime memory needs of a program can only be determined during runtime, or the memory

More information

Lectures 13 & 14. memory management

Lectures 13 & 14. memory management Lectures 13 & 14 Linked lists and memory management Courtesy of Prof. Garcia (UCB) CS61C L05 Introduction to C (pt 3) (1) Review Pointers and arrays are virtually same C knows how to increment pointers

More information

Dynamic memory allocation (malloc)

Dynamic memory allocation (malloc) 1 Plan for today Quick review of previous lecture Array of pointers Command line arguments Dynamic memory allocation (malloc) Structures (Ch 6) Input and Output (Ch 7) 1 Pointers K&R Ch 5 Basics: Declaration

More information

Short Notes of CS201

Short Notes of CS201 #includes: Short Notes of CS201 The #include directive instructs the preprocessor to read and include a file into a source code file. The file name is typically enclosed with < and > if the file is a system

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #4 C Memory Management 2007-06-28 Scott Beamer, Instructor iphone Comes out Tomorrow CS61C L4 C Memory Management (1) www.apple.com/iphone

More information

CPSC 427: Object-Oriented Programming

CPSC 427: Object-Oriented Programming CPSC 427: Object-Oriented Programming Michael J. Fischer Lecture 10 October 1, 2018 CPSC 427, Lecture 10, October 1, 2018 1/20 Brackets Example (continued from lecture 8) Stack class Brackets class Main

More information