4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

Save this PDF as:

Size: px
Start display at page:

Download "4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning"

Transcription

1 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning

2 Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations on bit patterns. Distinguish between logic shift operations and arithmetic shift operations. Perform addition and subtraction on integers when they are stored in two s complement format. Perform addition and subtraction on integers when stored in sign-and-magnitude format. Perform addition and subtraction operations on reals stored in floating-point format. 4.2

3 4-1 LOGIC OPERATIONS Logic operations refer to those operations that apply the same basic operation on individual bits of a pattern, or on two corresponding bits in two patterns. This means that we can define logic operations at the bit level and at the pattern level (more bits). 4.3

4 Logic operations at bit level A bit can take one of the two values: 0 or 1. We interpret 0 as the value false and 1 as the value true. Boolean algebra, named in honor of George Boole, belongs to a special field of mathematics called logic. In this section, we show briefly four bit-level operations that are used to manipulate bits: NOT, AND, OR, and XOR. 4.4 i Boolean algebra and logic circuits are discussed in Appendix E.

5 4.5 Figure 4.1 Logic operations at the bit level

6 NOT The NOT operator is a unary operator: it takes only one input. The output bit is the complement of the input. AND The AND operator is a binary operator: it takes two inputs. The output bit is 1 if both inputs are 1s and the output is 0 in the other three cases. i For x = 0 or 1 x AND AND x 0 4.6

7 OR The OR operator is a binary operator: it takes two inputs. The output bit is 0 if both inputs are 0s and the output is 1 in other three cases. XOR The XOR operator is a binary operator like the OR operator, with only one difference: the output is 0 if both inputs are 1s. 4.7 i i For x = 0 or 1 x OR OR x 1 For x = 0 or 1 1 XOR x NOT x x XOR 1 NOT x

8 Example 4.1 In English we use the conjunction or sometimes to mean an inclusive-or, and sometimes to means an exclusive-or. a. The sentence I would like to have a car or a house uses or in the inclusive sense I would like to have a car, a house or both. b. The sentence Today is either Monday or Tuesday uses or in the exclusive sense today is either Monday or Tuesday, but it cannot be both. 4.8

9 Example 4.2 The XOR operator is not actually a new operator. We can always simulate it using the other three operators. The following two expressions are equivalent x XOR y [x AND (NOT y)] OR [(NOT x) AND y] The equivalence can be proved if we make the truth table for both. 4.9

10 Logic operations at pattern level The same four operators (NOT, AND, OR, and XOR) can be applied to an n-bit pattern. Figure 4.2 shows these four operators with input and output patterns Figure 4.2 Logic operators applied to bit patterns

11 Example 4.3 Use the NOT operator on the bit pattern Solution The solution is shown below. Note that the NOT operator changes every 0 to 1 and every 1 to

12 Example 4.4 Use the AND operator on the bit patterns and Solution The solution is shown below. Note that only one bit in the output is 1, where both corresponding inputs are 1s. 4.12

13 Example 4.5 Use the OR operator on the bit patterns and Solution The solution is shown below. Note that only one bit in the output is 0, where both corresponding inputs are 0s. 4.13

14 Example 4.6 Use the XOR operator on the bit patterns and Solution The solution is shown below. Compare the output in this example with the one in Example 4.5. The only difference is that when the two inputs are 1s, the result is 0 (the effect of exclusion). 4.14

15 Applications The four logic operations can be used to modify a bit pattern. Complementing (NOT) Unsetting (AND) Setting (OR) Flipping (XOR) 4.15

16 Example 4.7 Use a mask to unset (clear) the five leftmost bits of a pattern. Test the mask with the pattern Solution The mask is The result of applying the mask is: 4.16

17 Example 4.8 Use a mask to set the five leftmost bits of a pattern. Test the mask with the pattern Solution The mask is The result of applying the mask is: 4.17

18 Example 4.9 Use a mask to flip the five leftmost bits of a pattern. Test the mask with the pattern Solution The mask is The result of applying the mask is: 4.18

19 4-2 SHIFT OPERATIONS Shift operations move the bits in a pattern, changing the positions of the bits. They can move bits to the left or to the right. We can divide shift operations into two categories: logical shift operations and arithmetic shift operations. 4.19

20 Logical shift operations A logical shift operation is applied to a pattern that does not represent a signed number. The reason is that these shift operations may change the sign of the number that is defined by the leftmost bit in the pattern. We distinguish two types of logical shift operations, as described below: Logical shift Logical circular shift (Rotate) 4.20

21 4.21 Figure 4.3 Logical shift operations

22 Example 4.10 Use a logical left shift operation on the bit pattern Solution The solution is shown below. The leftmost bit is lost and a 0 is inserted as the rightmost bit. Discarded Added 4.22

23 4.23 Figure 4.4 Circular shift operations

24 Example 4.11 Use a circular left shift operation on the bit pattern Solution The solution is shown below. The leftmost bit is circulated and becomes the rightmost bit. 4.24

25 Arithmetic shift operations Arithmetic shift operations assume that the bit pattern is a signed integer in two s complement format. Arithmetic right shift is used to divide an integer by two, while arithmetic left shift is used to multiply an integer by two. Figure 4.5 Arithmetic shift operations 4.25

26 Example 4.12 Use an arithmetic right shift operation on the bit pattern The pattern is an integer in two s complement format. Solution The solution is shown below. The leftmost bit is retained and also copied to its right neighbor bit. The original number was 103 and the new number is 52, which is the result of dividing 103 by 2 truncated to the smaller integer. 4.26

27 Example 4.13 Use an arithmetic left shift operation on the bit pattern The pattern is an integer in two s complement format. Solution The solution is shown below. The leftmost bit is lost and a 0 is inserted as the rightmost bit. The original number was 39 and the new number is 78. The original number is multiplied by two. The operation is valid because no underflow occurred. 4.27

28 Example 4.14 Use an arithmetic left shift operation on the bit pattern The pattern is an integer in two s complement format. Solution The solution is shown below. The leftmost bit is lost and a 0 is inserted as the rightmost bit. The original number was 127 and the new number is 2. Here the result is not valid because an overflow has occurred. The expected answer = 254 cannot be represented by an 8-bit pattern. 4.28

29 Example 4.15 Assume that we have a pattern and we need to use the third bit (from the right) of this pattern in a decision-making process. We want to know if this particular bit is 0 or 1. The following shows how we can find out. We can then test the result: if it is an unsigned integer 1, the target bit was 1, whereas if the result is an unsigned integer 0, the target bit was

30 4-3 ARITHMETIC OPERATIONS Arithmetic operations involve: 1. adding 2. subtracting 3. multiplying 4. dividing We can apply these operations to integers and floatingpoint numbers. 4.30

31 Arithmetic operations on integers There are more efficient procedures for multiplication and division, such as Booth procedures, but these are beyond the scope of this book. For this reason, we only discuss addition and subtraction of integers here. 4.31

32 Two s complement integers When the subtraction operation is encountered, the computer simply changes it to an addition operation, but makes two s complement of the second number. In other words: A B A + (B + 1) Where B is the one s complement of B and (B + 1) means the two s complement of B 4.32

33 We should remember that we add integers column by column. The following table shows the sum and carry (C). 4.33

34 4.34 Figure 4.6 Addition and subtraction of integers in two s complement format

35 Example 4.16 Two integers A and B are stored in two s complement format. Show how B is added to A. A = ( ) 2 B = ( ) 2 Solution The operation is adding. A is added to B and the result is stored in R. (+17) + (+22) = (+39). 4.35

36 Example 4.17 Two integers A and B are stored in two s complement format. Show how B is added to A. A = ( ) 2 B = ( ) 2 Solution The operation is adding. A is added to B and the result is stored in R. (+24) + ( 17) = (+7). 4.36

37 Example 4.18 Two integers A and B are stored in two s complement format. Show how B is subtracted from A. A = ( ) 2 B = ( ) 2 Solution The operation is subtracting. A is added to (B + 1) and the result is stored in R. (+24) ( 17) = (+41). 4.37

38 Example 4.19 Two integers A and B are stored in two s complement format. Show how B is subtracted from A. A = ( ) 2 B = ( ) 2 Solution The operation is subtracting. A is added to (B + 1) and the result is stored in R. ( 35) (+20) = ( 55). 4.38

39 Example 4.20 Two integers A and B are stored in two s complement format. Show how B is added to A. A = ( ) 2 B = ( ) 2 Solution The operation is adding. A is added to B and the result is stored in R We expect the result to be = 130, but the answer is 126. The error is due to overflow, because the expected answer (+130) is not in the range 128 to +127.

40 i When we do arithmetic operations on numbers in a computer, we should remember that each number and the result should be in the range defined by the bit allocation. 4.40

41 sign-and-magnitude integers Addition and subtraction for integers in sign-and-magnitude representation looks very complex. We have four different combination of signs (two signs, each of two values) for addition and four different conditions for subtraction. This means that we need to consider eight different situations. However, if we first check the signs, we can reduce these cases, as shown in Figure

42 Figure 4.7 Addition and subtraction of integers in sign-and-magnitude format 4.42

43 Example 4.22 Two integers A and B are stored in sign-and-magnitude format. Show how B is added to A. A = ( ) 2 B = ( ) 2 Solution The operation is adding: the sign of B is not changed. S = A S XOR B S = 1; R M = A M + (B M +1). Since there is no overflow, we need to take the two s complement of R M. The sign of R is the sign of B. (+17) + ( 22) = ( 5). 4.43

44 Example 4.23 Two integers A and B are stored in sign-and-magnitude format. Show how B is subtracted from A. A = ( ) 2 B = ( ) 2 Solution The operation is subtracting: S B = S B. S = A S XOR B S = 1, R M = A M + (B M +1). Since there is an overflow, the value of R M is final. The sign of R is the sign of A. ( 81) ( 22) = ( 59). 4.44

45 Addition and subtraction of reals Addition and subtraction of real numbers stored in floatingpoint numbers is reduced to addition and subtraction of two integers stored in sign-and-magnitude (combination of sign and mantissa) after the alignment of decimal points. Figure 4.8 shows a simplified version of the procedure (there are some special cases that we have ignored). 4.46

46 Figure 4.8 Addition and subtraction of reals in floating-point format 4.47

47 Example 4.24 Show how the computer finds the result of (+5.75) + ( ) = ( ). Solution As we saw in Chapter 3, these two numbers are stored in floatingpoint format, as shown below, but we need to remember that each number has a hidden 1 (which is not stored, but assumed). 4.48

48 Example 4.24 (Continued) The first few steps in the UML diagram (Figure 4.8) are not needed. We de-normalize the numbers by adding the hidden 1s to the mantissa and incrementing the exponent. Now both denormalized mantissas are 24 bits and include the hidden 1s. They should be stored in a location that can hold all 24 bits. Each exponent is incremented. 4.49

49 Example 4.24 (Continued) Now we do sign-and-magnitude addition, treating the sign and the mantissa of each number as one integer stored in sign-andmagnitude representation. There is no overflow in the mantissa, so we normalize. The mantissa is only 23 bits, no rounding is needed. E = ( ) 2 = 134 M = In other words, the result is ( ) = ( ) 2 =

50 Example 4.25 Show how the computer finds the result of (+5.75) + ( ) = Solution These two numbers can be stored in floating-point format, as shown below: De-normalization results in: 4.51

51 Example 4.25 (Continued) Alignment is not needed (both exponents are the same), so we apply addition operation on the combinations of sign and mantissa. The result is shown below, in which the sign of the result is negative: Now we need to normalize. We decrement the exponent three times and shift the de-normalized mantissa to the left three positions: 4.52

52 Example 4.25 (Continued) The mantissa is now 24 bits, so we round it to 23 bits. The result is R = = , as expected. 4.53

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

Chapter 10 - Computer Arithmetic

Chapter 10 - Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 10 - Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as:

N Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: a n a a a The value of this number is given by: = a n Ka a a a a a

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

±M R ±E, S M CHARACTERISTIC MANTISSA 1 k j

ENEE 350 c C. B. Silio, Jan., 2010 FLOATING POINT REPRESENTATIONS It is assumed that the student is familiar with the discussion in Appendix B of the text by A. Tanenbaum, Structured Computer Organization,

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

Floating Point Arithmetic

Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

Logic, Words, and Integers

Computer Science 52 Logic, Words, and Integers 1 Words and Data The basic unit of information in a computer is the bit; it is simply a quantity that takes one of two values, 0 or 1. A sequence of k bits

Principles of Computer Architecture. Chapter 3: Arithmetic

3-1 Chapter 3 - Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 3-2 Chapter 3 - Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

The type of all data used in a C (or C++) program must be specified

The type of all data used in a C (or C++) program must be specified A data type is a description of the data being represented That is, a set of possible values and a set of operations on those values

Computer Architecture and Organization

3-1 Chapter 3 - Arithmetic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 3 Arithmetic 3-2 Chapter 3 - Arithmetic Chapter Contents 3.1 Fixed Point Addition and Subtraction

A complement number system is used to represent positive and negative integers. A complement number system is based on a fixed length representation

Complement Number Systems A complement number system is used to represent positive and negative integers A complement number system is based on a fixed length representation of numbers Pretend that integers

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop.

CS 320 Ch 10 Computer Arithmetic The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. Signed integers are typically represented in sign-magnitude

Arithmetic Operations

Arithmetic Operations Arithmetic Operations addition subtraction multiplication division Each of these operations on the integer representations: unsigned two's complement 1 Addition One bit of binary

Chapter 2. Data Representation in Computer Systems

Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

Introduction to Computer Science. Homework 1

Introduction to Computer Science Homework. In each circuit below, the rectangles represent the same type of gate. Based on the input and output information given, identify whether the gate involved is

4/8/17. Admin. Assignment 5 BINARY. David Kauchak CS 52 Spring 2017

4/8/17 Admin! Assignment 5 BINARY David Kauchak CS 52 Spring 2017 Diving into your computer Normal computer user 1 After intro CS After 5 weeks of cs52 What now One last note on CS52 memory address binary

COMP 122/L Lecture 2. Kyle Dewey

COMP 122/L Lecture 2 Kyle Dewey Outline Operations on binary values AND, OR, XOR, NOT Bit shifting (left, two forms of right) Addition Subtraction Twos complement Bitwise Operations Bitwise AND Similar

Signed umbers. Sign/Magnitude otation

Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the following groups:

Basic Operators Java provides a rich set of operators to manipulate variables. We can divide all the Java operators into the following groups: Arithmetic Operators Relational Operators Bitwise Operators

UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS

UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS (09 periods) Computer Arithmetic: Data Representation, Fixed Point Representation, Floating Point Representation, Addition and

Register Transfer Language and Microoperations (Part 2)

Register Transfer Language and Microoperations (Part 2) Adapted by Dr. Adel Ammar Computer Organization 1 MICROOPERATIONS Computer system microoperations are of four types: Register transfer microoperations

Number Systems. Both numbers are positive

Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More Programming Constructs -- Introduction

More Programming Constructs -- Introduction We can now examine some additional programming concepts and constructs Chapter 5 focuses on: internal data representation conversions between one data type and

Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) Does all work in CPU (aritmeettis-looginen

Computer Arithmetic Ch 8

Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic Floating-Point Representation Floating-Point Arithmetic 1 Arithmetic Logical Unit (ALU) (2) (aritmeettis-looginen yksikkö) Does all

Fundamentals of Programming Session 2

Fundamentals of Programming Session 2 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2013 Sharif University of Technology Outlines Programming Language Binary numbers Addition Subtraction

Chapter 2 Data Representations

Computer Engineering Chapter 2 Data Representations Hiroaki Kobayashi 4/21/2008 4/21/2008 1 Agenda in Chapter 2 Translation between binary numbers and decimal numbers Data Representations for Integers

unused unused unused unused unused unused

BCD numbers. In some applications, such as in the financial industry, the errors that can creep in due to converting numbers back and forth between decimal and binary is unacceptable. For these applications

UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT

UNIT-III 1 KNREDDY UNIT-III REGISTER TRANSFER LANGUAGE AND DESIGN OF CONTROL UNIT Register Transfer: Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Micro operations Logic

Data Representations & Arithmetic Operations

Data Representations & Arithmetic Operations Hiroaki Kobayashi 7/13/2011 7/13/2011 Computer Science 1 Agenda Translation between binary numbers and decimal numbers Data Representations for Integers Negative

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

Floating Point Arithmetic

Floating Point Arithmetic Clark N. Taylor Department of Electrical and Computer Engineering Brigham Young University clark.taylor@byu.edu 1 Introduction Numerical operations are something at which digital

Programming in C++ 5. Integral data types

Programming in C++ 5. Integral data types! Introduction! Type int! Integer multiplication & division! Increment & decrement operators! Associativity & precedence of operators! Some common operators! Long

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

Operators and Expressions in C & C++ Mahesh Jangid Assistant Professor Manipal University, Jaipur

Operators and Expressions in C & C++ Mahesh Jangid Assistant Professor Manipal University, Jaipur Operators and Expressions 8/24/2012 Dept of CS&E 2 Arithmetic operators Relational operators Logical operators

CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

Unit-II Programming and Problem Solving (BE1/4 CSE-2)

Unit-II Programming and Problem Solving (BE1/4 CSE-2) Problem Solving: Algorithm: It is a part of the plan for the computer program. An algorithm is an effective procedure for solving a problem in a finite

Arithmetic and Bitwise Operations on Binary Data

Arithmetic and Bitwise Operations on Binary Data CSCI 224 / ECE 317: Computer Architecture Instructor: Prof. Jason Fritts Slides adapted from Bryant & O Hallaron s slides 1 Boolean Algebra Developed by

Chapter 2: Number Systems

Chapter 2: Number Systems Logic circuits are used to generate and transmit 1s and 0s to compute and convey information. This two-valued number system is called binary. As presented earlier, there are many

CS101 Lecture 04: Binary Arithmetic

CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example

Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,

Binary Addition & Subtraction. Unsigned and Sign & Magnitude numbers

Binary Addition & Subtraction Unsigned and Sign & Magnitude numbers Addition and subtraction of unsigned or sign & magnitude binary numbers by hand proceeds exactly as with decimal numbers. (In fact this

CS 101: Computer Programming and Utilization

CS 101: Computer Programming and Utilization Jul-Nov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.

SECTION II: LANGUAGE BASICS

Chapter 5 SECTION II: LANGUAGE BASICS Operators Chapter 04: Basic Fundamentals demonstrated declaring and initializing variables. This chapter depicts how to do something with them, using operators. Operators

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two 26 February 2014

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

Arithmetic and Logical Operations

Arithmetic and Logical Operations 2 CMPE2c x +y + sum Or in tabular form Binary Addition Carry Out Sum B A Carry In Binary Addition And as a full adder a b co ci sum 4-bit Ripple-Carry adder: Carry values

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi, Kai Zhao TAs: Annie Lin, Mohit Verma, Neha Mittal, Daniel Griffin, Yuzhe Ma Examination 1 In Class

The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive.

IEEE 754 Standard - Overview Frozen Content Modified by on 13-Sep-2017 Before discussing the actual WB_FPU - Wishbone Floating Point Unit peripheral in detail, it is worth spending some time to look at

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1

IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose

Data Representation Type of Data Representation Integers Bits Unsigned 2 s Comp Excess 7 Excess 8

Data Representation At its most basic level, all digital information must reduce to 0s and 1s, which can be discussed as binary, octal, or hex data. There s no practical limit on how it can be interpreted

D I G I T A L C I R C U I T S E E

D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,

CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

Digital Arithmetic. Digital Arithmetic: Operations and Circuits Dr. Farahmand

Digital Arithmetic Digital Arithmetic: Operations and Circuits Dr. Farahmand Binary Arithmetic Digital circuits are frequently used for arithmetic operations Fundamental arithmetic operations on binary

CREATING FLOATING POINT VALUES IN MIL-STD-1750A 32 AND 48 BIT FORMATS: ISSUES AND ALGORITHMS

CREATING FLOATING POINT VALUES IN MIL-STD-1750A 32 AND 48 BIT FORMATS: ISSUES AND ALGORITHMS Jeffrey B. Mitchell L3 Communications, Telemetry & Instrumentation Division Storm Control Systems ABSTRACT Experimentation

Numeral Systems. -Numeral System -Positional systems -Decimal -Binary -Octal. Subjects:

Numeral Systems -Numeral System -Positional systems -Decimal -Binary -Octal Subjects: Introduction A numeral system (or system of numeration) is a writing system for expressing numbers, that is a mathematical

Signed Binary Numbers

Signed Binary Numbers Unsigned Binary Numbers We write numbers with as many digits as we need: 0, 99, 65536, 15000, 1979, However, memory locations and CPU registers always hold a constant, fixed number

ENE 334 Microprocessors

Page 1 ENE 334 Microprocessors Lecture 10: MCS-51: Logical and Arithmetic : Dejwoot KHAWPARISUTH http://webstaff.kmutt.ac.th/~dejwoot.kha/ ENE 334 MCS-51 Logical & Arithmetic Page 2 Logical: Objectives

Operators in C. Staff Incharge: S.Sasirekha

Operators in C Staff Incharge: S.Sasirekha Operators An operator is a symbol which helps the user to command the computer to do a certain mathematical or logical manipulations. Operators are used in C

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2

Computer Architecture and System Software Lecture 02: Overview of Computer Systems & Start of Chapter 2 Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Website is up

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Announcements PS8 Due today PS9 Due July 22 Sound Lab tonight bring machines and headphones! Binary Search Today Review of binary floating point notation

The CPU and Memory. How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram:

The CPU and Memory How does a computer work? How does a computer interact with data? How are instructions performed? Recall schematic diagram: 1 Registers A register is a permanent storage location within

CHAPTER 4: Register Transfer Language and Microoperations

CS 224: Computer Organization S.KHABET CHAPTER 4: Register Transfer Language and Microoperations Outline Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations

Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

C NUMERIC FORMATS. Overview. IEEE Single-Precision Floating-point Data Format. Figure C-0. Table C-0. Listing C-0.

C NUMERIC FORMATS Figure C-. Table C-. Listing C-. Overview The DSP supports the 32-bit single-precision floating-point data format defined in the IEEE Standard 754/854. In addition, the DSP supports an

CS 253. January 14, 2017

CS 253 Department of Computer Science College of Engineering Boise State University January 14, 2017 1/30 Motivation Most programming tasks can be implemented using abstractions (e.g. representing data

Introduction. Following are the types of operators: Unary requires a single operand Binary requires two operands Ternary requires three operands

Introduction Operators are the symbols which operates on value or a variable. It tells the compiler to perform certain mathematical or logical manipulations. Can be of following categories: Unary requires

3.1 DATA REPRESENTATION (PART C)

3.1 DATA REPRESENTATION (PART C) 3.1.3 REAL NUMBERS AND NORMALISED FLOATING-POINT REPRESENTATION In decimal notation, the number 23.456 can be written as 0.23456 x 10 2. This means that in decimal notation,

Programming Using C Homework 4

Programming Using C Homewk 4 1. In Homewk 3 you computed the histogram of an array, in which each entry represents one value of the array. We can generalize the histogram so that each entry, called a bin,

Appendix. Bit Operators

Appendix C Bit Operations C++ operates with data entities, such as character, integer, and double-precision constants and variables, that can be stored as 1 or more bytes. In addition, C++ provides for

Floating Point Arithmetic

Floating Point Arithmetic Floating point numbers are frequently used in many applications. Implementation of arithmetic units such as adder, multiplier, etc for Floating point numbers are more complex

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Lisa Ossian, Minsub Shin, Sujith Surendran Midterm Examination 1 In Class (50 minutes) Wednesday,

60-265: Winter ANSWERS Exercise 4 Combinational Circuit Design

60-265: Winter 2010 Computer Architecture I: Digital Design ANSWERS Exercise 4 Combinational Circuit Design Question 1. One-bit Comparator [ 1 mark ] Consider two 1-bit inputs, A and B. If we assume that

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

Arithmetic Logic Unit

Arithmetic Logic Unit A.R. Hurson Department of Computer Science Missouri University of Science & Technology A.R. Hurson 1 Arithmetic Logic Unit It is a functional bo designed to perform "basic" arithmetic,

Basic Arithmetic (adding and subtracting) Digital logic to show add/subtract Boolean algebra abstraction of physical, analog circuit behavior 1 0 CPU components ALU logic circuits logic gates transistors

Up next. Midterm. Today s lecture. To follow

Up next Midterm Next Friday in class Exams page on web site has info + practice problems Excited for you to rock the exams like you have been the assignments! Today s lecture Back to numbers, bits, data

Combinational and sequential circuits (learned in Chapters 1 and 2) can be used to create simple digital systems.

REGISTER TRANSFER AND MICROOPERATIONS Register Transfer Language Register Transfer Bus and Memory Transfers Arithmetic Microoperations Logic Microoperations Shift Microoperations Arithmetic Logic Shift

Roundoff Errors and Computer Arithmetic

Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

Binary representation of integer numbers Operations on bits

Outline Binary representation of integer numbers Operations on bits The Bitwise AND Operator The Bitwise Inclusive-OR Operator The Bitwise Exclusive-OR Operator The Ones Complement Operator The Left Shift

Floating Point Numbers

Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

Co-processor Math Processor. Richa Upadhyay Prabhu. NMIMS s MPSTME February 9, 2016

8087 Math Processor Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu February 9, 2016 Introduction Need of Math Processor: In application where fast calculation is required Also where there

Characters, Strings, and Floats

Characters, Strings, and Floats CS 350: Computer Organization & Assembler Language Programming 9/6: pp.8,9; 9/28: Activity Q.6 A. Why? We need to represent textual characters in addition to numbers. Floating-point

Data Representation Floating Point

Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

Computer Organization (Autonomous)

Computer Organization (Autonomous) UNIT I Sections - A & D Prepared by Anil Kumar Prathipati, Asst. Prof., Dept. of CSE. SYLLABUS Introduction: Types of Computers, Functional units of Basic Computer (Block

NUMBER SCALING FOR THE LGP-27

NUMBER SCALING FOR THE LGP-27 5 SCALING The LGP-21 considers all numbers to be within the range -l

Applied Computer Programming

Applied Computer Programming Representation of Numbers. Bitwise Operators Course 07 Lect.eng. Adriana ALBU, PhD Politehnica University Timisoara Internal representation All data, of any type, processed

BINARY SYSTEM. Binary system is used in digital systems because it is:

CHAPTER 2 CHAPTER CONTENTS 2.1 Binary System 2.2 Binary Arithmetic Operation 2.3 Signed & Unsigned Numbers 2.4 Arithmetic Operations of Signed Numbers 2.5 Hexadecimal Number System 2.6 Octal Number System

Objects and Types. COMS W1007 Introduction to Computer Science. Christopher Conway 29 May 2003

Objects and Types COMS W1007 Introduction to Computer Science Christopher Conway 29 May 2003 Java Programs A Java program contains at least one class definition. public class Hello { public static void

8/30/2016. In Binary, We Have A Binary Point. ECE 120: Introduction to Computing. Fixed-Point Representations Support Fractions

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Fixed- and Floating-Point Representations In Binary, We Have A Binary Point Let

Review of Data Representation & Binary Operations Dhananjai M. Rao CSA Department Miami University

Review of Data Representation & Binary Operations Dhananjai M. Rao () CSA Department Miami University 1. Introduction In digital computers all data including numbers, characters, and strings are ultimately