DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK

Size: px
Start display at page:

Download "DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK"

Transcription

1 DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING QUESTION BANK SUBJECT : CS6303 / COMPUTER ARCHITECTURE SEM / YEAR : VI / III year B.E. Unit I OVERVIEW AND INSTRUCTIONS Part A Q.No Questions BT Level Domain 1. Define Amdahl s law. BTL 1 Remembering 2. Identify general characteristics of Relative addressing mode with an example. 3. Discuss the eight great ideas in computer architecture. BTL 2 Understanding 4. List the five classic components of a computer. BTL 1 Remembering 5. How would you summarize the function of data path and control BTL 2 Understanding path? 6. How do you interpret the instruction set Architecture? BTL 2 Understanding 7. Differentiate DRAM and SRAM. 8. Compare and contrast volatile and nonvolatile memory. BTL 2 Understanding 9. Define VLSI. BTL 1 Remembering 10. What facts would you select to show throughput and response time? BTL 3 Applying 11. Can you elaborate the CPU performance equation? BTL 5 Evaluating 12. If computer A runs a program in 10 seconds, and computer B runs BTL 5 Evaluating the same program in 15 seconds, how much faster is A over B? Justify your answer. 13. Construct the formula for CPU execution time for a program. BTL 6 Creating 14. List the data transfer instructions. BTL 1 Remembering 15. Build the formula for CPU clock cycles required for a program. BTL 3 Applying 16. Define Stored Program Concept. BTL 1 Remembering 17. What are the fields in an MIPS instruction? BTL 1 Remembering

2 18. Can you make a distinction between multiprocessor over uniprocessor? 19. What examples can you give to relative and indirect addressing mode? 20. Consider the following performance measurements for a program Measurement Computer A Computer B Instruction 10 billion 8 billion Count Clock rate 4GHz 4GHz CPI Which computer has the higher MIPS rating? BTL 3 BTL 6 Applying Creating Part B 1.(i) Summarize the eight great ideas of computer Architecture.(8) BTL 5 Evaluating (ii) Describe the technologies for Building Processors and Memory. (8) BTL 2 Understanding 2. List the various components of computer system with neat diagram. BTL 1 Remembering 3. Define addressing mode. Describe the basic addressing modes with an BTL 1 Remembering example for each. 4. What are the operations and operands of computer Hardware? Explain BTL 1 Remembering in detail. 5. Discuss the logical operations and control operations of computer.(8) Explain the concept of Powerwall processor. (8) BTL 2 BTL 5 Understanding Evaluating 6. Consider three different processors P1, P2, and P3 executing the same instruction set. P1 has a 3 GHz clock rate and a CPI of 1.5. P2 has a 2.5 GHz clock rate and a CPI of 1.0. P3 has a 4.0 GHz clock rate and has a CPI of 2.2. a) Which processor has the highest performance expressed in instructions per second? b) If the processors each execute a program in 10 seconds, find the number of cycles and the number of instructions? c) We are trying to reduce the execution time by 30% but this leads to an increase of 20% in the CPI. What clock rate should we have to get this time reduction? 7. Assume a program requires the execution of FP BTL 3 Applying istructions, INT instructions, L/S instructions, and branch instructions The CPI for each type of instruction is 1, 1, 4, and 2, respectively. Assume that the processor has a 2 GHz clock rate. a) By how much must we improve the CPI of FP instructions if we want the program to run two times faster? b) By how much must we improve the CPI of L/S instructions if we want the program to run two times faster? c) By how much is the execution time of the program improved if the CPI of INT and FP Instructions are reduced by 40% and the CPI of L/S and Branch is reduced by 30%? 8. Describe the branching operations with suitable example. BTL 2 Understanding 9. How would you formulate the performance of CPU and compose the BTL 6 Creating

3 10.(i) factors that affect performance? Assume a two address format specified as source, destination. Examine the following sequence of instructions and identy the addressing modes used and the operation done in every instruction (1) Move (R5)+, R0 (2) Add(R5)+, R0 (3) Move R0, (R5) (4) Move 16(R5),R3 (5) Add #40, R5 BTL 3 Applying (ii) Consider the computer with three instruction classes and CPI measurements as given below and instruction counts for each instruction class for the same program from two different compilers are given. Assume that the computer s clock rate is 1GHZ which code sequence will execute faster according to execution time? Code from CPI for the instruction class A B C CPI Code from CPI for the instruction class A B C Compiler Compiler UNIT II ARITHMETIC OPERATIONS PART A Q.No Questions BT Level Competence 1. Add 510 to 610 in binary and Subtract -610 from 710 in binary ) 2. How would you examine the overflow conditions for addition and BTL 3 Applying subtraction? 3. Construct the Multiplication hardware diagram. BTL 3 Applying 4. List the steps of multiplication algorithm. BTL 1 Remembering 5. What is fast multiplication? BTL 1 Remembering 6. List the steps of division algorithm. BTL 1 Remembering 7. Illustrate scientific notation and normalization with example. BTL 3 Applying 8. What approach would you use to interpret single precision floating point number? BTL 2 Understanding 9. Contrast overflow and underflow with examples. BTL 2 Understanding 10. Give the representation of double precision floating point number. BTL 2 Understanding 11. What are the floating point instructions in MIPS? BTL 1 Remembering 12. Can you formulate the steps of floating point addition? BTL 6 Creating 13. Evaluate the sequence of floating point multiplication. BTL 5 Evaluating

4 14. Define Guard and Round bit. BTL 1 Remembering 15. Write the IEEE 754 floating point format. BTL 2 Understanding 16. What is meant by sub-word parallelism? BTL 1 Remembering 17. Multiply * Divide 1,001,010 by For the following C statement, what is the corresponding MIPS BTL 6 Creating assembly code? f = g + (h 5) 20. For the following MIPS assembly instructions above, what is a BTL 5 Evaluating corresponding C statement? add f, g, h add f, i, f PART B 1. Discuss the multiplication algorithm in detail with diagram and BTL 2 Understanding examples. 2. How would you describ the division algorithm with diagram? BTL 1 Remembering 3. How floating point addition is carried out in a computer system? Give BTL 1 Remembering an example for a binary floating point addition. 4. Summarize in detail the floating point multiplication algorithm. BTL 2 Understanding 5. How would you solve the multiplication of signed 2 s complement numbers? Give algorithm and example BTL 3 Applying 6. Assume A and B for a pair of signed 2 s complement numbers with values : A = , B = Develop algorithm to implement A*B How would you estimate the result of the numbers ( ) using binary Floating point Addition algorithm? Multiply X and 9.200X10-5 using binary Floating point multiplication. Calculate the division of A and B A=3.264 X 10 3 and B= 6.52 X Tabulate the IEEE 754 binary representation of the number in single and double precision. BTL 6 BTL 5 BTL 1 Creating Evaluating Remembering UNIT III PROCESSOR AND CONTROL UNIT PART A Q.No Questions BT Competence Level 1. What is meant by data path element? BTL 2 Understanding 2. Summarize the use of PC register. BTL 2 Understanding 3. Define register file. BTL 1 Remembering

5 4. List the state elements needed to store and access an instruction. BTL 1 Remembering 5. Draw the diagram of portion of datapath used for fetching instruction. BTL 2 Understanding 6. Compare Sign Extend and Vector interupts. BTL 2 Understanding 7. What is meant by branch target address? BTL 1 Remembering 8. How would you evaluate branch taken and branch not taken in BTL 5 Evaluating instruction execution? 9. How would you examine delayed branching? BTL 1 Remembering 10. Design the instruction format for the jump instruction. BTL 6 Creating 11. Classify the different types of hazards with examples. 12. How would you apply data forwarding to avoid data hazards? BTL 3 Applying 13. How could you determine the pipeline stall? BTL 5 Evaluating 14. What is meant by branch prediction? BTL 1 Remembering 15. Construct the 5 stages pipeline. BTL 3 Applying 16. What motive is there in using exceptions and interrupts? 17. What is pipelining? BTL 1 Remembering 18. Illustrate the five steps used in MIPS instruction execution. BTL 3 Applying 19. Classify the types of instruction classes and their instruction formats. 20. Formulate the calculating time between instructions in a pipelined processor. BTL6 Creating PART B 1. Discuss the basic MIPS implementation of instruction set. BTL 2 Understanding 2. Describe MIPS implementation with necessary multiplexers and BTL 1 Remembering control lines. 3. What are control hazards? Describe the methods for dealing with the BTL 1 Remembering control hazards. 4. Design and develop an instruction pipeline working under various situations of pipeline stall. BTL 6 Creating 5. What is data hazard? How do you overcome it? What are its side BTL 1 Remembering effects? 6. Compare the data and control path methods in pipelining. BTL 2 Understanding 7. (i)can you make the distinction between sequential execution and BTL pipelining?(8) 4&3 Applying (ii)construct the model for building a datapath. (8) 8. Recommend the techniques for dynamic branch prediction. BTL 5 Evaluating 9. Examine the approaches would you use to handle exceptions in MIPS. BTL 3 Applying 10. What motive is there in using control path implementation in pipelining? UNIT IV PARALLELISM PART A Q.No Questions BT Competence Level 1. What is the main idea of ILP? BTL 2 Understanding

6 2. What approach would you use to organize a multiple issue processor? BTL 3 Applying 3. Can you list the three important properties of vector instructions? BTL 1 Remembering 4. List the main characteristics of SMT processor. 5. What inference can you make from loop unrolling technique? BTL1 Remembering 6. Define VLIW processor. BTL1 Remembering 7. What is meant by anti-dependence? How is it removed? BTL 2 Understanding 8. How would you examine the efficiency of superscalar processor? BTL 1 Remembering 9. Will you state the need of speculation? BTL 2 Understanding 10. Show the performance of cluster organization. BTL 3 Applying 11. What is the relationship between SMT and hardware multithreading? BTL 5 Evaluating 12. Define the Flynn classification. BTL 1 Remembering 13. How do you integrate the ideas of in-order execution and out-of-order BTL 6 Creating execution? 14. Can you make the distinction between UMA and NUMA? BTL 5 Evaluating 15. Identify the use of hardware in multithreading option. BTL 1 Remembering 16. What can you say about sub-word parallelism? BTL 2 Understanding 17. How would you formulate the various approaches to hardware BTL 6 Creating multithreading? 18. Categorize the various multithreading options. 19. What ideas justify a multicore processor? 20. What approaches would you use to improve performance of a BTL 3 Applying processor? PART B 1. List the main characteristics of Instruction level parallelism. BTL 1 Remembering 2. What are the facts or challenges faced by parallel processing BTL 2 Understanding programs? Summarize. 3. What is the main idea of using message passing in multiprocessor? BTL 2 Understanding 4. How would you show your understanding of using hardware in BTL 3 Applying multithreading? 5. Describe data level parallelism in SIMD and MISD machine. BTL 1 Remembering 6. a) How would you use shared memory concept in multi-processor?(8) BTL Applying b)compare and contrast Fine grained and Coarse grained 3&4 multithreading.(8) 7. What are the features of Multicore processors? BTL 5 Evaluating 8. How would you classify the types of multithreading? 9. How would you formulate the ideas of Flynn s classification? BTL 6 Creating 10. a) Define vector processor. b) Describe SPMD processor. BTL 1 Remembering

7 UNIT V MEMORY AND I/O SYSTEM PART A Q.No Questions BT Level Competence 1. Distinguish the types of locality of references. BTL 2 Understanding 2. Define the structure of memory hierarchy. BTL 1 Remembering 3. How would you summarize the various memory technologies? BTL 2 Understanding 4. Compare and contrast SRAM and DRAM. 5. What is flash memory? BTL 1 Remembering 6. Define Rotational Latency. BTL 1 Remembering 7. What is direct-mapped cache? BTL 1 Remembering 8. Evaluate the following instance wherein the cache size is 64 blocks BTL 5 Evaluating and block size is 16 bytes. What block number does byte address 1200 map? 9. How many total bits are required for a direct-mapped cache BTL 6 Creating with 16 KB of data and 4-word blocks, assuming a 32-bit address? 10. How would you analyze the writing strategies in cache memory? 11. What are the functional steps required in an instruction cache miss? BTL 6 Creating 12. Define hit rate and miss rate. BTL 1 Remembering 13. Summarize the various block placement schemes in cache memory. BTL 2 Understanding 14. Define Mean Time to Failure rate. BTL 1 Remembering 15. Compare the three ways to improve MTTF. 16. How would you show your understanding of the role of TLB in BTL 3 Applying virtual memory? 17. Can you make use of virtual memory concept in memory BTL 3 Applying management? 18. What is the relationship between physical address and logical BTL 5 Evaluating address? 19. What is main idea of address mapping? BTL 2 Understanding 20. How would you use interrupts in cases of exceptions? BTL 3 Applying PART B 1. List the various memory technologies and examine its relevance in architecture design. BTL 1 Remembering 2. Describe in detail the memory hierarchy with neat diagram. BTL 1 Remembering 3. Summarize the basic operations of cache in detail with diagram. BTL 2 Understanding 4. Distinguish the various mapping schemes used in cache design. BTL 2 Understanding 5. a) A byte addressable computer has a small data cache capable of holding eight 32-bit words. Each cache block contains 132-bit word. When a given program is executed, the processor reads data from the following sequence of hex addresses 200, 204, 208, 20C, 2F4, 2F0, 200,204,218, 21C, 24C, 2F4. The pattern is repeated four times. Assuming that the cache is initially empty, show the contents of the cache at the end of each pass, and compute the hit rate for a direct mapped cache. (8) BTL 3 Applying

8 b) What are the methods used to measure and improve the performance of the cache. (8) 6. Describe the virtual memory address translation and TLB with BTL 1 Remembering necessary diagram. 7. How would you demonstrate the DMA controller for data transfer BTL 3 Applying between memory and peripherals? 8. Can you summarize the concept of interrupts with neat diagrams? BTL 5 Evaluating 9. What choice in design would you have made for standard input and output interfaces required to connect the I/O device to the bus? BTL 6 Creating 10. How would you classify the bus arbitration techniques in DMA?

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS UNIT-I OVERVIEW & INSTRUCTIONS 1. What are the eight great ideas in computer architecture? The eight

More information

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY. Department of Computer science and engineering

DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY. Department of Computer science and engineering DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY Department of Computer science and engineering Year :II year CS6303 COMPUTER ARCHITECTURE Question Bank UNIT-1OVERVIEW AND INSTRUCTIONS PART-B

More information

CS6303-COMPUTER ARCHITECTURE UNIT I OVERVIEW AND INSTRUCTIONS PART A

CS6303-COMPUTER ARCHITECTURE UNIT I OVERVIEW AND INSTRUCTIONS PART A CS6303-COMPUTER ARCHITECTURE UNIT I OVERVIEW AND INSTRUCTIONS 1. Define Computer Architecture 2. Define Computer H/W 3. What are the functions of control unit? 4. 4.Define Interrupt 5. What are the uses

More information

PREPARED BY: S.SAKTHI, AP/IT

PREPARED BY: S.SAKTHI, AP/IT CHETTINAD COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF EIE CS6303 COMPUTER ARCHITECTURE (5 th semester)-regulation 2013 16 MARKS QUESTION BANK WITH ANSWER KEY UNIT I OVERVIEW & INSTRUCTIONS 1. Explain

More information

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING UNIT-1 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III/VI Section : CSE-1 & CSE-2 Subject Code : CS2354 Subject Name : Advanced Computer Architecture Degree & Branch : B.E C.S.E. UNIT-1 1.

More information

COURSE DELIVERY PLAN - THEORY Page 1 of 6

COURSE DELIVERY PLAN - THEORY Page 1 of 6 COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Information Technology B.E/B.Tech/M.E/M.Tech : B.Tech Information Technology Regulation: 2013 Sub. Code / Sub. Name : CS6303 / Computer Architecture

More information

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I

INTELLIGENCE PLUS CHARACTER - THAT IS THE GOAL OF TRUE EDUCATION UNIT-I UNIT-I 1. List and explain the functional units of a computer with a neat diagram 2. Explain the computer levels of programming languages 3. a) Explain about instruction formats b) Evaluate the arithmetic

More information

COURSE DELIVERY PLAN - THEORY Page 1 of 6

COURSE DELIVERY PLAN - THEORY Page 1 of 6 COURSE DELIVERY PLAN - THEORY Page 1 of 6 Department of Information Technology B.E/B.Tech/M.E/M.Tech : B.Tech Information Technology Regulation: 2013 Sub. Code / Sub. Name : CS6303 / Computer Architecture

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Computer Organization and Design, 5th Edition: The Hardware/Software Interface

Computer Organization and Design, 5th Edition: The Hardware/Software Interface Computer Organization and Design, 5th Edition: The Hardware/Software Interface 1 Computer Abstractions and Technology 1.1 Introduction 1.2 Eight Great Ideas in Computer Architecture 1.3 Below Your Program

More information

CS 654 Computer Architecture Summary. Peter Kemper

CS 654 Computer Architecture Summary. Peter Kemper CS 654 Computer Architecture Summary Peter Kemper Chapters in Hennessy & Patterson Ch 1: Fundamentals Ch 2: Instruction Level Parallelism Ch 3: Limits on ILP Ch 4: Multiprocessors & TLP Ap A: Pipelining

More information

CS2253 COMPUTER ORGANIZATION AND ARCHITECTURE 1 KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY

CS2253 COMPUTER ORGANIZATION AND ARCHITECTURE 1 KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY CS2253 COMPUTER ORGANIZATION AND ARCHITECTURE 1 KINGS COLLEGE OF ENGINEERING DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK Sub. Code & Name: CS2253 Computer organization and architecture Year/Sem

More information

LECTURE 10. Pipelining: Advanced ILP

LECTURE 10. Pipelining: Advanced ILP LECTURE 10 Pipelining: Advanced ILP EXCEPTIONS An exception, or interrupt, is an event other than regular transfers of control (branches, jumps, calls, returns) that changes the normal flow of instruction

More information

Hardware-Based Speculation

Hardware-Based Speculation Hardware-Based Speculation Execute instructions along predicted execution paths but only commit the results if prediction was correct Instruction commit: allowing an instruction to update the register

More information

Keywords and Review Questions

Keywords and Review Questions Keywords and Review Questions lec1: Keywords: ISA, Moore s Law Q1. Who are the people credited for inventing transistor? Q2. In which year IC was invented and who was the inventor? Q3. What is ISA? Explain

More information

2 MARKS Q&A 1 KNREDDY UNIT-I

2 MARKS Q&A 1 KNREDDY UNIT-I 2 MARKS Q&A 1 KNREDDY UNIT-I 1. What is bus; list the different types of buses with its function. A group of lines that serves as a connecting path for several devices is called a bus; TYPES: ADDRESS BUS,

More information

QUESTION BANK UNIT-I. 4. With a neat diagram explain Von Neumann computer architecture

QUESTION BANK UNIT-I. 4. With a neat diagram explain Von Neumann computer architecture UNIT-I 1. Write the basic functional units of computer? (Nov/Dec 2014) 2. What is a bus? What are the different buses in a CPU? 3. Define multiprogramming? 4.List the basic functional units of a computer?

More information

s complement 1-bit Booth s 2-bit Booth s

s complement 1-bit Booth s 2-bit Booth s ECE/CS 552 : Introduction to Computer Architecture FINAL EXAM May 12th, 2002 NAME: This exam is to be done individually. Total 6 Questions, 100 points Show all your work to receive partial credit for incorrect

More information

Written Exam / Tentamen

Written Exam / Tentamen Written Exam / Tentamen Computer Organization and Components / Datorteknik och komponenter (IS1500), 9 hp Computer Hardware Engineering / Datorteknik, grundkurs (IS1200), 7.5 hp KTH Royal Institute of

More information

Exploitation of instruction level parallelism

Exploitation of instruction level parallelism Exploitation of instruction level parallelism Computer Architecture J. Daniel García Sánchez (coordinator) David Expósito Singh Francisco Javier García Blas ARCOS Group Computer Science and Engineering

More information

Multiple Issue and Static Scheduling. Multiple Issue. MSc Informatics Eng. Beyond Instruction-Level Parallelism

Multiple Issue and Static Scheduling. Multiple Issue. MSc Informatics Eng. Beyond Instruction-Level Parallelism Computing Systems & Performance Beyond Instruction-Level Parallelism MSc Informatics Eng. 2012/13 A.J.Proença From ILP to Multithreading and Shared Cache (most slides are borrowed) When exploiting ILP,

More information

Multiprocessors and Thread-Level Parallelism. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Multiprocessors and Thread-Level Parallelism. Department of Electrical & Electronics Engineering, Amrita School of Engineering Multiprocessors and Thread-Level Parallelism Multithreading Increasing performance by ILP has the great advantage that it is reasonable transparent to the programmer, ILP can be quite limited or hard to

More information

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE

MaanavaN.Com CS1202 COMPUTER ARCHITECHTURE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING QUESTION BANK SUB CODE / SUBJECT: CS1202/COMPUTER ARCHITECHTURE YEAR / SEM: II / III UNIT I BASIC STRUCTURE OF COMPUTER 1. What is meant by the stored program

More information

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing

Serial. Parallel. CIT 668: System Architecture 2/14/2011. Topics. Serial and Parallel Computation. Parallel Computing CIT 668: System Architecture Parallel Computing Topics 1. What is Parallel Computing? 2. Why use Parallel Computing? 3. Types of Parallelism 4. Amdahl s Law 5. Flynn s Taxonomy of Parallel Computers 6.

More information

Performance of Computer Systems. CSE 586 Computer Architecture. Review. ISA s (RISC, CISC, EPIC) Basic Pipeline Model.

Performance of Computer Systems. CSE 586 Computer Architecture. Review. ISA s (RISC, CISC, EPIC) Basic Pipeline Model. Performance of Computer Systems CSE 586 Computer Architecture Review Jean-Loup Baer http://www.cs.washington.edu/education/courses/586/00sp Performance metrics Use (weighted) arithmetic means for execution

More information

anced computer architecture CONTENTS AND THE TASK OF THE COMPUTER DESIGNER The Task of the Computer Designer

anced computer architecture CONTENTS AND THE TASK OF THE COMPUTER DESIGNER The Task of the Computer Designer Contents advanced anced computer architecture i FOR m.tech (jntu - hyderabad & kakinada) i year i semester (COMMON TO ECE, DECE, DECS, VLSI & EMBEDDED SYSTEMS) CONTENTS UNIT - I [CH. H. - 1] ] [FUNDAMENTALS

More information

CS 2410 Mid term (fall 2018)

CS 2410 Mid term (fall 2018) CS 2410 Mid term (fall 2018) Name: Question 1 (6+6+3=15 points): Consider two machines, the first being a 5-stage operating at 1ns clock and the second is a 12-stage operating at 0.7ns clock. Due to data

More information

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter

Latches. IT 3123 Hardware and Software Concepts. Registers. The Little Man has Registers. Data Registers. Program Counter IT 3123 Hardware and Software Concepts Notice: This session is being recorded. CPU and Memory June 11 Copyright 2005 by Bob Brown Latches Can store one bit of data Can be ganged together to store more

More information

Final Lecture. A few minutes to wrap up and add some perspective

Final Lecture. A few minutes to wrap up and add some perspective Final Lecture A few minutes to wrap up and add some perspective 1 2 Instant replay The quarter was split into roughly three parts and a coda. The 1st part covered instruction set architectures the connection

More information

Lecture 26: Parallel Processing. Spring 2018 Jason Tang

Lecture 26: Parallel Processing. Spring 2018 Jason Tang Lecture 26: Parallel Processing Spring 2018 Jason Tang 1 Topics Static multiple issue pipelines Dynamic multiple issue pipelines Hardware multithreading 2 Taxonomy of Parallel Architectures Flynn categories:

More information

VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY THOTTIAM DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING B.

VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY THOTTIAM DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING B. VETRI VINAYAHA COLLEGE OF ENGINEERING AND TECHNOLOGY THOTTIAM 621215 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING B.E SIXTH SEMESTER CS6303- COMPUTER ARCHITECTURE (Regulation 2013) UNIT I OVERVIEW&INSTRUCTIONS

More information

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15]

JNTUWORLD. 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] Code No: 09A50402 R09 Set No. 2 1. Discuss in detail inter processor arbitration logics and procedures with necessary diagrams? [15] 2. (a) Discuss asynchronous serial transfer concept? (b) Explain in

More information

DC57 COMPUTER ORGANIZATION JUNE 2013

DC57 COMPUTER ORGANIZATION JUNE 2013 Q2 (a) How do various factors like Hardware design, Instruction set, Compiler related to the performance of a computer? The most important measure of a computer is how quickly it can execute programs.

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK VII SEMESTER EC6013 Advanced Microprocessors and Microcontrollers

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 23 Mahadevan Gomathisankaran April 27, 2010 04/27/2010 Lecture 23 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 15

CO Computer Architecture and Programming Languages CAPL. Lecture 15 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 15 Dr. Kinga Lipskoch Fall 2017 How to Compute a Binary Float Decimal fraction: 8.703125 Integral part: 8 1000 Fraction part: 0.703125

More information

Two hours. No special instructions. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date. Time

Two hours. No special instructions. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date. Time Two hours No special instructions. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE System Architecture Date Time Please answer any THREE Questions from the FOUR questions provided Use a SEPARATE answerbook

More information

COMPUTER ORGANIZATION AND ARCHITECTURE

COMPUTER ORGANIZATION AND ARCHITECTURE Page 1 1. Which register store the address of next instruction to be executed? A) PC B) AC C) SP D) NONE 2. How many bits are required to address the 128 words of memory? A) 7 B) 8 C) 9 D) NONE 3. is the

More information

Course II Parallel Computer Architecture. Week 2-3 by Dr. Putu Harry Gunawan

Course II Parallel Computer Architecture. Week 2-3 by Dr. Putu Harry Gunawan Course II Parallel Computer Architecture Week 2-3 by Dr. Putu Harry Gunawan www.phg-simulation-laboratory.com Review Review Review Review Review Review Review Review Review Review Review Review Processor

More information

ROEVER ENGINEERING COLLEGE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

ROEVER ENGINEERING COLLEGE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING ROEVER ENGINEERING COLLEGE DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING 16 MARKS CS 2354 ADVANCE COMPUTER ARCHITECTURE 1. Explain the concepts and challenges of Instruction-Level Parallelism. Define

More information

7. Discuss the hardware signals and superscalar architecture of Pentium BTL 2 Understand

7. Discuss the hardware signals and superscalar architecture of Pentium BTL 2 Understand UNIT I HIGH PERFORMANCE CISC ARCHITECTURE PENTIUM CPU Architecture- Bus Operations Pipelining Branch predication floating point unit- Operating Modes Paging Multitasking Exception and Interrupts Instruction

More information

CS 1013 Advance Computer Architecture UNIT I

CS 1013 Advance Computer Architecture UNIT I CS 1013 Advance Computer Architecture UNIT I 1. What are embedded computers? List their characteristics. Embedded computers are computers that are lodged into other devices where the presence of the computer

More information

Pipelining and Exploiting Instruction-Level Parallelism (ILP)

Pipelining and Exploiting Instruction-Level Parallelism (ILP) Pipelining and Exploiting Instruction-Level Parallelism (ILP) Pipelining and Instruction-Level Parallelism (ILP). Definition of basic instruction block Increasing Instruction-Level Parallelism (ILP) &

More information

15-740/ Computer Architecture Lecture 4: Pipelining. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 4: Pipelining. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 4: Pipelining Prof. Onur Mutlu Carnegie Mellon University Last Time Addressing modes Other ISA-level tradeoffs Programmer vs. microarchitect Virtual memory Unaligned

More information

Parallel Computing: Parallel Architectures Jin, Hai

Parallel Computing: Parallel Architectures Jin, Hai Parallel Computing: Parallel Architectures Jin, Hai School of Computer Science and Technology Huazhong University of Science and Technology Peripherals Computer Central Processing Unit Main Memory Computer

More information

Computer Systems Architecture

Computer Systems Architecture Computer Systems Architecture Lecture 24 Mahadevan Gomathisankaran April 29, 2010 04/29/2010 Lecture 24 CSCE 4610/5610 1 Reminder ABET Feedback: http://www.cse.unt.edu/exitsurvey.cgi?csce+4610+001 Student

More information

CMSC 411 Computer Systems Architecture Lecture 13 Instruction Level Parallelism 6 (Limits to ILP & Threading)

CMSC 411 Computer Systems Architecture Lecture 13 Instruction Level Parallelism 6 (Limits to ILP & Threading) CMSC 411 Computer Systems Architecture Lecture 13 Instruction Level Parallelism 6 (Limits to ILP & Threading) Limits to ILP Conflicting studies of amount of ILP Benchmarks» vectorized Fortran FP vs. integer

More information

HPC VT Machine-dependent Optimization

HPC VT Machine-dependent Optimization HPC VT 2013 Machine-dependent Optimization Last time Choose good data structures Reduce number of operations Use cheap operations strength reduction Avoid too many small function calls inlining Use compiler

More information

Very short answer questions. You must use 10 or fewer words. "True" and "False" are considered very short answers.

Very short answer questions. You must use 10 or fewer words. True and False are considered very short answers. Very short answer questions. You must use 10 or fewer words. "True" and "False" are considered very short answers. [1] Which is on average more effective, dynamic or static branch prediction? [1] Does

More information

Wenisch Final Review. Fall 2007 Prof. Thomas Wenisch EECS 470. Slide 1

Wenisch Final Review. Fall 2007 Prof. Thomas Wenisch  EECS 470. Slide 1 Final Review Fall 2007 Prof. Thomas Wenisch http://www.eecs.umich.edu/courses/eecs470 Slide 1 Announcements Wenisch 2007 Exam is Monday, 12/17 4 6 in this room I recommend bringing a scientific calculator

More information

UNIT I BASIC STRUCTURE OF COMPUTERS Part A( 2Marks) 1. What is meant by the stored program concept? 2. What are the basic functional units of a

UNIT I BASIC STRUCTURE OF COMPUTERS Part A( 2Marks) 1. What is meant by the stored program concept? 2. What are the basic functional units of a UNIT I BASIC STRUCTURE OF COMPUTERS Part A( 2Marks) 1. What is meant by the stored program concept? 2. What are the basic functional units of a computer? 3. What is the use of buffer register? 4. Define

More information

CS Mid-Term Examination - Fall Solutions. Section A.

CS Mid-Term Examination - Fall Solutions. Section A. CS 211 - Mid-Term Examination - Fall 2008. Solutions Section A. Ques.1: 10 points For each of the questions, underline or circle the most suitable answer(s). The performance of a pipeline processor is

More information

SYLLABUS. osmania university CHAPTER - 1 : REGISTER TRANSFER LANGUAGE AND MICRO OPERATION CHAPTER - 2 : BASIC COMPUTER

SYLLABUS. osmania university CHAPTER - 1 : REGISTER TRANSFER LANGUAGE AND MICRO OPERATION CHAPTER - 2 : BASIC COMPUTER Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : REGISTER TRANSFER LANGUAGE AND MICRO OPERATION Difference between Computer Organization and Architecture, RTL Notation, Common Bus System using

More information

Computer Architecture. Fall Dongkun Shin, SKKU

Computer Architecture. Fall Dongkun Shin, SKKU Computer Architecture Fall 2018 1 Syllabus Instructors: Dongkun Shin Office : Room 85470 E-mail : dongkun@skku.edu Office Hours: Wed. 15:00-17:30 or by appointment Lecture notes nyx.skku.ac.kr Courses

More information

Instruction-Level Parallelism and Its Exploitation

Instruction-Level Parallelism and Its Exploitation Chapter 2 Instruction-Level Parallelism and Its Exploitation 1 Overview Instruction level parallelism Dynamic Scheduling Techniques es Scoreboarding Tomasulo s s Algorithm Reducing Branch Cost with Dynamic

More information

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors

Computer and Information Sciences College / Computer Science Department CS 207 D. Computer Architecture. Lecture 9: Multiprocessors Computer and Information Sciences College / Computer Science Department CS 207 D Computer Architecture Lecture 9: Multiprocessors Challenges of Parallel Processing First challenge is % of program inherently

More information

Computer Architecture Review. Jo, Heeseung

Computer Architecture Review. Jo, Heeseung Computer Architecture Review Jo, Heeseung Computer Abstractions and Technology Jo, Heeseung Below Your Program Application software Written in high-level language System software Compiler: translates HLL

More information

Computer Architecture CS372 Exam 3

Computer Architecture CS372 Exam 3 Name: Computer Architecture CS372 Exam 3 This exam has 7 pages. Please make sure you have all of them. Write your name on this page and initials on every other page now. You may only use the green card

More information

Parallel Processing SIMD, Vector and GPU s cont.

Parallel Processing SIMD, Vector and GPU s cont. Parallel Processing SIMD, Vector and GPU s cont. EECS4201 Fall 2016 York University 1 Multithreading First, we start with multithreading Multithreading is used in GPU s 2 1 Thread Level Parallelism ILP

More information

RECAP. B649 Parallel Architectures and Programming

RECAP. B649 Parallel Architectures and Programming RECAP B649 Parallel Architectures and Programming RECAP 2 Recap ILP Exploiting ILP Dynamic scheduling Thread-level Parallelism Memory Hierarchy Other topics through student presentations Virtual Machines

More information

CS 341l Fall 2008 Test #2

CS 341l Fall 2008 Test #2 CS 341l all 2008 Test #2 Name: Key CS 341l, test #2. 100 points total, number of points each question is worth is indicated in parentheses. Answer all questions. Be as concise as possible while still answering

More information

UNIT I (Two Marks Questions & Answers)

UNIT I (Two Marks Questions & Answers) UNIT I (Two Marks Questions & Answers) Discuss the different ways how instruction set architecture can be classified? Stack Architecture,Accumulator Architecture, Register-Memory Architecture,Register-

More information

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra

Computer Systems. Binary Representation. Binary Representation. Logical Computation: Boolean Algebra Binary Representation Computer Systems Information is represented as a sequence of binary digits: Bits What the actual bits represent depends on the context: Seminar 3 Numerical value (integer, floating

More information

ELE 375 Final Exam Fall, 2000 Prof. Martonosi

ELE 375 Final Exam Fall, 2000 Prof. Martonosi ELE 375 Final Exam Fall, 2000 Prof. Martonosi Question Score 1 /10 2 /20 3 /15 4 /15 5 /10 6 /20 7 /20 8 /25 9 /30 10 /30 11 /30 12 /15 13 /10 Total / 250 Please write your answers clearly in the space

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved.

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology is more

More information

WHY PARALLEL PROCESSING? (CE-401)

WHY PARALLEL PROCESSING? (CE-401) PARALLEL PROCESSING (CE-401) COURSE INFORMATION 2 + 1 credits (60 marks theory, 40 marks lab) Labs introduced for second time in PP history of SSUET Theory marks breakup: Midterm Exam: 15 marks Assignment:

More information

CS6303 COMPUTER ARCHITECTURE QUESTION BANK

CS6303 COMPUTER ARCHITECTURE QUESTION BANK CS6303 COMPUTER ARCHITECTURE QUESTION BANK UNIT I - OVERVIEW & INSTRUCTIONS-TWO MARKS 1.Define Computer. A computer can be defined as a fast electronic calculating machine that can accept digitized data

More information

Exploring different level of parallelism Instruction-level parallelism (ILP): how many of the operations/instructions in a computer program can be performed simultaneously 1. e = a + b 2. f = c + d 3.

More information

Department of Computer Science and Engineering

Department of Computer Science and Engineering Department of Computer Science and Engineering UNIT-III PROCESSOR AND CONTROL UNIT PART A 1. Define MIPS. MIPS:One alternative to time as the metric is MIPS(Million Instruction Per Second) MIPS=Instruction

More information

TDT Coarse-Grained Multithreading. Review on ILP. Multi-threaded execution. Contents. Fine-Grained Multithreading

TDT Coarse-Grained Multithreading. Review on ILP. Multi-threaded execution. Contents. Fine-Grained Multithreading Review on ILP TDT 4260 Chap 5 TLP & Hierarchy What is ILP? Let the compiler find the ILP Advantages? Disadvantages? Let the HW find the ILP Advantages? Disadvantages? Contents Multi-threading Chap 3.5

More information

UNIT I 1.What is ILP ILP = Instruction level parallelism multiple operations (or instructions) can be executed in parallel

UNIT I 1.What is ILP ILP = Instruction level parallelism multiple operations (or instructions) can be executed in parallel DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY CS2354 ADVANCED COMPUTER ARCHITECTURE PART-A QUESTIONS WITH ANSWERS UNIT I 1.What is ILP ILP = Instruction level parallelism multiple operations

More information

PIPELINE AND VECTOR PROCESSING

PIPELINE AND VECTOR PROCESSING PIPELINE AND VECTOR PROCESSING PIPELINING: Pipelining is a technique of decomposing a sequential process into sub operations, with each sub process being executed in a special dedicated segment that operates

More information

EC 513 Computer Architecture

EC 513 Computer Architecture EC 513 Computer Architecture Complex Pipelining: Superscalar Prof. Michel A. Kinsy Summary Concepts Von Neumann architecture = stored-program computer architecture Self-Modifying Code Princeton architecture

More information

Computer Organization and Design THE HARDWARE/SOFTWARE INTERFACE

Computer Organization and Design THE HARDWARE/SOFTWARE INTERFACE T H I R D E D I T I O N R E V I S E D Computer Organization and Design THE HARDWARE/SOFTWARE INTERFACE Contents v Contents Preface C H A P T E R S Computer Abstractions and Technology 2 1.1 Introduction

More information

omputer Design Concept adao Nakamura

omputer Design Concept adao Nakamura omputer Design Concept adao Nakamura akamura@archi.is.tohoku.ac.jp akamura@umunhum.stanford.edu 1 1 Pascal s Calculator Leibniz s Calculator Babbage s Calculator Von Neumann Computer Flynn s Classification

More information

TDT 4260 lecture 7 spring semester 2015

TDT 4260 lecture 7 spring semester 2015 1 TDT 4260 lecture 7 spring semester 2015 Lasse Natvig, The CARD group Dept. of computer & information science NTNU 2 Lecture overview Repetition Superscalar processor (out-of-order) Dependencies/forwarding

More information

Exam-2 Scope. 3. Shared memory architecture, distributed memory architecture, SMP, Distributed Shared Memory and Directory based coherence

Exam-2 Scope. 3. Shared memory architecture, distributed memory architecture, SMP, Distributed Shared Memory and Directory based coherence Exam-2 Scope 1. Memory Hierarchy Design (Cache, Virtual memory) Chapter-2 slides memory-basics.ppt Optimizations of Cache Performance Memory technology and optimizations Virtual memory 2. SIMD, MIMD, Vector,

More information

CS 152, Spring 2011 Section 10

CS 152, Spring 2011 Section 10 CS 152, Spring 2011 Section 10 Christopher Celio University of California, Berkeley Agenda Stuff (Quiz 4 Prep) http://3dimensionaljigsaw.wordpress.com/2008/06/18/physics-based-games-the-new-genre/ Intel

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road QUESTION BANK (DESCRIPTIVE) UNIT-I SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : CO (16MC802) Year & Sem: I-MCA & I-Sem Course & Branch: MCA Regulation:

More information

Lecture-13 (ROB and Multi-threading) CS422-Spring

Lecture-13 (ROB and Multi-threading) CS422-Spring Lecture-13 (ROB and Multi-threading) CS422-Spring 2018 Biswa@CSE-IITK Cycle 62 (Scoreboard) vs 57 in Tomasulo Instruction status: Read Exec Write Exec Write Instruction j k Issue Oper Comp Result Issue

More information

Slide Set 7. for ENCM 501 in Winter Term, Steve Norman, PhD, PEng

Slide Set 7. for ENCM 501 in Winter Term, Steve Norman, PhD, PEng Slide Set 7 for ENCM 501 in Winter Term, 2017 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2017 ENCM 501 W17 Lectures: Slide

More information

Multiple Instruction Issue. Superscalars

Multiple Instruction Issue. Superscalars Multiple Instruction Issue Multiple instructions issued each cycle better performance increase instruction throughput decrease in CPI (below 1) greater hardware complexity, potentially longer wire lengths

More information

Very short answer questions. You must use 10 or fewer words. "True" and "False" are considered very short answers.

Very short answer questions. You must use 10 or fewer words. True and False are considered very short answers. Very short answer questions. You must use 10 or fewer words. "True" and "False" are considered very short answers. [1] Does peak performance track observed performance? [1] Predicting the direction of

More information

Uniprocessors. HPC Fall 2012 Prof. Robert van Engelen

Uniprocessors. HPC Fall 2012 Prof. Robert van Engelen Uniprocessors HPC Fall 2012 Prof. Robert van Engelen Overview PART I: Uniprocessors and Compiler Optimizations PART II: Multiprocessors and Parallel Programming Models Uniprocessors Processor architectures

More information

I) The Question paper contains 40 multiple choice questions with four choices and student will have

I) The Question paper contains 40 multiple choice questions with four choices and student will have Time: 3 Hrs. Model Paper I Examination-2016 BCA III Advanced Computer Architecture MM:50 I) The Question paper contains 40 multiple choice questions with four choices and student will have to pick the

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

4.1 Introduction 4.3 Datapath 4.4 Control 4.5 Pipeline overview 4.6 Pipeline control * 4.7 Data hazard & forwarding * 4.

4.1 Introduction 4.3 Datapath 4.4 Control 4.5 Pipeline overview 4.6 Pipeline control * 4.7 Data hazard & forwarding * 4. Chapter 4: CPU 4.1 Introduction 4.3 Datapath 4.4 Control 4.5 Pipeline overview 4.6 Pipeline control * 4.7 Data hazard & forwarding * 4.8 Control hazard 4.14 Concluding Rem marks Hazards Situations that

More information

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it

CS 590: High Performance Computing. Parallel Computer Architectures. Lab 1 Starts Today. Already posted on Canvas (under Assignment) Let s look at it Lab 1 Starts Today Already posted on Canvas (under Assignment) Let s look at it CS 590: High Performance Computing Parallel Computer Architectures Fengguang Song Department of Computer Science IUPUI 1

More information

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed

and data combined) is equal to 7% of the number of instructions. Miss Rate with Second- Level Cache, Direct- Mapped Speed 5.3 By convention, a cache is named according to the amount of data it contains (i.e., a 4 KiB cache can hold 4 KiB of data); however, caches also require SRAM to store metadata such as tags and valid

More information

2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7]

2. (a) Compare the characteristics of a floppy disk and a hard disk. (b) Discuss in detail memory interleaving. [8+7] Code No: A109211202 R09 Set No. 2 1. (a) Explain the purpose of the following registers: i. IR ii. PC iii. MDR iv. MAR. (b) Explain with an example the steps in subtraction of two n-digit unsigned numbers.

More information

ECE 3055: Final Exam

ECE 3055: Final Exam ECE 3055: Final Exam Instructions: You have 2 hours and 50 minutes to complete this quiz. The quiz is closed book and closed notes, except for one 8.5 x 11 sheet. No calculators are allowed. Multiple Choice

More information

Arab Open University. Computer Organization and Architecture - T103

Arab Open University. Computer Organization and Architecture - T103 Arab Open University Computer Organization and Architecture - T103 Reference Book: Linda Null, Julia Lobur, The essentials of Computer Organization and Architecture, Jones & Bartlett, Third Edition, 2012.

More information

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design

ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design ENGN1640: Design of Computing Systems Topic 06: Advanced Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 1. Computer Abstractions and Technology COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 1 Computer Abstractions and Technology The Computer Revolution Progress in computer technology Underpinned by Moore

More information

COMPUTER ORGANIZATION AND DESI

COMPUTER ORGANIZATION AND DESI COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count Determined by ISA and compiler

More information

Honorary Professor Supercomputer Education and Research Centre Indian Institute of Science, Bangalore

Honorary Professor Supercomputer Education and Research Centre Indian Institute of Science, Bangalore COMPUTER ORGANIZATION AND ARCHITECTURE V. Rajaraman Honorary Professor Supercomputer Education and Research Centre Indian Institute of Science, Bangalore T. Radhakrishnan Professor of Computer Science

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers.

PART A (22 Marks) 2. a) Briefly write about r's complement and (r-1)'s complement. [8] b) Explain any two ways of adding decimal numbers. Set No. 1 IV B.Tech I Semester Supplementary Examinations, March - 2017 COMPUTER ARCHITECTURE & ORGANIZATION (Common to Electronics & Communication Engineering and Electronics & Time: 3 hours Max. Marks:

More information

COURSE DESCRIPTION. CS 232 Course Title Computer Organization. Course Coordinators

COURSE DESCRIPTION. CS 232 Course Title Computer Organization. Course Coordinators COURSE DESCRIPTION Dept., Number Semester hours CS 232 Course Title Computer Organization 4 Course Coordinators Badii, Joseph, Nemes 2004-2006 Catalog Description Comparative study of the organization

More information