Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Size: px
Start display at page:

Download "Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science"

Transcription

1 Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture have been largely based on those from an earlier edition of the course text Operating Systems Concepts, 8th ed., by Silberschatz, Galvin, and Gagne. Many, if not all, the illustrations contained in this presentation come from this source.

2 Logical vs. Physical Address Space The concept of a logical address space that is bound to a separate physical address space is central to proper memory management. Logical address generated by the CPU; also referred to as virtual address. Physical address address seen by the memory unit. Logical and physical addresses are the same in compiletime and load-time address-binding schemes; logical (virtual) and physical addresses differ in execution-time address-binding scheme. CSCI 315 Operating Systems Design 2

3 Contiguous Allocation Main memory usually into two partitions: Resident operating system, usually held in low memory with interrupt vector. User processes then held in high memory. Single-partition allocation Relocation-register scheme used to protect user processes from each other, and from changing operating-system code and data. Relocation-register contains value of smallest physical address; limit register contains range of logical addresses each logical address must be less than the limit register. CSCI 315 Operating Systems Design 3

4 Contiguous Allocation Multiple-partition allocation Hole block of available memory; holes of various size are scattered throughout memory. When a process arrives, it is allocated memory from a hole large enough to accommodate it. Operating system maintains information about: a) allocated partitions b) free partitions (hole) OS OS OS OS process 5 process 5 process 5 process 5 process 9 process 9 process 8 process 10 process 2 process 2 process 2 process 2 CSCI 315 Operating Systems Design 4

5 Dynamic Storage-Allocation Problem How to satisfy a request of size n from a list of free holes. First-fit: Allocate the first hole that is big enough. Best-fit: Allocate the smallest hole that is big enough; must search entire list, unless ordered by size. Produces the smallest leftover hole. Worst-fit: Allocate the largest hole; must also search entire list. Produces the largest leftover hole. First-fit and best-fit better than worst-fit in terms of speed and storage utilization. CSCI 315 Operating Systems Design 5

6 Fragmentation External Fragmentation total memory space exists to satisfy a request, but it is not contiguous. Internal Fragmentation allocated memory may be slightly larger than requested memory; this size difference is memory internal to a partition, but not being used. Reduce external fragmentation by compaction: Shuffle memory contents to place all free memory together in one large block. Compaction is possible only if relocation is dynamic, and is done at execution time. I/O problem Latch job in memory while it is involved in I/O. Do I/O only into OS buffers. CSCI 315 Operating Systems Design 6

7 Paging Logical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available. Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512 bytes and 8192 bytes). Divide logical memory into blocks of same size called pages (we want to make page size equal to frame size). Keep track of all free frames. To run a program of size n pages, need to find n free frames and load program. Set up a page table to translate logical to physical addresses. Internal fragmentation. CSCI 315 Operating Systems Design 7

8 Address Translation Scheme Address generated by CPU is divided into: Page number (p) used as an index into a page table which contains base address of each page in physical memory. Page offset (d) combined with base address to define the physical memory address that is sent to the memory unit. CSCI 315 Operating Systems Design 8

9 Address Translation Architecture CSCI 315 Operating Systems Design 9

10 Paging Example CSCI 315 Operating Systems Design 10

11 Free Frames Before allocation After allocation CSCI 315 Operating Systems Design 11

12 Implementation of Page Table Page table is kept in main memory. Page-table base register (PTBR) points to the page table. Page-table length register (PRLR) indicates size of the page table. In this scheme every data/instruction access requires two memory accesses. One for the page table and one for the data/instruction. The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs). CSCI 315 Operating Systems Design 12

13 Associative Memory Associative memory parallel search Page # Frame # Address translation (A, A ) If A is in associative register, get frame # out. Otherwise get frame # from page table in memory Associative memory is used to implement a TLB. Note that the TLB is nothing more than a special purpose cache memory to speed up access to the page table. CSCI 315 Operating Systems Design 13

14 Paging Hardware With TLB CSCI 315 Operating Systems Design 14

15 Effective Access Time Associative Lookup = ε time unit Assume memory cycle time is 1 microsecond Hit ratio percentage of times that a page number is found in the associative registers; ration related to number of associative registers. Hit ratio = α Effective Access Time (EAT) EAT = (1 + ε) α + (2 + ε)(1 α) = 2 + ε α CSCI 315 Operating Systems Design 15

16 Memory Protection Memory protection implemented by associating protection bit with each frame. Valid-invalid bit attached to each entry in the page table: valid indicates that the associated page is in the process logical address space, and is thus a legal page. invalid indicates that the page is not in the process logical address space. CSCI 315 Operating Systems Design 16

17 Hierarchical Page Tables Break up the logical address space into multiple page tables. A simple technique is a two-level page table. CSCI 315 Operating Systems Design 17

18 Two-Level Paging Example A logical address (on 32-bit machine with 4K page size) is divided into: a page number consisting of 20 bits. a page offset consisting of 12 bits. Since the page table is paged, the page number is further divided into: a 10-bit page number. a 10-bit page offset. Thus, a logical address is as follows: page number p 1 p 2 d page offset where p 1 is an index into the outer page table, and p 2 is the displacement within the page of the outer page table. CSCI 315 Operating Systems Design 18

19 Two-Level Page-Table Scheme CSCI 315 Operating Systems Design 19

20 Address-Translation Scheme Address-translation scheme for a two-level 32-bit paging architecture: CSCI 315 Operating Systems Design 20

21 Shared Pages Shared code One copy of read-only (reentrant) code shared among processes (i.e., text editors, compilers, window systems). Shared code must appear in same location in the logical address space of all processes. Private code and data Each process keeps a separate copy of the code and data. The pages for the private code and data can appear anywhere in the logical address space. CSCI 315 Operating Systems Design 21

22 Shared Pages Example CSCI 315 Operating Systems Design 22

23 Virtual Memory Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical address space can therefore be much larger than physical address space. Allows address spaces to be shared by several processes. Allows for more efficient process creation. Virtual memory can be implemented via: Demand paging Demand segmentation CSCI 315 Operating Systems Design 23

24 Virtual Memory Larger than Physical Memory CSCI 315 Operating Systems Design 24

25 Demand Paging Bring a page into memory only when it is needed. Less I/O needed. Less memory needed. Faster response. More users. Page is needed (there is a reference to it): invalid reference abort. not-in-memory bring to memory. CSCI 315 Operating Systems Design 25

26 Transfer of a Paged Memory to Contiguous Disk Space CSCI 315 Operating Systems Design 26

27 Valid-Invalid Bit With each page table entry a valid invalid bit is associated (1 in-memory, 0 not-in-memory) Initially valid invalid but is set to 0 on all entries. Example of a page table snapshot. Frame # M page table valid-invalid bit During address translation, if valid invalid bit in page table entry is 0 page fault. CSCI 315 Operating Systems Design 27

28 Page Table when some pages are not in Main Memory CSCI 315 Operating Systems Design 28

29 Page Fault If there is ever a reference to a page, first reference will trap to OS page fault. OS looks at page table to decide: If it was an invalid reference abort. If it was a reference to a page that is not in memory, continue. Get an empty frame. Swap page into frame. Correct the page table and make validation bit = 1. Restart the instruction that caused the page fault. CSCI 315 Operating Systems Design 29

30 Steps in Handling a Page Fault CSCI 315 Operating Systems Design 30

31 What if there is no free frame? Page replacement find some page in memory, that is not really in use and swap it out. Must define an algorithm to select what page is replaced. Performance: want an algorithm which will result in minimum number of page faults. The same page may be brought in and out of memory several times. CSCI 315 Operating Systems Design 31

32 No free frame: now what? Page replacement: Are all those pages in memory being referenced? Choose one to swap back out to disk and make room to load a new page. Algorithm: How you choose a victim. Performance: Want an algorithm that will result in minimum number of page faults. Side effect: The same page may be brought in and out of memory several times. CSCI 315 Operating Systems Design 32

33 Performance of Demand Paging Page Fault Rate: 0 p 1.0 if p = 0 no page faults. if p = 1, every reference is a fault. Effective Access Time (EAT): EAT = [(1 p) (memory access)] + [p (page fault overhead)] where: page fault overhead = [swap page out ] + [swap page in] + [restart overhead] CSCI 315 Operating Systems Design 33

34 Page Replacement Prevent over-allocation of memory by modifying pagefault service routine to include page replacement. Use modify (dirty) bit to reduce overhead of page transfers only modified pages are written to disk. Page replacement completes separation between logical memory and physical memory large virtual memory can be provided on a smaller physical memory. CSCI 315 Operating Systems Design 34

35 Need For Page Replacement CSCI 315 Operating Systems Design 35

36 Basic Page Replacement 1. Find the location of the desired page on disk. 2. Find a free frame: - If there is a free frame, use it. - If there is no free frame, use a page replacement algorithm to select a victim frame. 3. Read the desired page into the (newly) free frame. Update the page and frame tables. 4. Restart the process. CSCI 315 Operating Systems Design 36

37 Page Replacement CSCI 315 Operating Systems Design 37

38 Page Replacement Algorithms Goal: Produce a low page-fault rate. Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string. The reference string is produced by tracing a real program or by some stochastic model. We look at every address produced and strip off the page offset, leaving only the page number. For instance: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 CSCI 315 Operating Systems Design 38

39 Graph of Page Faults Versus The Number of Frames CSCI 315 Operating Systems Design 39

40 FIFO Page Replacement Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5. 3 frames (3 pages can be in memory at a time per process) page faults frames page faults FIFO Replacement Belady s Anomaly: more frames, more page faults. CSCI 315 Operating Systems Design 40

41 FIFO Page Replacement CSCI 315 Operating Systems Design 41

42 FIFO (Belady s Anomaly) CSCI 315 Operating Systems Design 42

43 Optimal Algorithm Replace the page that will not be used for longest period of time. (How can you know what the future references will be?) 4 frames example: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, page faults Used for measuring how well your algorithm performs. CSCI 315 Operating Systems Design 43

44 Optimal Page Replacement CSCI 315 Operating Systems Design 44

45 LRU Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, Counter implementation: 4 3 Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter. When a page needs to be changed, look at the counters to determine which are to change. CSCI 315 Operating Systems Design 45

46 LRU Page Replacement CSCI 315 Operating Systems Design 46

47 LRU Algorithm (Cont.) Stack implementation keep a stack of page numbers in a double link form: Page referenced: move it to the top requires 6 pointers to be changed No search for replacement. CSCI 315 Operating Systems Design 47

48 LRU and Belady s Anomaly LRU does not suffer from Belady s Anomaly (OPT doesn t either). It has been shown that algorithms in a class called stack algorithms can never exhibit Belady s Anomaly. A stack algorithm is one for which the set of pages in memory for n frames is a subset of the pages that Could be in memory for n+1 frames. CSCI 315 Operating Systems Design 48

49 Use Of A Stack to Record The Most Recent Page References CSCI 315 Operating Systems Design 49

50 LRU Approximation Algorithms Reference bit With each page associate a bit, initially = 0 When page is referenced bit set to 1. Replace the one which is 0 (if one exists). We do not know the order, however. Second chance Need reference bit. Clock replacement. If page to be replaced (in clock order) has reference bit = 1. then: set reference bit 0. leave page in memory. replace next page (in clock order), subject to same rules. CSCI 315 Operating Systems Design 50

51 Second-Chance (clock) Page-Replacement Algorithm CSCI 315 Operating Systems Design 51

52 Counting Algorithms Keep a counter of the number of references that have been made to each page. LFU Algorithm: replaces page with smallest count. MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used. CSCI 315 Operating Systems Design 52

53 Allocation of Frames Each process needs a minimum number of pages. There are two major allocation schemes: fixed allocation priority allocation CSCI 315 Operating Systems Design 53

54 Fixed Allocation Equal allocation e.g., if 100 frames and 5 processes, give each 20 pages. Proportional allocation Allocate according to the size of process. CSCI 315 Operating Systems Design 54

55 Priority Allocation Use a proportional allocation scheme using priorities rather than size. If process P i generates a page fault, select for replacement one of its frames. select for replacement a frame from a process with lower priority number. CSCI 315 Operating Systems Design 55

56 Global vs. Local Allocation Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another. Local replacement each process selects from only its own set of allocated frames. CSCI 315 Operating Systems Design 56

57 Thrashing If a process does not have enough pages, the page-fault rate is very high. This leads to: Low CPU utilization. Operating system thinks that it needs to increase the degree of multiprogramming. Another process added to the system. Thrashing a process is busy swapping pages in and out. CSCI 315 Operating Systems Design 57

58 Thrashing Why does paging work? Locality model Process migrates from one locality to another. Localities may overlap. Why does thrashing occur? Σ size of locality > total memory size CSCI 315 Operating Systems Design 58

59 Locality in Memory-Reference Pattern CSCI 315 Operating Systems Design 59

60 Working-Set Model Δ working-set window a fixed number of page references. WSS i (working set of Process P i ) = total number of pages referenced in the most recent Δ (varies in time) if Δ too small will not encompass entire locality. if Δ too large will encompass several localities. if Δ = will encompass entire program. D = Σ WSS i total demand frames if D > m Thrashing Policy if D > m, then suspend one of the processes. CSCI 315 Operating Systems Design 60

61 Working-set model CSCI 315 Operating Systems Design 61

62 Keeping Track of the Working Set Approximate with interval timer + a reference bit Example: Δ = 10,000 Timer interrupts after every 5000 time units. Keep in memory 2 bits for each page. Whenever a timer interrupts copy and sets the values of all reference bits to 0. If one of the bits in memory = 1 page in working set. Why is this not completely accurate? Improvement = 10 bits and interrupt every 1000 time units. CSCI 315 Operating Systems Design 62

63 Page-Fault Frequency Scheme Establish acceptable page-fault rate. If actual rate too low, process loses frame. If actual rate too high, process gains frame. CSCI 315 Operating Systems Design 63

64 Memory-mapped Files Memory mapping a file can be accomplished by mapping a disk block to one or more pages in memory. A page-sized portion of the file is read from the file system into a physical page. Subsequent read() and write() operations are handled as memory (not disk) accesses. Writing to the file in memory is not necessarily synchronous to the file on disk. The file can be committed back to disk when it s closed. CSCI 315 Operating Systems Design 64

65 Memory-mapped Files process A virtual memory disk file process B virtual memory CSCI 315 Operating Systems Design 65

66 Prepaging Prepaging: In order to avoid the initial number of page faults, the system can bring into memory all the pages that will be needed all at once. This can also be applied when a swapped-out process is restarted. The smart thing to do is to remember the working set of the process. One question that arises is whether all the pages brought in will actually be used Is the cost of prepaging less than the cost of servicing each individual page fault? CSCI 315 Operating Systems Design 66

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science

Virtual Memory. CSCI 315 Operating Systems Design Department of Computer Science Virtual Memory CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture were based on those Operating Systems Concepts, 9th ed., by Silberschatz, Galvin, and

More information

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory

Virtual Memory. Virtual Memory. Demand Paging. valid-invalid bit. Virtual Memory Larger than Physical Memory Virtual Memory Virtual Memory CSCI Operating Systems Design Department of Computer Science Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science Memory Management CSCI 315 Operating Systems Design Department of Computer Science Notice: The slides for this lecture are based on those from Operating Systems Concepts, 9th ed., by Silberschatz, Galvin,

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmentation Operating

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Operating System Concepts 8 th Edition,! Silberschatz, Galvin and Gagne 2009! Chapter 8: Memory Management Background" Swapping " Contiguous Memory Allocation" Paging" Structure

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 8.2 Silberschatz, Galvin

More information

Chapter 8: Memory Management Strategies

Chapter 8: Memory Management Strategies Chapter 8: Memory- Management Strategies, Silberschatz, Galvin and Gagne 2009 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table

More information

Background. Demand Paging. valid-invalid bit. Tevfik Koşar. CSC Operating Systems Spring 2007

Background. Demand Paging. valid-invalid bit. Tevfik Koşar. CSC Operating Systems Spring 2007 CSC 0 - Operating Systems Spring 007 Lecture - XIII Virtual Memory Tevfik Koşar Background Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in

More information

Module 9: Virtual Memory

Module 9: Virtual Memory Module 9: Virtual Memory Background Demand Paging Performance of Demand Paging Page Replacement Page-Replacement Algorithms Allocation of Frames Thrashing Other Considerations Demand Segmenation 9.1 Background

More information

Chapter 9: Memory Management. Background

Chapter 9: Memory Management. Background 1 Chapter 9: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 9.1 Background Program must be brought into memory and placed within a process for

More information

Chapter 9: Virtual-Memory

Chapter 9: Virtual-Memory Chapter 9: Virtual-Memory Management Chapter 9: Virtual-Memory Management Background Demand Paging Page Replacement Allocation of Frames Thrashing Other Considerations Silberschatz, Galvin and Gagne 2013

More information

8.1 Background. Part Four - Memory Management. Chapter 8: Memory-Management Management Strategies. Chapter 8: Memory Management

8.1 Background. Part Four - Memory Management. Chapter 8: Memory-Management Management Strategies. Chapter 8: Memory Management Part Four - Memory Management 8.1 Background Chapter 8: Memory-Management Management Strategies Program must be brought into memory and placed within a process for it to be run Input queue collection of

More information

Part Three - Memory Management. Chapter 8: Memory-Management Strategies

Part Three - Memory Management. Chapter 8: Memory-Management Strategies Part Three - Memory Management Chapter 8: Memory-Management Strategies Chapter 8: Memory-Management Strategies 8.1 Background 8.2 Swapping 8.3 Contiguous Memory Allocation 8.4 Segmentation 8.5 Paging 8.6

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY

I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY I.-C. Lin, Assistant Professor. Textbook: Operating System Concepts 8ed CHAPTER 8: MEMORY MANAGEMENT Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the

More information

I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY

I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY I.-C. Lin, Assistant Professor. Textbook: Operating System Principles 7ed CHAPTER 8: MEMORY MANAGEMENT Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of

More information

Module 9: Memory Management. Background. Binding of Instructions and Data to Memory

Module 9: Memory Management. Background. Binding of Instructions and Data to Memory Module 9: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 9.1 Background Program must be brought into memory

More information

Memory Management. Memory Management

Memory Management. Memory Management Memory Management Gordon College Stephen Brinton Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 1 Background Program must be brought into memory

More information

Chapters 9 & 10: Memory Management and Virtual Memory

Chapters 9 & 10: Memory Management and Virtual Memory Chapters 9 & 10: Memory Management and Virtual Memory Important concepts (for final, projects, papers) addressing: physical/absolute, logical/relative/virtual overlays swapping and paging memory protection

More information

Module 8: Memory Management

Module 8: Memory Management Module 8: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging Operating System Concepts 8.1 Silberschatz and Galvin

More information

Module 8: Memory Management

Module 8: Memory Management Module 8: Memory Management Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.1 Background Program must be brought into memory

More information

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition

Chapter 8: Memory Management. Operating System Concepts with Java 8 th Edition Chapter 8: Memory Management 8.1 Silberschatz, Galvin and Gagne 2009 Background Program must be brought (from disk) into memory and placed within a process for it to be run Main memory and registers are

More information

Chapter 8: Memory Management

Chapter 8: Memory Management Chapter 8: Memory Management Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.2 Background Program must be brought into memory and placed

More information

Chapter 10: Virtual Memory. Background

Chapter 10: Virtual Memory. Background Chapter 10: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples 10.1 Background Virtual memory separation of user logical

More information

Basic Memory Management

Basic Memory Management Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester 10/15/14 CSC 2/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it

More information

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1

Basic Memory Management. Basic Memory Management. Address Binding. Running a user program. Operating Systems 10/14/2018 CSC 256/456 1 Basic Memory Management Program must be brought into memory and placed within a process for it to be run Basic Memory Management CS 256/456 Dept. of Computer Science, University of Rochester Mono-programming

More information

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles

Page Replacement. 3/9/07 CSE 30341: Operating Systems Principles Page Replacement page 1 Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number

More information

Chapter 7: Main Memory. Operating System Concepts Essentials 8 th Edition

Chapter 7: Main Memory. Operating System Concepts Essentials 8 th Edition Chapter 7: Main Memory Operating System Concepts Essentials 8 th Edition Silberschatz, Galvin and Gagne 2011 Chapter 7: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure

More information

Chapter 10: Virtual Memory. Background. Demand Paging. Valid-Invalid Bit. Virtual Memory That is Larger Than Physical Memory

Chapter 10: Virtual Memory. Background. Demand Paging. Valid-Invalid Bit. Virtual Memory That is Larger Than Physical Memory Chapter 0: Virtual Memory Background Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Operating System Examples Virtual memory separation of user logical memory

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Logical versus Physical Address Space

Logical versus Physical Address Space CHAPTER 8: MEMORY MANAGEMENT Background Logical versus Physical Address Space Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging Operating System Concepts, Addison-Wesley 1994

More information

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space

Chapter 9: Virtual Memory. Chapter 9: Virtual Memory. Objectives. Background. Virtual-address address Space Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Memory Management. Contents: Memory Management. How to generate code? Background

Memory Management. Contents: Memory Management. How to generate code? Background TDIU11 Operating systems Contents: Memory Management Memory Management [SGG7/8/9] Chapter 8 Background Relocation Dynamic loading and linking Swapping Contiguous Allocation Paging Segmentation Copyright

More information

Where are we in the course?

Where are we in the course? Previous Lectures Memory Management Approaches Allocate contiguous memory for the whole process Use paging (map fixed size logical pages to physical frames) Use segmentation (user s view of address space

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory 9.1 Background 9.2 Demand Paging 9.3 Copy-on-Write 9.4 Page Replacement 9.5 Allocation of Frames 9.6 Thrashing 9.7 Memory-Mapped Files 9.8 Allocating

More information

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging

Background. Virtual Memory (2/2) Demand Paging Example. First-In-First-Out (FIFO) Algorithm. Page Replacement Algorithms. Performance of Demand Paging Virtual Memory (/) Background Page Replacement Allocation of Frames Thrashing Background Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in memory

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

Memory Management Cache Base and Limit Registers base limit Binding of Instructions and Data to Memory Compile time absolute code Load time

Memory Management Cache Base and Limit Registers base limit Binding of Instructions and Data to Memory Compile time absolute code Load time Memory Management To provide a detailed description of various ways of organizing memory hardware To discuss various memory-management techniques, including paging and segmentation To provide a detailed

More information

Demand Paging. Valid-Invalid Bit. Steps in Handling a Page Fault. Page Fault. Transfer of a Paged Memory to Contiguous Disk Space

Demand Paging. Valid-Invalid Bit. Steps in Handling a Page Fault. Page Fault. Transfer of a Paged Memory to Contiguous Disk Space Demand Paging Transfer of a Paged Memory to Contiguous Disk Space Bring a page into memory only when it is needed. Less I/O needed Less memory needed Faster response More users Page is needed reference

More information

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management

ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective. Part I: Operating system overview: Memory Management ECE 7650 Scalable and Secure Internet Services and Architecture ---- A Systems Perspective Part I: Operating system overview: Memory Management 1 Hardware background The role of primary memory Program

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Chapter 9: Virtual Memory Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 8: Memory- Manage g me m nt n S tra r t a e t gie i s

Chapter 8: Memory- Manage g me m nt n S tra r t a e t gie i s Chapter 8: Memory- Management Strategies Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium 2009/12/16

More information

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition Chapter 8: Memory- Management Strategies Operating System Concepts 9 th Edition Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation

More information

Chapter 8: Memory- Management Strategies

Chapter 8: Memory- Management Strategies Chapter 8: Memory Management Strategies Chapter 8: Memory- Management Strategies Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and

More information

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs

Optimal Algorithm. Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs Optimal Algorithm Replace page that will not be used for longest period of time Used for measuring how well your algorithm performs page 1 Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3,

More information

Goals of Memory Management

Goals of Memory Management Memory Management Goals of Memory Management Allocate available memory efficiently to multiple processes Main functions Allocate memory to processes when needed Keep track of what memory is used and what

More information

Chapter 8: Main Memory. Operating System Concepts 8th Edition

Chapter 8: Main Memory. Operating System Concepts 8th Edition Chapter 8: Main Memory Operating System Concepts 8th Edition Silberschatz, Galvin and Gagne 2009 Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Paging Structure of the Page

More information

Chapter 8: Virtual Memory. Operating System Concepts

Chapter 8: Virtual Memory. Operating System Concepts Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2009 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2

6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 6 - Main Memory EECE 315 (101) ECE UBC 2013 W2 Acknowledgement: This set of slides is partly based on the PPTs provided by the Wiley s companion website (including textbook images, when not explicitly

More information

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได

Chapter 3: Virtual Memory ว ตถ ประสงค. Background สามารถอธ บายข อด ในการท ระบบใช ว ธ การจ ดการหน วยความจ าแบบเสม อนได Chapter 9: Virtual Memory Chapter 3: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations

More information

Chapter 8: Memory Management. Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging

Chapter 8: Memory Management. Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 1 Background Memory management is crucial in better utilizing one of the most important

More information

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation

Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Basic Hardware Address Binding Logical VS Physical Address Space Dynamic Loading Dynamic Linking and Shared

More information

Basic Page Replacement

Basic Page Replacement Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select

More information

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses. 1 Memory Management Address Binding The normal procedures is to select one of the processes in the input queue and to load that process into memory. As the process executed, it accesses instructions and

More information

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory. Demand Paging

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory. Demand Paging TDDB68 Concurrent programming and operating systems Overview: Virtual Memory Virtual Memory [SGG7/8] Chapter 9 Background Demand Paging Page Replacement Allocation of Frames Thrashing and Data Access Locality

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Memory Management. Memory

Memory Management. Memory Memory Management These slides are created by Dr. Huang of George Mason University. Students registered in Dr. Huang s courses at GMU can make a single machine readable copy and print a single copy of

More information

CS6401- Operating System UNIT-III STORAGE MANAGEMENT

CS6401- Operating System UNIT-III STORAGE MANAGEMENT UNIT-III STORAGE MANAGEMENT Memory Management: Background In general, to rum a program, it must be brought into memory. Input queue collection of processes on the disk that are waiting to be brought into

More information

Operating System Concepts

Operating System Concepts Chapter 9: Virtual-Memory Management 9.1 Silberschatz, Galvin and Gagne 2005 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

CS307 Operating Systems Main Memory

CS307 Operating Systems Main Memory CS307 Main Memory Fan Wu Department of Computer Science and Engineering Shanghai Jiao Tong University Spring 2018 Background Program must be brought (from disk) into memory and placed within a process

More information

VII. Memory Management

VII. Memory Management VII. Memory Management 1 Intended Schedule Date Lecture Hand out Submission 0 20.04. Introduction to Operating Systems Course registration 1 27.04. Systems Programming using C (File Subsystem) 1. Assignment

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Chapter 8: Main Memory. Operating System Concepts 9 th Edition

Chapter 8: Main Memory. Operating System Concepts 9 th Edition Chapter 8: Main Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel

More information

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory

Virtual Memory. Overview: Virtual Memory. Virtual address space of a process. Virtual Memory TDIU Operating systems Overview: Virtual Memory Virtual Memory Background Demand Paging Page Replacement Allocation of Frames Thrashing and Data Access Locality [SGG7/8/9] Chapter 9 Copyright Notice: The

More information

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne

Lecture 17. Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Lecture 17 Edited from slides for Operating System Concepts by Silberschatz, Galvin, Gagne Page Replacement Algorithms Last Lecture: FIFO Optimal Page Replacement LRU LRU Approximation Additional-Reference-Bits

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel

More information

Chapter 8: Memory-Management Strategies

Chapter 8: Memory-Management Strategies Chapter 8: Memory-Management Strategies Chapter 8: Memory Management Strategies Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and

More information

Memory Management and Protection

Memory Management and Protection Part IV Memory Management and Protection Sadeghi, Cubaleska RUB 2008-09 Course Operating System Security Memory Management and Protection Main Memory Virtual Memory Roadmap of Chapter 4 Main Memory Background

More information

CHAPTER 8: MEMORY MANAGEMENT. By I-Chen Lin Textbook: Operating System Concepts 9th Ed.

CHAPTER 8: MEMORY MANAGEMENT. By I-Chen Lin Textbook: Operating System Concepts 9th Ed. CHAPTER 8: MEMORY MANAGEMENT By I-Chen Lin Textbook: Operating System Concepts 9th Ed. Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the

More information

Lecture 8 Memory Management Strategies (chapter 8)

Lecture 8 Memory Management Strategies (chapter 8) Bilkent University Department of Computer Engineering CS342 Operating Systems Lecture 8 Memory Management Strategies (chapter 8) Dr. İbrahim Körpeoğlu http://www.cs.bilkent.edu.tr/~korpe 1 References The

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 21-23 - Virtual Memory Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian,

More information

Page Replacement Algorithms

Page Replacement Algorithms Page Replacement Algorithms MIN, OPT (optimal) RANDOM evict random page FIFO (first-in, first-out) give every page equal residency LRU (least-recently used) MRU (most-recently used) 1 9.1 Silberschatz,

More information

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition,

Chapter 9: Virtual-Memory Management. Operating System Concepts 8 th Edition, Chapter 9: Virtual-Memory Management, Silberschatz, Galvin and Gagne 2009 Chapter 9: Virtual-Memory Management Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Fall 2017 Lecture 23 Virtual memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Is a page replaces when

More information

CSC Operating Systems Spring Lecture - XIV Virtual Memory - II. Tevfik Ko!ar. Louisiana State University. March 27 th, 2008.

CSC Operating Systems Spring Lecture - XIV Virtual Memory - II. Tevfik Ko!ar. Louisiana State University. March 27 th, 2008. CSC 0 - Operating Systems Spring 008 Lecture - XIV Virtual Memory - II Tevfik Ko!ar Louisiana State University March 7 th, 008 Background Virtual memory separation of user logical memory from physical

More information

Roadmap. Tevfik Ko!ar. CSC Operating Systems Spring Lecture - XIV Virtual Memory - I. Louisiana State University.

Roadmap. Tevfik Ko!ar. CSC Operating Systems Spring Lecture - XIV Virtual Memory - I. Louisiana State University. CSC 40 - Operating Systems Spring 008 Lecture - XIV Virtual Memory - I Tevfik Ko!ar Louisiana State University March th, 008 Roadmap Virtual Memory page replacement algorithms Background Virtual memory

More information

Chapter 9: Virtual Memory

Chapter 9: Virtual Memory Chapter 9: Virtual Memory Chapter 9: Virtual Memory Background Demand Paging Process Creation Page Replacement Allocation of Frames Thrashing Demand Segmentation Operating System Examples 9.2 Background

More information

Roadmap. Tevfik Koşar. CSC Operating Systems Spring Lecture - XII Main Memory - II. Louisiana State University

Roadmap. Tevfik Koşar. CSC Operating Systems Spring Lecture - XII Main Memory - II. Louisiana State University CSC 4103 - Operating Systems Spring 2007 Lecture - XII Main Memory - II Tevfik Koşar Louisiana State University March 8 th, 2007 1 Roadmap Dynamic Loading & Linking Contiguous Memory Allocation Fragmentation

More information

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition

Chapter 9: Virtual Memory. Operating System Concepts 9 th Edition Chapter 9: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 9: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapter 8 Memory Management

Chapter 8 Memory Management Chapter 8 Memory Management Da-Wei Chang CSIE.NCKU Source: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 9th Edition, Wiley. 1 Outline Background Swapping Contiguous

More information

File Systems. OS Overview I/O. Swap. Management. Operations CPU. Hard Drive. Management. Memory. Hard Drive. CSI3131 Topics. Structure.

File Systems. OS Overview I/O. Swap. Management. Operations CPU. Hard Drive. Management. Memory. Hard Drive. CSI3131 Topics. Structure. File Systems I/O Management Hard Drive Management Virtual Memory Swap Memory Management Storage and I/O Introduction CSI3131 Topics Process Management Computing Systems Memory CPU Peripherals Processes

More information

SHANDONG UNIVERSITY 1

SHANDONG UNIVERSITY 1 Chapter 8 Main Memory SHANDONG UNIVERSITY 1 Contents Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium SHANDONG UNIVERSITY 2 Objectives

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L20 Virtual Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 Questions from last time Page

More information

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts Memory management Last modified: 26.04.2016 1 Contents Background Logical and physical address spaces; address binding Overlaying, swapping Contiguous Memory Allocation Segmentation Paging Structure of

More information

Principles of Operating Systems

Principles of Operating Systems Principles of Operating Systems Lecture 18-20 - Main Memory Ardalan Amiri Sani (ardalan@uci.edu) [lecture slides contains some content adapted from previous slides by Prof. Nalini Venkatasubramanian, and

More information

CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES

CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES OBJECTIVES Detailed description of various ways of organizing memory hardware Various memory-management techniques, including paging and segmentation To provide

More information

CS307: Operating Systems

CS307: Operating Systems CS307: Operating Systems Chentao Wu 吴晨涛 Associate Professor Dept. of Computer Science and Engineering Shanghai Jiao Tong University SEIEE Building 3-513 wuct@cs.sjtu.edu.cn Download Lectures ftp://public.sjtu.edu.cn

More information

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

Chapter 8 & Chapter 9 Main Memory & Virtual Memory Chapter 8 & Chapter 9 Main Memory & Virtual Memory 1. Various ways of organizing memory hardware. 2. Memory-management techniques: 1. Paging 2. Segmentation. Introduction Memory consists of a large array

More information

Virtual Memory Outline

Virtual Memory Outline Virtual Memory Outline Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating Kernel Memory Other Considerations Operating-System Examples

More information

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013

CSE325 Principles of Operating Systems. Virtual Memory. David P. Duggan. March 7, 2013 CSE325 Principles of Operating Systems Virtual Memory David P. Duggan dduggan@sandia.gov March 7, 2013 Reading Assignment 9 Chapters 10 & 11 File Systems, due 3/21 3/7/13 CSE325 - Virtual Memory 2 Outline

More information

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy Operating Systems Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng.. AL-AZHAR University Website : eaymanelshenawy.wordpress.com Email : eaymanelshenawy@yahoo.com Reference

More information

CS370 Operating Systems

CS370 Operating Systems CS370 Operating Systems Colorado State University Yashwant K Malaiya Spring 2018 L17 Main Memory Slides based on Text by Silberschatz, Galvin, Gagne Various sources 1 1 FAQ Was Great Dijkstra a magician?

More information

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1 Chapter 9: Memory Management Background Swapping Contiguous Memory Allocation Segmentation

More information

Chapter 8: Memory Management

Chapter 8: Memory Management Chapter 8: Memory Management Chapter 8: Memory Management Background Swapping Contiguous Allocation Paging Segmentation Segmentation with Paging 8.2 Silberschatz, Galvin and Gagne 2005 Background Program/Code

More information

Chapter 8: Main Memory

Chapter 8: Main Memory Chapter 8: Main Memory Chapter 8: Memory Management Background Swapping Contiguous Memory Allocation Segmentation Paging Structure of the Page Table Example: The Intel 32 and 64-bit Architectures Example:

More information

P r a t t hr h ee e : e M e M m e o m r o y y M a M n a a n g a e g m e e m n e t 8.1/72

P r a t t hr h ee e : e M e M m e o m r o y y M a M n a a n g a e g m e e m n e t 8.1/72 Part three: Memory Management programs, together with the data they access, must be in main memory (at least partially) during execution. the computer keeps several processes in memory. Many memory-management

More information

Chapter 6: Demand Paging

Chapter 6: Demand Paging ADRIAN PERRIG & TORSTEN HOEFLER ( 5-006-00 ) Networks and Operating Systems Chapter 6: Demand Paging Source: http://redmine.replicant.us/projects/replicant/wiki/samsunggalaxybackdoor If you miss a key

More information

Main Memory. CISC3595, Spring 2015 X. Zhang Fordham University

Main Memory. CISC3595, Spring 2015 X. Zhang Fordham University Main Memory CISC3595, Spring 2015 X. Zhang Fordham University 1 Memory Management! Background!! Contiguous Memory Allocation!! Paging!! Structure of the Page Table!! Segmentation!! Example: The Intel Pentium

More information

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition

Chapter 8: Virtual Memory. Operating System Concepts Essentials 2 nd Edition Chapter 8: Virtual Memory Silberschatz, Galvin and Gagne 2013 Chapter 8: Virtual Memory Background Demand Paging Copy-on-Write Page Replacement Allocation of Frames Thrashing Memory-Mapped Files Allocating

More information

Chapter 8 Main Memory

Chapter 8 Main Memory Chapter 8 Main Memory 8.1, 8.2, 8.3, 8.4, 8.5 Chapter 9 Virtual memory 9.1, 9.2, 9.3 https://www.akkadia.org/drepper/cpumemory.pdf Images from Silberschatz Pacific University 1 How does the OS manage memory?

More information

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1 Main Memory Electrical and Computer Engineering Stephen Kim (dskim@iupui.edu) ECE/IUPUI RTOS & APPS 1 Main Memory Background Swapping Contiguous allocation Paging Segmentation Segmentation with paging

More information