The Lekha 3GPP LTE FEC IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1].

Size: px
Start display at page:

Download "The Lekha 3GPP LTE FEC IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1]."

Transcription

1 Lekha IP 3GPP LTE FEC Encoder IP Core V1.0 The Lekha 3GPP LTE FEC IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1]. 1.0 Introduction The Lekha IP 3GPP LTE FEC Encoder IP Core V1.0 addresses the implementation of the FEC building blocks compliant to 3GPP TS V Specifically, the IP core offers an efficient, easy to customize and reliable implementation of the following blocks. Optimization techniques have been used to achieve a reduced cycle count in the design of key building blocks thus making it amenable to parallel implementation for increased data rate requirements of the order of few gigabits as demanded by futuristic implementations. Similar techniques have been adopted in the decoder IP design as well to make it an efficient solution. Key sub-blocks of the IP core are Controlled selection of Turbo or Convolution path (based on data blocks input or control data input) Rate 1/3 tail biting Convolution encoder Rate 1/3 turbo encoder Rate matching for Turbo coded transport channels Rate matching for Convolution coded transport channels and control information Bit collection, selection and transmission. A high level functional block diagram of the FEC Encoder IP Core is shown in Fig.1 below. In the following pages, a brief data sheet for the IP core is provided. Control/ Data Data_in [7:0] BlockLen SoB Addr_Strt Input Double Buffer Turbo Encoder Conv. Encoder Rate Matching & Bit Collection e k NoofBitsout FEC Encoder IP Core Fig.1 High level Block diagram of FEC Encoder IP Core 1

2 Long Term Evolution (LTE) is a 3GPP initiative for next generation wireless technology which is gaining fast ground as a technology of choice to provide reliable communication and data rates for broadband mobile communications. Lekha FEC Encoder Features LTE/ LTE Advanced (LTE A) Complaint. Implements Turbo encoder as defined in Section of the specification[1]. Configurable Interleaver block sizes - Supports all block sizes i.e., K= as defined in [1] for Turbo and small block lengths (Ex: up to 64) for Convolution. Default code rate achieved is 1/3 with rate matching for other code rates supported. Easy interface definition. Customization to AXI or Avalon bus interface supported. Bit accurate C and MATLAB models available for RTL test vector generation. Device Support Supports several devices across Xilinx, Altera and Lattice device families. Test Environment HDL IP models have been verified to be bit exact with the Matlab/ ANSI C models. These are fully compliant to the LTE/ LTE A specification. Deliverables Licensable in Netlist or Verilog or VHDL source format Target technology Xilinx, Altera, Lattice devices Test bench MATLAB, C, VHDL, Verilog simulation models available Detailed technical documentation. 2

3 2.0 Turbo Encoder Turbo codes form the core part of forward error correction coding in 3GPP LTE and LTE advanced standards. A basic 1/3 rate Encoder block diagram is as shown in fig. 2 below. 1 st Constituent Encoder X k Z k C k D D D Turbo Code Interleaver C k 2 nd Constituent Encoder D D D Z k X k Fig. 2 1/3 Rate Turbo Encoder Block diagram 2.1 Input Interface All block sizes from are supported by the IP core. For a given block size of K, the input bit stream is ordered in the format X 0, X 1,., X k-1. The operation is block-wise. The input data path is doublebuffered to enable greater throughputs with pipelining. While a block of data is being written into the input buffer, a block of data is routed to the encoder sub-block in parallel. The input interface has well defined control and status signals to indicate buffer-empty, begin input block writes and to define the block length K. The input block is loaded into the input buffer in a byte-wide fashion and therefore the entire block load operation can be complete in K/8 clocks. 2.2 Interleaver It is important to achieve a minimum latency interleaver operation for efficient and high throughput operations. According to [1], the bits input to the Turbo code internal interleaver are denoted by c0, c1,, ck-1, where K is the number of input bits. The bits output from the Turbo code internal interleaver are denoted by c 0, c 1,, c K-1. The relationship between the input and output bits is represented by the equation C i = C (i), i = 0, 1,., (K-1) Where the relationship between the output index i and the input index (i) satisfies the following quadratic form: 3

4 (i)= (f 1.i + f 2.i 2 )mod K The parameters f1 and f2 depend on the block size, K and are specified in the standard. Lekha s implementation uses certain innovative methods to break the iterative computation such that the interleaver implementation is optimal both in terms of cycle count and area efficiency. Based on system s throughput requirements, there are implementations available that can parallelize the interleaver operation. 2.3 Output Interface The output follows the pattern X 0, Z 0, Z 0, X 1, Z 1, Z 1,, X K-1, Z K-1, Z K-1 Where X represents the systematic output bits from Recursive Systematic Convolutional (RSC) encoder 1, Z represents the parity bit from RSC encoder 1 and Z represents the parity output bits from RSC encoder 2. Systematic bit from RSC encoder 2 is optionally available. The output can be directly utilized or can be fed to the rate matching component based on system requirements. 2.4 Performance From the instance of block of size K being available in input buffer to the first data present at output of the encoder, K clocks are consumed. 3.0 Rate 1/3 Convolution Encoder The tail biting convolution code with constraint length 7 and coding rate 1/3 is defined according to [1]. The initial value of the shift register of the encoder shall be set to the values corresponding to the last 6 information bits in the input stream so that the initial and final states of the shift register are the same. A block diagram representation of Convolution encoder is as shown in Fig. 3 below C k D5 D4 D3 D2 D1 D0 d k (0) d k (1) d k (2) Fig.3 Block diagram of Rate 1/3 Convolution Encoder 4

5 The encoder output streams d k (0), d k (1) and d k (2) correspond to the first, second and third parity streams, respectively. 3.1 Performance From the instance the data is available in the input memory buffer to the first valid output bit from the encoder, the latency is 1 clock. To encode a block of size K bits, K clocks are consumed. 4.0 Rate matching and bit collection The rate matching and bit collection implementation is compliant to the specification of the sub-block interleaving and bit collection as in [1]. The rate matching for the FEC encoder(turbo coded transport channel and Convolutionally coded transport channels and control information) and is defined per coded block and consists of interleaving the three information bit streams represented by d (0) (1) (2) k, d k and d k respectively followed by the collection of bits and the generation of a circular buffer. The output bit streams are represented by V (0) k, V (1) k and V (2) k. The starting address for read-out from the circular buffer and the number of bits to be output and specified for read-out of the data from bit collection block. A control input T/nC selects the rate matching mode (Turbo/ Convolutional). 4.1 Performance Data from Encoder block will be filled in D k input RAM in D clocks and the data will be filled in V k memory based on interleaved addresses generated in D+Nz clocks (Nz represents the number of zeroes that are added to construct the matrix as a multiple of Resource Usage The following table provides guide values for resource usage of the FEC Encoder IP Block. The target FPGA device was taken as Xilinx 6vlx75tff484-3 Number of Slice Registers 642/ Number of Slice LUT s 2473/ Number of BRAMs inferred (18K) 6 The above resource numbers are for the FEC IP Core instance including the input dual buffer, memory for sub-block interleaved data, interleaver memory and output e k memory. Maximum operating frequencies close to 300 MHz are observed. Note: The above numbers can vary based on minor modifications in design, the exact part chosen and the tools used. The numbers are to be used as guidance values only. 5

6 References [1] 3GPP TS version Release 10 For further information or enquiry, send a request to ipbiz.rtl@lekhawireless.com The Above IP can be licensed either as a completely integrated core or separately as Turbo, Convolution and rate matching blocks. Lekha also offers customization services for these IP cores, and can also support in FPGA prototyping, board design and system software development. 6

The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1].

The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS V Release 10[1]. Lekha IP Core: LW RI 1002 3GPP LTE Turbo Decoder IP Core V1.0 The Lekha 3GPP LTE Turbo Decoder IP Core meets 3GPP LTE specification 3GPP TS 36.212 V 10.5.0 Release 10[1]. Introduction The Lekha IP 3GPP

More information

Chip Design for Turbo Encoder Module for In-Vehicle System

Chip Design for Turbo Encoder Module for In-Vehicle System Chip Design for Turbo Encoder Module for In-Vehicle System Majeed Nader Email: majeed@wayneedu Yunrui Li Email: yunruili@wayneedu John Liu Email: johnliu@wayneedu Abstract This paper studies design and

More information

EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL INTERLEAVER FOR LONG TERM EVOLUTION SYSTEMS

EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL INTERLEAVER FOR LONG TERM EVOLUTION SYSTEMS Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 61, 1, pp. 53 57, Bucarest, 016 Électronique et transmission de l information EFFICIENT RECURSIVE IMPLEMENTATION OF A QUADRATIC PERMUTATION POLYNOMIAL

More information

PCE03D DVB RCS/ WiMAX Turbo Encoder. Small World Communications. PCE03D Features. Introduction. Signal Descriptions

PCE03D DVB RCS/ WiMAX Turbo Encoder. Small World Communications. PCE03D Features. Introduction. Signal Descriptions PCED DVB RCS/ WiMAX Turbo Encoder Product Specification PCED Features 8 state DVB RCS and IEEE 8.6 WiMAX compatible Rate /, /5, /, /, /4, 4/5, 5/6, 6/7, 7/8 with reverse output option Automatic puncturing

More information

Design of Convolution Encoder and Reconfigurable Viterbi Decoder

Design of Convolution Encoder and Reconfigurable Viterbi Decoder RESEARCH INVENTY: International Journal of Engineering and Science ISSN: 2278-4721, Vol. 1, Issue 3 (Sept 2012), PP 15-21 www.researchinventy.com Design of Convolution Encoder and Reconfigurable Viterbi

More information

10GBase-R PCS/PMA Controller Core

10GBase-R PCS/PMA Controller Core 10GBase-R PCS/PMA Controller Core Contents 1 10GBASE-R PCS/PMA DATA SHEET 1 1.1 FEATURES.................................................. 1 1.2 APPLICATIONS................................................

More information

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications

AES1. Ultra-Compact Advanced Encryption Standard Core AES1. General Description. Base Core Features. Symbol. Applications General Description The AES core implements Rijndael encoding and decoding in compliance with the NIST Advanced Encryption Standard. Basic core is very small (less than 3,000 gates). Enhanced versions

More information

Discontinued IP. Verification

Discontinued IP. Verification 0 3GPP2 Turbo Decoder v2.1 DS275 February 15, 2007 0 0 Features Drop-in module for Spartan -3, Spartan-3E, Spartan-3A/3AN, Virtex -II, Virtex-II Pro, Virtex-4, and Virtex-5 FPGAs Implements the CDMA2000/3GPP2

More information

isplever Turbo Encoder User s Guide November 2008 ipug08_04.4

isplever Turbo Encoder User s Guide November 2008 ipug08_04.4 isplever TM CORE Turbo Encoder User s Guide November 2008 ipug08_04.4 Introduction This document contains technical information about the Lattice Turbo Encoder IP core. Turbo coding is an advanced error

More information

Low Complexity Architecture for Max* Operator of Log-MAP Turbo Decoder

Low Complexity Architecture for Max* Operator of Log-MAP Turbo Decoder International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Low

More information

Turbo Encoder Co-processor Reference Design

Turbo Encoder Co-processor Reference Design Turbo Encoder Co-processor Reference Design AN-317-1.2 Application Note Introduction The turbo encoder co-processor reference design is for implemention in an Stratix DSP development board that is connected

More information

3GPP Turbo Encoder v4.0

3GPP Turbo Encoder v4.0 DS319 June 24, 2009 Features Drop-in module for Virtex -4, Virtex-5, Virtex-6, Spartan -6, Spartan-3, and Spartan-3E FPGAs Implements the 3GPP/UMTS specification [Ref 1] [Ref 2] Core contains the full

More information

Viterbi Decoder Block Decoding - Trellis Termination and Tail Biting Author: Michael Francis

Viterbi Decoder Block Decoding - Trellis Termination and Tail Biting Author: Michael Francis Application Note: All Virtex and Spartan FPGA Families XAPP551 (v2.) July 3, 21 Viterbi Decoder Block Decoding - Trellis Termination and Tail Biting Author: Michael Francis Summary Many digital communication

More information

Model-Based Design for effective HW/SW Co-Design Alexander Schreiber Senior Application Engineer MathWorks, Germany

Model-Based Design for effective HW/SW Co-Design Alexander Schreiber Senior Application Engineer MathWorks, Germany Model-Based Design for effective HW/SW Co-Design Alexander Schreiber Senior Application Engineer MathWorks, Germany 2013 The MathWorks, Inc. 1 Agenda Model-Based Design of embedded Systems Software Implementation

More information

CHAPTER 6 FPGA IMPLEMENTATION OF ARBITERS ALGORITHM FOR NETWORK-ON-CHIP

CHAPTER 6 FPGA IMPLEMENTATION OF ARBITERS ALGORITHM FOR NETWORK-ON-CHIP 133 CHAPTER 6 FPGA IMPLEMENTATION OF ARBITERS ALGORITHM FOR NETWORK-ON-CHIP 6.1 INTRODUCTION As the era of a billion transistors on a one chip approaches, a lot of Processing Elements (PEs) could be located

More information

Discontinued IP. 3GPP2 Turbo Decoder v1.0. Features. Applications. General Description

Discontinued IP. 3GPP2 Turbo Decoder v1.0. Features. Applications. General Description 0 3GPP2 Turbo Decoder v1.0 DS275 April 28, 2005 0 0 Features Drop-in module for Spartan -3, Spartan-3E, Virtex -II and Virtex-II Pro FPGAs Implements the CDMA2000/3GPP2 specification[1] Core contains the

More information

It is well understood that the minimum number of check bits required for single bit error correction is specified by the relationship: D + P P

It is well understood that the minimum number of check bits required for single bit error correction is specified by the relationship: D + P P October 2012 Reference Design RD1025 Introduction This reference design implements an Error Correction Code (ECC) module for the LatticeEC and LatticeSC FPGA families that can be applied to increase memory

More information

LogiCORE IP Serial RapidIO Gen2 v1.2

LogiCORE IP Serial RapidIO Gen2 v1.2 LogiCORE IP Serial RapidIO Gen2 v1.2 Product Guide Table of Contents Chapter 1: Overview System Overview............................................................ 5 Applications.................................................................

More information

FPGA Implementation of 2-D DCT Architecture for JPEG Image Compression

FPGA Implementation of 2-D DCT Architecture for JPEG Image Compression FPGA Implementation of 2-D DCT Architecture for JPEG Image Compression Prashant Chaturvedi 1, Tarun Verma 2, Rita Jain 3 1 Department of Electronics & Communication Engineering Lakshmi Narayan College

More information

Hardware Implementation and Verification by Model-Based Design Workflow - Communication Models to FPGA-based Radio

Hardware Implementation and Verification by Model-Based Design Workflow - Communication Models to FPGA-based Radio Hardware Implementation and Verification by -Based Design Workflow - Communication s to FPGA-based Radio Katsuhisa Shibata Industry Marketing MathWorks Japan 2015 The MathWorks, Inc. 1 Agenda Challenges

More information

Implementation of Pipelined Architecture Based on the DCT and Quantization For JPEG Image Compression

Implementation of Pipelined Architecture Based on the DCT and Quantization For JPEG Image Compression Volume 01, No. 01 www.semargroups.org Jul-Dec 2012, P.P. 60-66 Implementation of Pipelined Architecture Based on the DCT and Quantization For JPEG Image Compression A.PAVANI 1,C.HEMASUNDARA RAO 2,A.BALAJI

More information

Advanced FPGA Design Methodologies with Xilinx Vivado

Advanced FPGA Design Methodologies with Xilinx Vivado Advanced FPGA Design Methodologies with Xilinx Vivado Lecturer: Alexander Jäger Course of studies: Technische Informatik Student number: 3158849 Date: 30.01.2015 30/01/15 Advanced FPGA Design Methodologies

More information

Applications. Discontinued IP SYST_A SYST_B RDY BLK_START BLK_END RFFD. Figure 1: Pinout

Applications. Discontinued IP SYST_A SYST_B RDY BLK_START BLK_END RFFD. Figure 1: Pinout DS525 April 24, 2009 Features Drop-in module for Spartan -6, Spartan-3E, Spartan-3A/3A/3A DSP, Spartan-3, Virtex -6, Virtex-5 and Virtex-4 FPGAs Implements the IEEE 802.16e Wireless MA OFDMA PHY CTC encoder

More information

Viterbi Decoder Block Decoding - Trellis Termination and Tail Biting Authors: Bill Wilkie and Beth Cowie

Viterbi Decoder Block Decoding - Trellis Termination and Tail Biting Authors: Bill Wilkie and Beth Cowie Application Note: All Virtex and Spartan FPGA Families XAPP551 (1.0) February 14, 2005 R Viterbi Decoder Block Decoding - Trellis Termination and Tail Biting Authors: Bill Wilkie and Beth Cowie Summary

More information

Designing and Prototyping Digital Systems on SoC FPGA The MathWorks, Inc. 1

Designing and Prototyping Digital Systems on SoC FPGA The MathWorks, Inc. 1 Designing and Prototyping Digital Systems on SoC FPGA Hitu Sharma Application Engineer Vinod Thomas Sr. Training Engineer 2015 The MathWorks, Inc. 1 What is an SoC FPGA? A typical SoC consists of- A microcontroller,

More information

ETSI TS V3.1.1 ( ) Technical Specification

ETSI TS V3.1.1 ( ) Technical Specification TS 376-5-3 V3.. (29-7) Technical Specification GEO-Mobile Radio Interface Specifications (Release 3) Third Generation Satellite Packet Radio Service; Part 5: Radio interface physical layer specifications;

More information

Method We follow- How to Get Entry Pass in SEMICODUCTOR Industries for 3rd year engineering. Winter/Summer Training

Method We follow- How to Get Entry Pass in SEMICODUCTOR Industries for 3rd year engineering. Winter/Summer Training Method We follow- How to Get Entry Pass in SEMICODUCTOR Industries for 3rd year engineering Winter/Summer Training Level 2 continues. 3 rd Year 4 th Year FIG-3 Level 1 (Basic & Mandatory) & Level 1.1 and

More information

A SIMULINK-TO-FPGA MULTI-RATE HIERARCHICAL FIR FILTER DESIGN

A SIMULINK-TO-FPGA MULTI-RATE HIERARCHICAL FIR FILTER DESIGN A SIMULINK-TO-FPGA MULTI-RATE HIERARCHICAL FIR FILTER DESIGN Xiaoying Li 1 Fuming Sun 2 Enhua Wu 1, 3 1 University of Macau, Macao, China 2 University of Science and Technology Beijing, Beijing, China

More information

Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks

Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks Implementing MATLAB Algorithms in FPGAs and ASICs By Alexander Schreiber Senior Application Engineer MathWorks 2014 The MathWorks, Inc. 1 Traditional Implementation Workflow: Challenges Algorithm Development

More information

Early Models in Silicon with SystemC synthesis

Early Models in Silicon with SystemC synthesis Early Models in Silicon with SystemC synthesis Agility Compiler summary C-based design & synthesis for SystemC Pure, standard compliant SystemC/ C++ Most widely used C-synthesis technology Structural SystemC

More information

Modeling a 4G LTE System in MATLAB

Modeling a 4G LTE System in MATLAB Modeling a 4G LTE System in MATLAB Part 3: Path to implementation (C and HDL) Houman Zarrinkoub PhD. Signal Processing Product Manager MathWorks houmanz@mathworks.com 2011 The MathWorks, Inc. 1 LTE Downlink

More information

Hardware Implementation

Hardware Implementation Low Density Parity Check decoder Hardware Implementation Ruchi Rani (2008EEE2225) Under guidance of Prof. Jayadeva Dr.Shankar Prakriya 1 Indian Institute of Technology LDPC code Linear block code which

More information

An FPGA Based Adaptive Viterbi Decoder

An FPGA Based Adaptive Viterbi Decoder An FPGA Based Adaptive Viterbi Decoder Sriram Swaminathan Russell Tessier Department of ECE University of Massachusetts Amherst Overview Introduction Objectives Background Adaptive Viterbi Algorithm Architecture

More information

Table 1: Example Implementation Statistics for Xilinx FPGAs

Table 1: Example Implementation Statistics for Xilinx FPGAs logijpge Motion JPEG Encoder January 10 th, 2018 Data Sheet Version: v1.0 Xylon d.o.o. Fallerovo setaliste 22 10000 Zagreb, Croatia Phone: +385 1 368 00 26 Fax: +385 1 365 51 67 E-mail: support@logicbricks.com

More information

Verilog for High Performance

Verilog for High Performance Verilog for High Performance Course Description This course provides all necessary theoretical and practical know-how to write synthesizable HDL code through Verilog standard language. The course goes

More information

Method for hardware implementation of a convolutional turbo code interleaver and a sub-block interleaver

Method for hardware implementation of a convolutional turbo code interleaver and a sub-block interleaver Method for hardware implementation of a convolutional turbo code interleaver and a sub-block interleaver isclosed is a method for hardware implementation of a convolutional turbo code interleaver and a

More information

ADPCM-LCO Voice Compression Logic Core

ADPCM-LCO Voice Compression Logic Core ADPCM-LCO Voice Compression Logic Core Functional Description The ADPCM-LCO logic core [Adaptive Differential Pulse Code Modulation-Low Channel count Optimized] is a peripheral for digital voice compression/de-compression

More information

Agenda. Introduction FPGA DSP platforms Design challenges New programming models for FPGAs

Agenda. Introduction FPGA DSP platforms Design challenges New programming models for FPGAs New Directions in Programming FPGAs for DSP Dr. Jim Hwang Xilinx, Inc. Agenda Introduction FPGA DSP platforms Design challenges New programming models for FPGAs System Generator Getting your math into

More information

Parallel FIR Filters. Chapter 5

Parallel FIR Filters. Chapter 5 Chapter 5 Parallel FIR Filters This chapter describes the implementation of high-performance, parallel, full-precision FIR filters using the DSP48 slice in a Virtex-4 device. ecause the Virtex-4 architecture

More information

/$ IEEE

/$ IEEE IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 56, NO. 1, JANUARY 2009 81 Bit-Level Extrinsic Information Exchange Method for Double-Binary Turbo Codes Ji-Hoon Kim, Student Member,

More information

ALTERA M9K EMBEDDED MEMORY BLOCKS

ALTERA M9K EMBEDDED MEMORY BLOCKS ALTERA M9K EMBEDDED MEMORY BLOCKS M9K Overview M9K memories are Altera s embedded high-density memory arrays Nearly all modern FPGAs include something similar of varying sizes 8192 bits per block (9216

More information

A Configurable High-Throughput Linear Sorter System

A Configurable High-Throughput Linear Sorter System A Configurable High-Throughput Linear Sorter System Jorge Ortiz Information and Telecommunication Technology Center 2335 Irving Hill Road Lawrence, KS jorgeo@ku.edu David Andrews Computer Science and Computer

More information

Asynchronous FIFO Design

Asynchronous FIFO Design Asynchronous FIFO Design 2.1 Introduction: An Asynchronous FIFO Design refers to a FIFO Design where in the data values are written to the FIFO memory from one clock domain and the data values are read

More information

Introduction to C and HDL Code Generation from MATLAB

Introduction to C and HDL Code Generation from MATLAB Introduction to C and HDL Code Generation from MATLAB 이웅재차장 Senior Application Engineer 2012 The MathWorks, Inc. 1 Algorithm Development Process Requirements Research & Design Explore and discover Design

More information

DESIGN AND IMPLEMENTATION FOR A MULTI- STANDARD TURBO DECODER USING A RECONFIGURABLE ASIP

DESIGN AND IMPLEMENTATION FOR A MULTI- STANDARD TURBO DECODER USING A RECONFIGURABLE ASIP DESIGN AND IMPLEMENTATION FOR A MULTI- STANDARD TURBO DECODER USING A RECONFIGURABLE ASIP By Eid Mohamed Abdel-Hamid Abdel-Azim A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial

More information

The world s most reliable and mature full hardware ultra-low latency TCP, MAC and PCS IP Cores.

The world s most reliable and mature full hardware ultra-low latency TCP, MAC and PCS IP Cores. nxtcp Ultra-low latency TCP/IP + MAC + PCS IP core for FPGAs nxmac + nxpcs Ultra-low latency MAC + PCS IP core for FPGAs hardware acceleration exper ts Best-in-class ultra-low latency from wire to user

More information

Configurable UART with FIFO ver 2.20

Configurable UART with FIFO ver 2.20 D16550 Configurable UART with FIFO ver 2.20 OVERVIEW The D16550 is a soft Core of a Universal Asynchronous Receiver/Transmitter (UART) functionally identical to the TL16C550A. The D16550 allows serial

More information

EITF35: Introduction to Structured VLSI Design

EITF35: Introduction to Structured VLSI Design EITF35: Introduction to Structured VLSI Design Introduction to FPGA design Rakesh Gangarajaiah Rakesh.gangarajaiah@eit.lth.se Slides from Chenxin Zhang and Steffan Malkowsky WWW.FPGA What is FPGA? Field

More information

Design and Verification of FPGA Applications

Design and Verification of FPGA Applications Design and Verification of FPGA Applications Giuseppe Ridinò Paola Vallauri MathWorks giuseppe.ridino@mathworks.it paola.vallauri@mathworks.it Torino, 19 Maggio 2016, INAF 2016 The MathWorks, Inc. 1 Agenda

More information

FPGA Provides Speedy Data Compression for Hyperspectral Imagery

FPGA Provides Speedy Data Compression for Hyperspectral Imagery FPGA Provides Speedy Data Compression for Hyperspectral Imagery Engineers implement the Fast Lossless compression algorithm on a Virtex-5 FPGA; this implementation provides the ability to keep up with

More information

Virtex-5 GTP Aurora v2.8

Virtex-5 GTP Aurora v2.8 0 DS538 October 10, 2007 0 0 Introduction The Virtex -5 GTP Aurora core implements the Aurora protocol using the high-speed serial GTP transceivers in Virtex-5 LXT and SXT devices. The core can use up

More information

Fibre Channel Arbitrated Loop v2.3

Fibre Channel Arbitrated Loop v2.3 - THIS IS A DISCONTINUED IP CORE - 0 Fibre Channel Arbitrated Loop v2.3 DS518 March 24, 2008 0 0 Introduction The LogiCORE IP Fibre Channel Arbitrated Loop (FC-AL) core provides a flexible, fully verified

More information

Analysis of Circular Buffer Rate Matching for LTE Turbo Code

Analysis of Circular Buffer Rate Matching for LTE Turbo Code Analysis of Circular Buffer Rate Matching for LTE Turbo Code Jung-Fu (Thomas) Cheng *, Ajit Nimbalker +, Yufei Blankenship +, Brian Classon +, and T. Keith Blankenship + * Ericsson Research, RTP, NC, USA

More information

LogiCORE IP Serial RapidIO v5.6

LogiCORE IP Serial RapidIO v5.6 DS696 March 1, 2011 Introduction The LogiCORE IP Serial RapidIO Endpoint solution comprises a highly flexible and optimized Serial RapidIO Physical Layer core and a Logical (I/O) and Transport Layer interface.

More information

ESL design with the Agility Compiler for SystemC

ESL design with the Agility Compiler for SystemC ESL design with the Agility Compiler for SystemC SystemC behavioral design & synthesis Steve Chappell & Chris Sullivan Celoxica ESL design portfolio Complete ESL design environment Streaming Video Processing

More information

ECE5775 High-Level Digital Design Automation, Fall 2018 School of Electrical Computer Engineering, Cornell University

ECE5775 High-Level Digital Design Automation, Fall 2018 School of Electrical Computer Engineering, Cornell University ECE5775 High-Level Digital Design Automation, Fall 2018 School of Electrical Computer Engineering, Cornell University Lab 4: Binarized Convolutional Neural Networks Due Wednesday, October 31, 2018, 11:59pm

More information

Error Correction Code (ALTECC_ENCODER and ALTECC_DECODER) Megafunctions User Guide

Error Correction Code (ALTECC_ENCODER and ALTECC_DECODER) Megafunctions User Guide Error Correction Code (ALTECC_ENCODER and ALTECC_DECODER) Megafunctions User Guide 11 Innovation Drive San Jose, CA 95134 www.altera.com Software Version 8. Document Version: 2. Document Date: June 28

More information

H.264 AVC 4k Decoder V.1.0, 2014

H.264 AVC 4k Decoder V.1.0, 2014 SOC H.264 AVC 4k Video Decoder Datasheet System-On-Chip (SOC) Technologies 1. Key Features 1. Profile: High profile 2. Resolution: 4k (3840x2160) 3. Frame Rate: up to 60fps 4. Chroma Format: 4:2:0 or 4:2:2

More information

On the parallelization of slice-based Keccak implementations on Xilinx FPGAs

On the parallelization of slice-based Keccak implementations on Xilinx FPGAs On the parallelization of slice-based Keccak implementations on Xilinx FPGAs Jori Winderickx, Joan Daemen and Nele Mentens KU Leuven, ESAT/COSIC & iminds, Leuven, Belgium STMicroelectronics Belgium & Radboud

More information

ISSCC 2003 / SESSION 8 / COMMUNICATIONS SIGNAL PROCESSING / PAPER 8.7

ISSCC 2003 / SESSION 8 / COMMUNICATIONS SIGNAL PROCESSING / PAPER 8.7 ISSCC 2003 / SESSION 8 / COMMUNICATIONS SIGNAL PROCESSING / PAPER 8.7 8.7 A Programmable Turbo Decoder for Multiple 3G Wireless Standards Myoung-Cheol Shin, In-Cheol Park KAIST, Daejeon, Republic of Korea

More information

Midterm Exam. Solutions

Midterm Exam. Solutions Midterm Exam Solutions Problem 1 List at least 3 advantages of implementing selected portions of a complex design in software Software vs. Hardware Trade-offs Improve Performance Improve Energy Efficiency

More information

Convolutional Encoder and Viterbi Decoder Core Datasheet

Convolutional Encoder and Viterbi Decoder Core Datasheet 4i2i Communications Ltd., Doig Scott Building, Craibstone, Aberdeen AB2 9YA, UK. Tel. +44 224 72844, Fax +44 224 7443, email: info@4i2i.com, web: http://www.4i2i.com Convolutional Encoder and Viterbi Decoder

More information

Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues

Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues E. BOUTILLON, C. DOUILLARD, G. MONTORSI 1 Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues Emmanuel Boutillon, Catherine Douillard, and Guido Montorsi Abstract This tutorial

More information

Quixilica Floating-Point QR Processor Core

Quixilica Floating-Point QR Processor Core Data sheet Quixilica Floating-Point QR Processor Core With 13 processors on XC2V6000-5 - 20 GFlop/s at 100MHz With 10 processors on XC2V6000-5 - 15 GFlop/s at 97MHz With 4 processors on XC2V3000-5 - 81

More information

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 11, November ISSN

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 11, November ISSN Rtl Desing And Vlsi Implementation Of An Efficient Convolution Encoder And Adaptive Viterbi Decoder Thalakayala Eleesha #1 V.G.Pavan Kumar #2 #1 Student, M.Tech (VLSI), #2 Assistant Professor, Sri Vasavi

More information

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a)

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a) DS799 March 1, 2011 LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.00.a) Introduction The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP core for use with the Xilinx Embedded

More information

Accelerating FPGA/ASIC Design and Verification

Accelerating FPGA/ASIC Design and Verification Accelerating FPGA/ASIC Design and Verification Tabrez Khan Senior Application Engineer Vidya Viswanathan Application Engineer 2015 The MathWorks, Inc. 1 Agenda Challeges with Traditional Implementation

More information

FPGA Implementation of MIPS RISC Processor

FPGA Implementation of MIPS RISC Processor FPGA Implementation of MIPS RISC Processor S. Suresh 1 and R. Ganesh 2 1 CVR College of Engineering/PG Student, Hyderabad, India 2 CVR College of Engineering/ECE Department, Hyderabad, India Abstract The

More information

VHDL for Synthesis. Course Description. Course Duration. Goals

VHDL for Synthesis. Course Description. Course Duration. Goals VHDL for Synthesis Course Description This course provides all necessary theoretical and practical know how to write an efficient synthesizable HDL code through VHDL standard language. The course goes

More information

8b/10b Encoder/Decoder

8b/10b Encoder/Decoder 8b/b Encoder/Decoder February 22 Introduction Reference Design RD2 Many serial data transmission standards utilize 8b/b encoding to ensure sufficient data transitions for clock recovery. This reference

More information

MATLAB/Simulink 기반의프로그래머블 SoC 설계및검증

MATLAB/Simulink 기반의프로그래머블 SoC 설계및검증 MATLAB/Simulink 기반의프로그래머블 SoC 설계및검증 이웅재부장 Application Engineering Group 2014 The MathWorks, Inc. 1 Agenda Introduction ZYNQ Design Process Model-Based Design Workflow Prototyping and Verification Processor

More information

EE 459/500 HDL Based Digital Design with Programmable Logic

EE 459/500 HDL Based Digital Design with Programmable Logic EE 459/500 HDL Based Digital Design with Programmable Logic Lecture 17 From special-purpose FSMD to general-purpose microcontroller: Xilinx s PicoBlaze 1 Overview From FSMD to Microcontroller PicoBlaze

More information

HDL Implementation of an Efficient Partial Parallel LDPC Decoder Using Soft Bit Flip Algorithm

HDL Implementation of an Efficient Partial Parallel LDPC Decoder Using Soft Bit Flip Algorithm I J C T A, 9(20), 2016, pp. 75-80 International Science Press HDL Implementation of an Efficient Partial Parallel LDPC Decoder Using Soft Bit Flip Algorithm Sandeep Kakde* and Atish Khobragade** ABSTRACT

More information

Developing and Integrating FPGA Co-processors with the Tic6x Family of DSP Processors

Developing and Integrating FPGA Co-processors with the Tic6x Family of DSP Processors Developing and Integrating FPGA Co-processors with the Tic6x Family of DSP Processors Paul Ekas, DSP Engineering, Altera Corp. pekas@altera.com, Tel: (408) 544-8388, Fax: (408) 544-6424 Altera Corp., 101

More information

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs)

EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Fall 2002 EECS150 - Lec06-FPGA Page 1 Outline What are FPGAs? Why use FPGAs (a short history

More information

Block Diagram. mast_sel. mast_inst. mast_data. mast_val mast_rdy. clk. slv_sel. slv_inst. slv_data. slv_val slv_rdy. rfifo_depth_log2.

Block Diagram. mast_sel. mast_inst. mast_data. mast_val mast_rdy. clk. slv_sel. slv_inst. slv_data. slv_val slv_rdy. rfifo_depth_log2. Key Design Features Block Diagram Synthesizable, technology independent IP Core for FPGA, ASIC and SoC reset Supplied as human readable VHDL (or Verilog) source code mast_sel SPI serial-bus compliant Supports

More information

Documentation. Design File Formats. Constraints Files. Verification. Slices 1 IOB 2 GCLK BRAM

Documentation. Design File Formats. Constraints Files. Verification. Slices 1 IOB 2 GCLK BRAM DES and DES3 Encryption Engine (MC-XIL-DES) May 19, 2008 Product Specification AllianceCORE Facts 10805 Rancho Bernardo Road Suite 110 San Diego, California 92127 USA Phone: (858) 385-7652 Fax: (858) 385-7770

More information

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs?

Outline. EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) FPGA Overview. Why FPGAs? EECS150 - Digital Design Lecture 6 - Field Programmable Gate Arrays (FPGAs) September 12, 2002 John Wawrzynek Outline What are FPGAs? Why use FPGAs (a short history lesson). FPGA variations Internal logic

More information

Configurable UART ver 2.10

Configurable UART ver 2.10 D16450 Configurable UART ver 2.10 OVERVIEW The D16450 is a soft Core of a Universal Asynchronous Receiver/Transmitter (UART) functionally identical to the TL16C450. D16450 performs serial-to-parallel conversion

More information

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a)

LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a) DS799 June 22, 2011 LogiCORE IP AXI Video Direct Memory Access (axi_vdma) (v3.01.a) Introduction The AXI Video Direct Memory Access (AXI VDMA) core is a soft Xilinx IP core for use with the Xilinx Embedded

More information

High Data Rate Fully Flexible SDR Modem

High Data Rate Fully Flexible SDR Modem High Data Rate Fully Flexible SDR Modem Advanced configurable architecture & development methodology KASPERSKI F., PIERRELEE O., DOTTO F., SARLOTTE M. THALES Communication 160 bd de Valmy, 92704 Colombes,

More information

FPGA for Software Engineers

FPGA for Software Engineers FPGA for Software Engineers Course Description This course closes the gap between hardware and software engineers by providing the software engineer all the necessary FPGA concepts and terms. The course

More information

Towards and ASIP optimized for multi-standard turbo decoding

Towards and ASIP optimized for multi-standard turbo decoding Towards and ASIP optimized for multi-standard turbo decoding Rachid Al Khayat To cite this version: Rachid Al Khayat. Towards and ASIP optimized for multi-standard turbo decoding. Electronics. Télécom

More information

The Nios II Family of Configurable Soft-core Processors

The Nios II Family of Configurable Soft-core Processors The Nios II Family of Configurable Soft-core Processors James Ball August 16, 2005 2005 Altera Corporation Agenda Nios II Introduction Configuring your CPU FPGA vs. ASIC CPU Design Instruction Set Architecture

More information

Virtex-II Architecture. Virtex II technical, Design Solutions. Active Interconnect Technology (continued)

Virtex-II Architecture. Virtex II technical, Design Solutions. Active Interconnect Technology (continued) Virtex-II Architecture SONET / SDH Virtex II technical, Design Solutions PCI-X PCI DCM Distri RAM 18Kb BRAM Multiplier LVDS FIFO Shift Registers BLVDS SDRAM QDR SRAM Backplane Rev 4 March 4th. 2002 J-L

More information

ZBT SRAM Controller Reference Design

ZBT SRAM Controller Reference Design ZBT SRAM Controller Reference Design for APEX II Devices December 2001, ver. 1.0 Application Note 183 Introduction As communication systems require more low-latency, high-bandwidth interfaces for peripheral

More information

Basic FPGA Architectures. Actel FPGAs. PLD Technologies: Antifuse. 3 Digital Systems Implementation Programmable Logic Devices

Basic FPGA Architectures. Actel FPGAs. PLD Technologies: Antifuse. 3 Digital Systems Implementation Programmable Logic Devices 3 Digital Systems Implementation Programmable Logic Devices Basic FPGA Architectures Why Programmable Logic Devices (PLDs)? Low cost, low risk way of implementing digital circuits as application specific

More information

R07. IV B.Tech. II Semester Supplementary Examinations, July, 2011

R07. IV B.Tech. II Semester Supplementary Examinations, July, 2011 www..com www..com Set No. 1 DIGITAL DESIGN THROUGH VERILOG (Common to Electronics & Communication Engineering, Bio-Medical Engineering and Electronics & Computer Engineering) 1. a) What is Verilog HDL?

More information

IMPLEMENTATION OF A BIT ERROR RATE TESTER OF A WIRELESS COMMUNICATION SYSTEM ON AN FPGA

IMPLEMENTATION OF A BIT ERROR RATE TESTER OF A WIRELESS COMMUNICATION SYSTEM ON AN FPGA IMPLEMENTATION OF A BIT ERROR RATE TESTER OF A WIRELESS COMMUNICATION SYSTEM ON AN FPGA Lakshmy Sukumaran 1, Dharani K G 2 1 Student, Electronics and communication, MVJ College of Engineering, Bangalore-560067

More information

AL8253 Core Application Note

AL8253 Core Application Note AL8253 Core Application Note 6-15-2012 Table of Contents General Information... 3 Features... 3 Block Diagram... 3 Contents... 4 Behavioral... 4 Synthesizable... 4 Test Vectors... 4 Interface... 5 Implementation

More information

Forward Error Correction Codes

Forward Error Correction Codes Appendix 6 Wireless Access Networks: Fixed Wireless Access and WLL Networks Ð Design and Operation. Martin P. Clark Copyright & 000 John Wiley & Sons Ltd Print ISBN 0-471-4998-1 Online ISBN 0-470-84151-6

More information

What is Xilinx Design Language?

What is Xilinx Design Language? Bill Jason P. Tomas University of Nevada Las Vegas Dept. of Electrical and Computer Engineering What is Xilinx Design Language? XDL is a human readable ASCII format compatible with the more widely used

More information

Performance Evolution of DDR3 SDRAM Controller for Communication Networks

Performance Evolution of DDR3 SDRAM Controller for Communication Networks Performance Evolution of DDR3 SDRAM Controller for Communication Networks U.Venkata Rao 1, G.Siva Suresh Kumar 2, G.Phani Kumar 3 1,2,3 Department of ECE, Sai Ganapathi Engineering College, Visakhaapatnam,

More information

AES Core Specification. Author: Homer Hsing

AES Core Specification. Author: Homer Hsing AES Core Specification Author: Homer Hsing homer.hsing@gmail.com Rev. 0.1.1 October 30, 2012 This page has been intentionally left blank. www.opencores.org Rev 0.1.1 ii Revision History Rev. Date Author

More information

Comparative Study and Implementation of JPEG and JPEG2000 Standards for Satellite Meteorological Imaging Controller using HDL

Comparative Study and Implementation of JPEG and JPEG2000 Standards for Satellite Meteorological Imaging Controller using HDL Comparative Study and Implementation of JPEG and JPEG2000 Standards for Satellite Meteorological Imaging Controller using HDL Vineeth Mohan, Ajay Mohanan, Paul Leons, Rizwin Shooja Amrita Vishwa Vidyapeetham,

More information

Design of Convolutional Codes for varying Constraint Lengths

Design of Convolutional Codes for varying Constraint Lengths Design of Convolutional Codes for varying Constraint Lengths S VikramaNarasimhaReddy 1, Charan Kumar K 2, Neelima Koppala 3 1,2 MTech(VLSI) Student, 3 Assistant Professor, ECE Department, SreeVidyanikethan

More information

LogiCORE IP AXI Video Direct Memory Access v4.00.a

LogiCORE IP AXI Video Direct Memory Access v4.00.a LogiCORE IP AXI Video Direct Memory Access v4.00.a Product Guide Table of Contents Chapter 1: Overview Feature Summary............................................................ 9 Applications................................................................

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,100 116,000 120M Open access books available International authors and editors Downloads Our

More information

9. Building Memory Subsystems Using SOPC Builder

9. Building Memory Subsystems Using SOPC Builder 9. Building Memory Subsystems Using SOPC Builder QII54006-6.0.0 Introduction Most systems generated with SOPC Builder require memory. For example, embedded processor systems require memory for software

More information

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner

RiceNIC. Prototyping Network Interfaces. Jeffrey Shafer Scott Rixner RiceNIC Prototyping Network Interfaces Jeffrey Shafer Scott Rixner RiceNIC Overview Gigabit Ethernet Network Interface Card RiceNIC - Prototyping Network Interfaces 2 RiceNIC Overview Reconfigurable and

More information