ME964 High Performance Computing for Engineering Applications

Size: px
Start display at page:

Download "ME964 High Performance Computing for Engineering Applications"

Transcription

1 ME964 High Performance Computing for Engineering Applications Overview of MPI March 24, 2011 Dan Negrut, 2011 ME964 UW-Madison A state-of-the-art calculation requires 100 hours of CPU time on the state-of-the-art computer, independent of the decade. -- Edward Teller

2 Before We Get Started Last lecture CUDA Optimization Tips Marked the end of the GPU Computing segment of the course Summary of important dates Today Start discussion of Message Passing Interface (MPI) standard Discussion to be wrapped up in one more lecture Learn how to run an MPI executable on Newton Other issues Please take care of the reading assignments, they are related to CUDA programming and optimization 2

3 Distributed Memory Systems Individual nodes consist of a CPU, RAM, and a network interface A hard disk is typically not necessary; mass storage can be supplied using NFS Information is passed between nodes using the network No need for special cache coherency hardware More difficult to write programs for distributed memory systems since the programmer must keep track of memory usage Traditionally, this represents the hardware setup that supports MPIenabled parallel computing Includes material from Adam Jacobs presentation 3

4 Shared Memory Systems Memory resources are shared among processors Relatively easy to program for since there is a single unified memory space Scales poorly with system size due to the need for cache coherence Example: Symmetric Multi-Processors (SMP) Each processor has equal access to RAM Traditionally, this represents the hardware setup that supports OpenMP-enabled parallel computing Includes material from Adam Jacobs presentation 4

5 Overview of Large Multiprocessor Hardware Configurations Newton Courtesy of Elsevier, Computer Architecture, Hennessey and Patterson, fourth edition 5

6 Newton ~ Hardware Configurations ~ Remote User 1 Remote User 2 Remote User 3 Legend, Connection Type: Ethernet Connection Internet Fast Infiniband Connection Compute Node Architecture Lab Computers Ethernet Router CPU 0 Intel Xeon 5520 Hard Disk 1TB Fast Infiniband Switch CPU 1 Intel Xeon 5520 RAM 48 GB DDR3 GPU 0 GPU 1 GPU 2 GPU 3 Head Node Infiniband Card QDR Tesla C1060 4GB RAM 240 Cores PCIEx Compute Node 1 Compute Node 2 Compute Node 3 Compute Node 4 Compute Node 5 Compute Node 6 Network-Attached Storage Gigabit Ethernet Switch 6

7 Hardware Relevant in the Context of MPI Three Components of Newton that are Important CPU: Intel Xeon E5520 Nehalem 2.26GHz Quad-Core Processor 4 x 256KB L2 Cache 8MB L3 Cache LGA 1366 (Intel CPU Socket B) 80W HCA: 40Gbps Mellanox MHQH19B-XTR Infiniband interconnect Pretty large bandwidth compared to PCI-Ex16, yet the latency is poor This is critical factor in a cluster Switch: QLogic Switch 7

8 MPI: The 30,000 Feet Perspective A pool of processes is started on a collection of cores The code executes on the CPU core (no direct role for the GPU) The approach is characteristic of the SPMD (Single Program Multiple Data) computing paradigm What differentiates processes is their rank: processes with different ranks do different things ( branching based on the process rank ) Very similar to GPU computing, where one thread did work based on its thread index 8

9 Why Care about MPI? Today, MPI is what makes the vast majority of the supercomputers tick at TFlops and PFlops rates Examples of architectures relying on MPI: IBM Blue Gene L/P/Q Cray supercomputers (Jaguar, etc.) MPI known for portability and performance MPI has FORTRAN, C, and C++ bindings 9

10 MPI is a Standard MPI is an API for parallel programming on distributed memory systems. Specifies a set of operations, but says nothing about the implementation MPI is a standard Popular because it many vendors support (implemented) it, therefore code that implements MPI-based parallelism is very portable Most common implementation: MPICH The CH comes from Chameleon, the portability layer used in the original MPICH to provide portability to the existing message-passing systems First MPICH implementation overseen at Argonne National Lab by Bill Gropp and Rusty Lusk 10

11 MPI Implementations MPI implementations available for free Appleseed (UCLA) CRI/EPCC (Edinburgh Parallel Computing Centre) LAM/MPI (Indiana University) MPI for UNICOS Systems (SGI) MPI-FM (University of Illinois); for Myrinet MPICH (ANL) MVAPICH (Infiniband) SGI Message Passing Toolkit OpenMPI NOTE: MPI is available in Microsoft Visual Studio The implementation offered by VS is the MPICH one A detailed list of MPI implementations with features can be found at Includes material from Adam Jacobs presentation 11

12 Where Can We Use Message Passing? Message passing can be used wherever it is possible for processes to exchange messages: Distributed memory systems Networks of Workstations Even on shared memory systems 12

13 CUDA vs. MPI When would you use CPU/GPU computing and when would you use MPI-based parallel programming? Use CPU/GPU If your data fits the memory constraints associated with GPU computing You have parallelism at a fine grain so that you the SIMD paradigm applies Example: Image processing Use MPI-enabled parallel programming If you have a very large problem, with a lot of data that needs to be spread out across several machines Example: Solving large heterogeneous multi-physics problems The typical application: nuclear physics (DOE s playground) In large scale computing the future likely to belong to heterogeneous architecture A collection of CPU cores that communicate through MPI, each or which farming out work to an accelerator (GPU) 13

14 The Message-Passing Model A process is (traditionally) a program counter and address space Processes may have multiple threads (program counters and associated stacks) sharing a single address space Message passing is for communication among processes, which have separate address spaces Interprocess communication consists of Synchronization Movement of data from one process s address space to another s Credit: Rusty Lusk 14

15 A First MPI Program #include "mpi.h" #include <iostream> #include <winsock2.h> int main(int argc, char **argv) { int my_rank, n; char hostname[128]; MPI_Init(&argc,&argv); MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); MPI_Comm_size(MPI_COMM_WORLD, &n); Has to be called first, and once gethostname(hostname, 128); if (my_rank == 0) { /* master */ printf("i am the master: %s\n", hostname); } else { /* worker */ printf("i am a worker: %s (rank=%d/%d)\n", hostname, my_rank, n-1); } } MPI_Finalize(); exit(0); Has to be called last, and once 15 Includes material from Allan Snavely presentation

16 Program Output 16

17 MPI: A Second Example Application Example out of Pacheco s book: Parallel Programming with MPI Good book, on reserve at Wendt /* greetings.c -- greetings program * * Send a message from all processes with rank!= 0 to process 0. * Process 0 prints the messages received. * * Input: none. * Output: contents of messages received by process 0. * * See Chapter 3, pp. 41 & ff in PPMPI. */ 17

18 MPI: A Second Example Application [Cntd.] #include "mpi.h" #include <stdio.h> #include <string.h> int main(int argc, char* argv[]) { int my_rank; /* rank of process */ int p; /* number of processes */ int source; /* rank of sender */ int dest; /* rank of receiver */ int tag = 0; /* tag for messages */ char message[100]; /* storage for message */ MPI_Status status; /* return status for receive */ MPI_Init(&argc, &argv); // Start up MPI MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // Find out process rank MPI_Comm_size(MPI_COMM_WORLD, &p); // Find out number of processes if (my_rank!= 0) { /* Create message */ sprintf(message, "Greetings from process %d!", my_rank); dest = 0; /* Use strlen+1 so that '\0' gets transmitted */ MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); } else { /* my_rank == 0 */ for (source = 1; source < p; source++) { MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status); printf("%s\n", message); } } MPI_Finalize(); // Shut down MPI return 0; } /* main */ 18

19 Program Output 19

20 MPI Operations: Basic Set [The 20/80 Rule This set gets you very far ] MPI can be thought of as a small specification, because any complete implementation need only provide the following operations: MPI_INIT MPI_COMM_SIZE MPI_COMM_RANK MPI_SEND MPI_RECV MPI_FINALIZE 20

21 MPI Data Types MPI specifies data types explicitly in the message. This is needed since you might have a cluster of heterogeneous machines word sizes and data formats may differ. MPI_INT MPI_FLOAT MPI_BYTE MPI_CHAR etc 21

22 Example: Approximating π x 2 () 1 = 4 tan 1 = π 0 1 Numerical Integration: Midpoint rule n n 2 x i= 1 (( 0.5) h) f i Credit: Toby Heyn 22

23 Example: Approximating π Use 4 MPI process (rank 0 through 3) Here, n=13 Sub-intervals are assigned to ranks in a round-robin manner Rank 0: 1,5,9,13 Rank 1: 2,6,10 Rank 2: 3,7,11 Rank 3: 4,8,12 Each rank computes the area in its associated sub-intervals MPI R educe is used to sum the areas computed by each rank, giving final approximation to π Credit: Toby Heyn 23

24 Code for Approximating π // MPI_PI.cpp : Defines the entry point for the console application. // #include "mpi.h" #include <math.h> #include <iostream> using namespace std; int main(int argc, char *argv[]) { int n, rank, size, i; double PI25DT = ; double mypi, pi, h, sum, x; char processor_name[mpi_max_processor_name]; int namelen; MPI_Init(&argc,&argv); MPI_Comm_size(MPI_COMM_WORLD,&size); MPI_Comm_rank(MPI_COMM_WORLD,&rank); MPI_Get_processor_name(processor_name, &namelen); cout << "Hello from process " << rank << " of " << size << " on " << processor_name << endl; 24

25 Code [Cntd.] if (rank == 0) { //cout << "Enter the number of intervals: (0 quits) "; //cin >> n; if (argc<2 argc>2) n=0; else n=atoi(argv[1]); } MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); if (n>0) { h = 1.0 / (double) n; sum = 0.0; for (i = rank + 1; i <= n; i += size) { x = h * ((double)i - 0.5); sum += (4.0 / (1.0 + x*x)); } mypi = h * sum; } MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD); if (rank == 0) cout << "pi is approximately " << pi << ", Error is " << fabs(pi - PI25DT) << endl; } MPI_Finalize(); return 0; 25

26 Compiling/Running MPI under Windows with VS 2008 On a Windows machine with VS2008, in this order, do the following: Download/Install HPC Pack 2008 R2 Client Utilities Redistributable Package with Service Pack 1 Download/Install HPC Pack 2008 R2 SDK with Service Pack 1 Download/Install HPC Pack 2008 R2 MS-MPI Redistributable Package with Service Pack ec57ff90f 26

27 Compiling Code Compile like any other project in MS Visual Studio Additional Include Directories: C:\Program Files\Microsoft HPC Pack 2008 R2\Inc Additional Library Directories: C:\Program Files\Microsoft HPC Pack 2008 R2\Lib\i386 Additional Dependencies: msmpi.lib Compile in Release mode MPI_PI.exe 27 Credit: Toby Heyn

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Parallel Computing with MPI: Introduction March 29, 2012 Dan Negrut, 2012 ME964 UW-Madison The empires of the future are the empires of the

More information

Holland Computing Center Kickstart MPI Intro

Holland Computing Center Kickstart MPI Intro Holland Computing Center Kickstart 2016 MPI Intro Message Passing Interface (MPI) MPI is a specification for message passing library that is standardized by MPI Forum Multiple vendor-specific implementations:

More information

int sum;... sum = sum + c?

int sum;... sum = sum + c? int sum;... sum = sum + c? Version Cores Time (secs) Speedup manycore Message Passing Interface mpiexec int main( ) { int ; char ; } MPI_Init( ); MPI_Comm_size(, &N); MPI_Comm_rank(, &R); gethostname(

More information

Simple examples how to run MPI program via PBS on Taurus HPC

Simple examples how to run MPI program via PBS on Taurus HPC Simple examples how to run MPI program via PBS on Taurus HPC MPI setup There's a number of MPI implementations install on the cluster. You can list them all issuing the following command: module avail/load/list/unload

More information

Introduction to MPI. Ekpe Okorafor. School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014

Introduction to MPI. Ekpe Okorafor. School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 Introduction to MPI Ekpe Okorafor School of Parallel Programming & Parallel Architecture for HPC ICTP October, 2014 Topics Introduction MPI Model and Basic Calls MPI Communication Summary 2 Topics Introduction

More information

An Introduction to MPI

An Introduction to MPI An Introduction to MPI Parallel Programming with the Message Passing Interface William Gropp Ewing Lusk Argonne National Laboratory 1 Outline Background The message-passing model Origins of MPI and current

More information

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail.

PCAP Assignment I. 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. PCAP Assignment I 1. A. Why is there a large performance gap between many-core GPUs and generalpurpose multicore CPUs. Discuss in detail. The multicore CPUs are designed to maximize the execution speed

More information

MPI: The Message-Passing Interface. Most of this discussion is from [1] and [2].

MPI: The Message-Passing Interface. Most of this discussion is from [1] and [2]. MPI: The Message-Passing Interface Most of this discussion is from [1] and [2]. What Is MPI? The Message-Passing Interface (MPI) is a standard for expressing distributed parallelism via message passing.

More information

The Message Passing Model

The Message Passing Model Introduction to MPI The Message Passing Model Applications that do not share a global address space need a Message Passing Framework. An application passes messages among processes in order to perform

More information

Introduction to the Message Passing Interface (MPI)

Introduction to the Message Passing Interface (MPI) Introduction to the Message Passing Interface (MPI) CPS343 Parallel and High Performance Computing Spring 2018 CPS343 (Parallel and HPC) Introduction to the Message Passing Interface (MPI) Spring 2018

More information

Introduction in Parallel Programming - MPI Part I

Introduction in Parallel Programming - MPI Part I Introduction in Parallel Programming - MPI Part I Instructor: Michela Taufer WS2004/2005 Source of these Slides Books: Parallel Programming with MPI by Peter Pacheco (Paperback) Parallel Programming in

More information

MPI and comparison of models Lecture 23, cs262a. Ion Stoica & Ali Ghodsi UC Berkeley April 16, 2018

MPI and comparison of models Lecture 23, cs262a. Ion Stoica & Ali Ghodsi UC Berkeley April 16, 2018 MPI and comparison of models Lecture 23, cs262a Ion Stoica & Ali Ghodsi UC Berkeley April 16, 2018 MPI MPI - Message Passing Interface Library standard defined by a committee of vendors, implementers,

More information

mith College Computer Science CSC352 Week #7 Spring 2017 Introduction to MPI Dominique Thiébaut

mith College Computer Science CSC352 Week #7 Spring 2017 Introduction to MPI Dominique Thiébaut mith College CSC352 Week #7 Spring 2017 Introduction to MPI Dominique Thiébaut dthiebaut@smith.edu Introduction to MPI D. Thiebaut Inspiration Reference MPI by Blaise Barney, Lawrence Livermore National

More information

Distributed Memory Programming with Message-Passing

Distributed Memory Programming with Message-Passing Distributed Memory Programming with Message-Passing Pacheco s book Chapter 3 T. Yang, CS240A Part of slides from the text book and B. Gropp Outline An overview of MPI programming Six MPI functions and

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Parallel Computing with MPI Building/Debugging MPI Executables MPI Send/Receive Collective Communications with MPI April 10, 2012 Dan Negrut,

More information

Parallel Processing Experience on Low cost Pentium Machines

Parallel Processing Experience on Low cost Pentium Machines Parallel Processing Experience on Low cost Pentium Machines By Syed Misbahuddin Computer Engineering Department Sir Syed University of Engineering and Technology, Karachi doctorsyedmisbah@yahoo.com Presentation

More information

MPI Message Passing Interface

MPI Message Passing Interface MPI Message Passing Interface Portable Parallel Programs Parallel Computing A problem is broken down into tasks, performed by separate workers or processes Processes interact by exchanging information

More information

The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing

The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing The Message Passing Interface (MPI) TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Parallelism Decompose the execution into several tasks according to the work to be done: Function/Task

More information

Programming with MPI. Pedro Velho

Programming with MPI. Pedro Velho Programming with MPI Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage - Who might be interested in those applications?

More information

Message Passing Interface

Message Passing Interface Message Passing Interface by Kuan Lu 03.07.2012 Scientific researcher at Georg-August-Universität Göttingen and Gesellschaft für wissenschaftliche Datenverarbeitung mbh Göttingen Am Faßberg, 37077 Göttingen,

More information

Introduction to MPI. SHARCNET MPI Lecture Series: Part I of II. Paul Preney, OCT, M.Sc., B.Ed., B.Sc.

Introduction to MPI. SHARCNET MPI Lecture Series: Part I of II. Paul Preney, OCT, M.Sc., B.Ed., B.Sc. Introduction to MPI SHARCNET MPI Lecture Series: Part I of II Paul Preney, OCT, M.Sc., B.Ed., B.Sc. preney@sharcnet.ca School of Computer Science University of Windsor Windsor, Ontario, Canada Copyright

More information

High Performance Computing Course Notes Message Passing Programming I

High Performance Computing Course Notes Message Passing Programming I High Performance Computing Course Notes 2008-2009 2009 Message Passing Programming I Message Passing Programming Message Passing is the most widely used parallel programming model Message passing works

More information

Tutorial: parallel coding MPI

Tutorial: parallel coding MPI Tutorial: parallel coding MPI Pascal Viot September 12, 2018 Pascal Viot Tutorial: parallel coding MPI September 12, 2018 1 / 24 Generalities The individual power of a processor is still growing, but at

More information

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho

Programming with MPI on GridRS. Dr. Márcio Castro e Dr. Pedro Velho Programming with MPI on GridRS Dr. Márcio Castro e Dr. Pedro Velho Science Research Challenges Some applications require tremendous computing power - Stress the limits of computing power and storage -

More information

CSE 160 Lecture 18. Message Passing

CSE 160 Lecture 18. Message Passing CSE 160 Lecture 18 Message Passing Question 4c % Serial Loop: for i = 1:n/3-1 x(2*i) = x(3*i); % Restructured for Parallelism (CORRECT) for i = 1:3:n/3-1 y(2*i) = y(3*i); for i = 2:3:n/3-1 y(2*i) = y(3*i);

More information

Parallel Programming Using MPI

Parallel Programming Using MPI Parallel Programming Using MPI Prof. Hank Dietz KAOS Seminar, February 8, 2012 University of Kentucky Electrical & Computer Engineering Parallel Processing Process N pieces simultaneously, get up to a

More information

CSE 160 Lecture 15. Message Passing

CSE 160 Lecture 15. Message Passing CSE 160 Lecture 15 Message Passing Announcements 2013 Scott B. Baden / CSE 160 / Fall 2013 2 Message passing Today s lecture The Message Passing Interface - MPI A first MPI Application The Trapezoidal

More information

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI CS 470 Spring 2017 Mike Lam, Professor Distributed Programming & MPI MPI paradigm Single program, multiple data (SPMD) One program, multiple processes (ranks) Processes communicate via messages An MPI

More information

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2

Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS. Teacher: Jan Kwiatkowski, Office 201/15, D-2 Introduction to Parallel and Distributed Systems - INZ0277Wcl 5 ECTS Teacher: Jan Kwiatkowski, Office 201/15, D-2 COMMUNICATION For questions, email to jan.kwiatkowski@pwr.edu.pl with 'Subject=your name.

More information

MPI MPI. Linux. Linux. Message Passing Interface. Message Passing Interface. August 14, August 14, 2007 MPICH. MPI MPI Send Recv MPI

MPI MPI. Linux. Linux. Message Passing Interface. Message Passing Interface. August 14, August 14, 2007 MPICH. MPI MPI Send Recv MPI Linux MPI Linux MPI Message Passing Interface Linux MPI Linux MPI Message Passing Interface MPI MPICH MPI Department of Science and Engineering Computing School of Mathematics School Peking University

More information

Compute Cluster Server Lab 2: Carrying out Jobs under Microsoft Compute Cluster Server 2003

Compute Cluster Server Lab 2: Carrying out Jobs under Microsoft Compute Cluster Server 2003 Compute Cluster Server Lab 2: Carrying out Jobs under Microsoft Compute Cluster Server 2003 Compute Cluster Server Lab 2: Carrying out Jobs under Microsoft Compute Cluster Server 20031 Lab Objective...1

More information

Parallel Programming, MPI Lecture 2

Parallel Programming, MPI Lecture 2 Parallel Programming, MPI Lecture 2 Ehsan Nedaaee Oskoee 1 1 Department of Physics IASBS IPM Grid and HPC workshop IV, 2011 Outline 1 Introduction and Review The Von Neumann Computer Kinds of Parallel

More information

MPI and CUDA. Filippo Spiga, HPCS, University of Cambridge.

MPI and CUDA. Filippo Spiga, HPCS, University of Cambridge. MPI and CUDA Filippo Spiga, HPCS, University of Cambridge Outline Basic principle of MPI Mixing MPI and CUDA 1 st example : parallel GPU detect 2 nd example: heat2d CUDA- aware MPI, how

More information

MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016

MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016 MPI and OpenMP (Lecture 25, cs262a) Ion Stoica, UC Berkeley November 19, 2016 Message passing vs. Shared memory Client Client Client Client send(msg) recv(msg) send(msg) recv(msg) MSG MSG MSG IPC Shared

More information

Parallel Programming & Cluster Computing Distributed Multiprocessing

Parallel Programming & Cluster Computing Distributed Multiprocessing Parallel Programming & Cluster Computing Distributed Multiprocessing Henry Neeman, University of Oklahoma Charlie Peck, Earlham College Tuesday October 11 2011 The Desert Islands Analogy Distributed Parallelism

More information

MPI 1. CSCI 4850/5850 High-Performance Computing Spring 2018

MPI 1. CSCI 4850/5850 High-Performance Computing Spring 2018 MPI 1 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy

30 Nov Dec Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Advanced School in High Performance and GRID Computing Concepts and Applications, ICTP, Trieste, Italy Why serial is not enough Computing architectures Parallel paradigms Message Passing Interface How

More information

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI

CS 470 Spring Mike Lam, Professor. Distributed Programming & MPI CS 470 Spring 2018 Mike Lam, Professor Distributed Programming & MPI MPI paradigm Single program, multiple data (SPMD) One program, multiple processes (ranks) Processes communicate via messages An MPI

More information

Parallel hardware. Distributed Memory. Parallel software. COMP528 MPI Programming, I. Flynn s taxonomy:

Parallel hardware. Distributed Memory. Parallel software. COMP528 MPI Programming, I. Flynn s taxonomy: COMP528 MPI Programming, I www.csc.liv.ac.uk/~alexei/comp528 Alexei Lisitsa Dept of computer science University of Liverpool a.lisitsa@.liverpool.ac.uk Flynn s taxonomy: Parallel hardware SISD (Single

More information

CS4961 Parallel Programming. Lecture 16: Introduction to Message Passing 11/3/11. Administrative. Mary Hall November 3, 2011.

CS4961 Parallel Programming. Lecture 16: Introduction to Message Passing 11/3/11. Administrative. Mary Hall November 3, 2011. CS4961 Parallel Programming Lecture 16: Introduction to Message Passing Administrative Next programming assignment due on Monday, Nov. 7 at midnight Need to define teams and have initial conversation with

More information

HPC Parallel Programing Multi-node Computation with MPI - I

HPC Parallel Programing Multi-node Computation with MPI - I HPC Parallel Programing Multi-node Computation with MPI - I Parallelization and Optimization Group TATA Consultancy Services, Sahyadri Park Pune, India TCS all rights reserved April 29, 2013 Copyright

More information

Parallel Programming Using MPI

Parallel Programming Using MPI Parallel Programming Using MPI Short Course on HPC 15th February 2019 Aditya Krishna Swamy adityaks@iisc.ac.in SERC, Indian Institute of Science When Parallel Computing Helps? Want to speed up your calculation

More information

Supercomputing in Plain English

Supercomputing in Plain English Supercomputing in Plain English An Introduction to High Performance Computing Part VI: Distributed Multiprocessing Henry Neeman, Director The Desert Islands Analogy Distributed Parallelism MPI Outline

More information

CS4961 Parallel Programming. Lecture 18: Introduction to Message Passing 11/3/10. Final Project Purpose: Mary Hall November 2, 2010.

CS4961 Parallel Programming. Lecture 18: Introduction to Message Passing 11/3/10. Final Project Purpose: Mary Hall November 2, 2010. Parallel Programming Lecture 18: Introduction to Message Passing Mary Hall November 2, 2010 Final Project Purpose: - A chance to dig in deeper into a parallel programming model and explore concepts. -

More information

MPI MESSAGE PASSING INTERFACE

MPI MESSAGE PASSING INTERFACE MPI MESSAGE PASSING INTERFACE David COLIGNON, ULiège CÉCI - Consortium des Équipements de Calcul Intensif http://www.ceci-hpc.be Outline Introduction From serial source code to parallel execution MPI functions

More information

Parallel Computing. November 20, W.Homberg

Parallel Computing. November 20, W.Homberg Mitglied der Helmholtz-Gemeinschaft Parallel Computing November 20, 2017 W.Homberg Why go parallel? Problem too large for single node Job requires more memory Shorter time to solution essential Better

More information

Introduction to parallel computing concepts and technics

Introduction to parallel computing concepts and technics Introduction to parallel computing concepts and technics Paschalis Korosoglou (support@grid.auth.gr) User and Application Support Unit Scientific Computing Center @ AUTH Overview of Parallel computing

More information

Collective Communication in MPI and Advanced Features

Collective Communication in MPI and Advanced Features Collective Communication in MPI and Advanced Features Pacheco s book. Chapter 3 T. Yang, CS240A. Part of slides from the text book, CS267 K. Yelick from UC Berkeley and B. Gropp, ANL Outline Collective

More information

Lecture 7: Distributed memory

Lecture 7: Distributed memory Lecture 7: Distributed memory David Bindel 15 Feb 2010 Logistics HW 1 due Wednesday: See wiki for notes on: Bottom-up strategy and debugging Matrix allocation issues Using SSE and alignment comments Timing

More information

Introduction to Parallel Programming

Introduction to Parallel Programming Introduction to Parallel Programming Linda Woodard CAC 19 May 2010 Introduction to Parallel Computing on Ranger 5/18/2010 www.cac.cornell.edu 1 y What is Parallel Programming? Using more than one processor

More information

High Performance Computing Lecture 41. Matthew Jacob Indian Institute of Science

High Performance Computing Lecture 41. Matthew Jacob Indian Institute of Science High Performance Computing Lecture 41 Matthew Jacob Indian Institute of Science Example: MPI Pi Calculating Program /Each process initializes, determines the communicator size and its own rank MPI_Init

More information

Linux Clusters Institute: Introduction to MPI. Presented by: David Swanson, Director, HCC Based upon slides by: Henry Neeman, University of Oklahoma

Linux Clusters Institute: Introduction to MPI. Presented by: David Swanson, Director, HCC Based upon slides by: Henry Neeman, University of Oklahoma Linux Clusters Institute: Introduction to MPI Presented by: David Swanson, Director, HCC Based upon slides by: Henry Neeman, University of Oklahoma Outline MPI Role Playing Exercise Distributed Parallelism

More information

To connect to the cluster, simply use a SSH or SFTP client to connect to:

To connect to the cluster, simply use a SSH or SFTP client to connect to: RIT Computer Engineering Cluster The RIT Computer Engineering cluster contains 12 computers for parallel programming using MPI. One computer, phoenix.ce.rit.edu, serves as the master controller or head

More information

Supercomputing in Plain English

Supercomputing in Plain English Supercomputing in Plain English Distributed Multiprocessing Henry Neeman Director OU Supercomputing Center for Education & Research November 19 2004 The Desert Islands Analogy Distributed Parallelism MPI

More information

Outline. Introduction to HPC computing. OpenMP MPI. Introduction. Understanding communications. Collective communications. Communicators.

Outline. Introduction to HPC computing. OpenMP MPI. Introduction. Understanding communications. Collective communications. Communicators. Lecture 8 MPI Outline Introduction to HPC computing OpenMP MPI Introduction Understanding communications Collective communications Communicators Topologies Grouping Data for Communication Input / output

More information

MultiCore Architecture and Parallel Programming Final Examination

MultiCore Architecture and Parallel Programming Final Examination MultiCore Architecture and Parallel Programming Final Examination Name: ID: Class: Date:2014/12 1. List at least four techniques for cache optimization and make a brief explanation of each technique.(10

More information

DISTRIBUTED MEMORY PROGRAMMING WITH MPI. Carlos Jaime Barrios Hernández, PhD.

DISTRIBUTED MEMORY PROGRAMMING WITH MPI. Carlos Jaime Barrios Hernández, PhD. DISTRIBUTED MEMORY PROGRAMMING WITH MPI Carlos Jaime Barrios Hernández, PhD. Remember Special Features of Architecture Remember concurrency : it exploits better the resources (shared) within a computer.

More information

Message Passing Interface

Message Passing Interface Message Passing Interface DPHPC15 TA: Salvatore Di Girolamo DSM (Distributed Shared Memory) Message Passing MPI (Message Passing Interface) A message passing specification implemented

More information

Parallel programming in the last 25 years forward or backward? Jun Makino Interactive Research Center of Science Tokyo Institute of Technology

Parallel programming in the last 25 years forward or backward? Jun Makino Interactive Research Center of Science Tokyo Institute of Technology Parallel programming in the last 25 years forward or backward? Jun Makino Interactive Research Center of Science Tokyo Institute of Technology MODEST-10d: High-Level Languages for Hugely Parallel Astrophysics

More information

Lesson 1. MPI runs on distributed memory systems, shared memory systems, or hybrid systems.

Lesson 1. MPI runs on distributed memory systems, shared memory systems, or hybrid systems. The goals of this lesson are: understanding the MPI programming model managing the MPI environment handling errors point-to-point communication 1. The MPI Environment Lesson 1 MPI (Message Passing Interface)

More information

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SurfSARA High Performance Computing and Big Data Course June 2014 Parallel Programming with Compiler Directives: OpenMP Message Passing Gentle Introduction

More information

Solution of Exercise Sheet 2

Solution of Exercise Sheet 2 Solution of Exercise Sheet 2 Exercise 1 (Cluster Computing) 1. Give a short definition of Cluster Computing. Clustering is parallel computing on systems with distributed memory. 2. What is a Cluster of

More information

COMP/CS 605: Introduction to Parallel Computing Topic : Distributed Memory Programming: Message Passing Interface

COMP/CS 605: Introduction to Parallel Computing Topic : Distributed Memory Programming: Message Passing Interface COMP/CS 605: Introduction to Parallel Computing Topic : Distributed Memory Programming: Message Passing Interface Mary Thomas Department of Computer Science Computational Science Research Center (CSRC)

More information

A Programmer s View of Shared and Distributed Memory Architectures

A Programmer s View of Shared and Distributed Memory Architectures A Programmer s View of Shared and Distributed Memory Architectures Overview Shared-memory Architecture: chip has some number of cores (e.g., Intel Skylake has up to 18 cores depending on the model) with

More information

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. OpenMP and MPI Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 16, 2011 CPD (DEI / IST) Parallel and Distributed Computing 18

More information

CS 6230: High-Performance Computing and Parallelization Introduction to MPI

CS 6230: High-Performance Computing and Parallelization Introduction to MPI CS 6230: High-Performance Computing and Parallelization Introduction to MPI Dr. Mike Kirby School of Computing and Scientific Computing and Imaging Institute University of Utah Salt Lake City, UT, USA

More information

CMSC 714 Lecture 3 Message Passing with PVM and MPI

CMSC 714 Lecture 3 Message Passing with PVM and MPI CMSC 714 Lecture 3 Message Passing with PVM and MPI Alan Sussman PVM Provide a simple, free, portable parallel environment Run on everything Parallel Hardware: SMP, MPPs, Vector Machines Network of Workstations:

More information

Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality)

Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality) COMP 322: Fundamentals of Parallel Programming Lecture 28: Introduction to the Message Passing Interface (MPI) (Start of Module 3 on Distribution and Locality) Mack Joyner and Zoran Budimlić {mjoyner,

More information

Hybrid MPI and OpenMP Parallel Programming

Hybrid MPI and OpenMP Parallel Programming Hybrid MPI and OpenMP Parallel Programming Jemmy Hu SHARCNET HPTC Consultant July 8, 2015 Objectives difference between message passing and shared memory models (MPI, OpenMP) why or why not hybrid? a common

More information

Introduction to MPI. May 20, Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign

Introduction to MPI. May 20, Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign Introduction to MPI May 20, 2013 Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign Top500.org PERFORMANCE DEVELOPMENT 1 Eflop/s 162 Pflop/s PROJECTED 100 Pflop/s

More information

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico.

OpenMP and MPI. Parallel and Distributed Computing. Department of Computer Science and Engineering (DEI) Instituto Superior Técnico. OpenMP and MPI Parallel and Distributed Computing Department of Computer Science and Engineering (DEI) Instituto Superior Técnico November 15, 2010 José Monteiro (DEI / IST) Parallel and Distributed Computing

More information

Message Passing Programming. Introduction to MPI

Message Passing Programming. Introduction to MPI Message Passing Programming Introduction to MPI Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

PC (PC Cluster Building and Parallel Computing)

PC (PC Cluster Building and Parallel Computing) PC (PC Cluster Building and Parallel Computing) 2011 3 30 כ., כ כ. כ. PC. כ. כ. 1 כ, 2. 1 PC. PC. 2. MPI(Message Passing Interface),. 3 1 PC 7 1 PC... 7 1.1... 7 1.2... 10 2 (Master computer) Linux...

More information

JURECA Tuning for the platform

JURECA Tuning for the platform JURECA Tuning for the platform Usage of ParaStation MPI 2017-11-23 Outline ParaStation MPI Compiling your program Running your program Tuning parameters Resources 2 ParaStation MPI Based on MPICH (3.2)

More information

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam

Programming Scalable Systems with MPI. UvA / SURFsara High Performance Computing and Big Data. Clemens Grelck, University of Amsterdam Clemens Grelck University of Amsterdam UvA / SURFsara High Performance Computing and Big Data Message Passing as a Programming Paradigm Gentle Introduction to MPI Point-to-point Communication Message Passing

More information

NUMERICAL PARALLEL COMPUTING

NUMERICAL PARALLEL COMPUTING Lecture 5, March 23, 2012: The Message Passing Interface http://people.inf.ethz.ch/iyves/pnc12/ Peter Arbenz, Andreas Adelmann Computer Science Dept, ETH Zürich E-mail: arbenz@inf.ethz.ch Paul Scherrer

More information

Introduction to Parallel Programming with MPI

Introduction to Parallel Programming with MPI Introduction to Parallel Programming with MPI Slides are available at http://www.mcs.anl.gov/~balaji/tmp/csdms-mpi-basic.pdf Pavan Balaji Argonne National Laboratory balaji@mcs.anl.gov http://www.mcs.anl.gov/~balaji

More information

CMSC 714 Lecture 3 Message Passing with PVM and MPI

CMSC 714 Lecture 3 Message Passing with PVM and MPI Notes CMSC 714 Lecture 3 Message Passing with PVM and MPI Alan Sussman To access papers in ACM or IEEE digital library, must come from a UMD IP address Accounts handed out next week for deepthought2 cluster,

More information

Parallel Programming Overview

Parallel Programming Overview Parallel Programming Overview Introduction to High Performance Computing 2019 Dr Christian Terboven 1 Agenda n Our Support Offerings n Programming concepts and models for Cluster Node Core Accelerator

More information

CS 426. Building and Running a Parallel Application

CS 426. Building and Running a Parallel Application CS 426 Building and Running a Parallel Application 1 Task/Channel Model Design Efficient Parallel Programs (or Algorithms) Mainly for distributed memory systems (e.g. Clusters) Break Parallel Computations

More information

Introduction to Parallel Programming

Introduction to Parallel Programming University of Nizhni Novgorod Faculty of Computational Mathematics & Cybernetics Section 4. Part 1. Introduction to Parallel Programming Parallel Programming with MPI Gergel V.P., Professor, D.Sc., Software

More information

Parallel Programming. Libraries and Implementations

Parallel Programming. Libraries and Implementations Parallel Programming Libraries and Implementations Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Parallel Numerical Algorithms

Parallel Numerical Algorithms Parallel Numerical Algorithms http://sudalabissu-tokyoacjp/~reiji/pna16/ [ 5 ] MPI: Message Passing Interface Parallel Numerical Algorithms / IST / UTokyo 1 PNA16 Lecture Plan General Topics 1 Architecture

More information

MPI 3. CSCI 4850/5850 High-Performance Computing Spring 2018

MPI 3. CSCI 4850/5850 High-Performance Computing Spring 2018 MPI 3 CSCI 4850/5850 High-Performance Computing Spring 2018 Tae-Hyuk (Ted) Ahn Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University Learning Objectives

More information

Practical Introduction to Message-Passing Interface (MPI)

Practical Introduction to Message-Passing Interface (MPI) 1 Practical Introduction to Message-Passing Interface (MPI) October 1st, 2015 By: Pier-Luc St-Onge Partners and Sponsors 2 Setup for the workshop 1. Get a user ID and password paper (provided in class):

More information

Distributed Simulation in CUBINlab

Distributed Simulation in CUBINlab Distributed Simulation in CUBINlab John Papandriopoulos http://www.cubinlab.ee.mu.oz.au/ ARC Special Research Centre for Ultra-Broadband Information Networks Outline Clustering overview The CUBINlab cluster

More information

Introduction to MPI. Ricardo Fonseca. https://sites.google.com/view/rafonseca2017/

Introduction to MPI. Ricardo Fonseca. https://sites.google.com/view/rafonseca2017/ Introduction to MPI Ricardo Fonseca https://sites.google.com/view/rafonseca2017/ Outline Distributed Memory Programming (MPI) Message Passing Model Initializing and terminating programs Point to point

More information

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library

Don t reinvent the wheel. BLAS LAPACK Intel Math Kernel Library Libraries Don t reinvent the wheel. Specialized math libraries are likely faster. BLAS: Basic Linear Algebra Subprograms LAPACK: Linear Algebra Package (uses BLAS) http://www.netlib.org/lapack/ to download

More information

The Message Passing Interface (MPI): Parallelism on Multiple (Possibly Heterogeneous) CPUs

The Message Passing Interface (MPI): Parallelism on Multiple (Possibly Heterogeneous) CPUs 1 The Message Passing Interface (MPI): Parallelism on Multiple (Possibly Heterogeneous) CPUs http://mpi-forum.org https://www.open-mpi.org/ Mike Bailey mjb@cs.oregonstate.edu Oregon State University mpi.pptx

More information

MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA

MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA MULTI GPU PROGRAMMING WITH MPI AND OPENACC JIRI KRAUS, NVIDIA MPI+OPENACC GDDR5 Memory System Memory GDDR5 Memory System Memory GDDR5 Memory System Memory GPU CPU GPU CPU GPU CPU PCI-e PCI-e PCI-e Network

More information

Advanced Computing for Engineering Applications

Advanced Computing for Engineering Applications Advanced Computing for Engineering Applications Dan Negrut Simulation-Based Engineering Lab Wisconsin Applied Computing Center Department of Mechanical Engineering Department of Electrical and Computer

More information

Message Passing Interface. George Bosilca

Message Passing Interface. George Bosilca Message Passing Interface George Bosilca bosilca@icl.utk.edu Message Passing Interface Standard http://www.mpi-forum.org Current version: 3.1 All parallelism is explicit: the programmer is responsible

More information

Scientific Computing

Scientific Computing Lecture on Scientific Computing Dr. Kersten Schmidt Lecture 21 Technische Universität Berlin Institut für Mathematik Wintersemester 2014/2015 Syllabus Linear Regression, Fast Fourier transform Modelling

More information

Message Passing Interface

Message Passing Interface MPSoC Architectures MPI Alberto Bosio, Associate Professor UM Microelectronic Departement bosio@lirmm.fr Message Passing Interface API for distributed-memory programming parallel code that runs across

More information

P a g e 1. HPC Example for C with OpenMPI

P a g e 1. HPC Example for C with OpenMPI P a g e 1 HPC Example for C with OpenMPI Revision History Version Date Prepared By Summary of Changes 1.0 Jul 3, 2017 Raymond Tsang Initial release 1.1 Jul 24, 2018 Ray Cheung Minor change HPC Example

More information

Introduction to MPI-2 (Message-Passing Interface)

Introduction to MPI-2 (Message-Passing Interface) Introduction to MPI-2 (Message-Passing Interface) What are the major new features in MPI-2? Parallel I/O Remote Memory Operations Dynamic Process Management Support for Multithreading Parallel I/O Includes

More information

MPI: Parallel Programming for Extreme Machines. Si Hammond, High Performance Systems Group

MPI: Parallel Programming for Extreme Machines. Si Hammond, High Performance Systems Group MPI: Parallel Programming for Extreme Machines Si Hammond, High Performance Systems Group Quick Introduction Si Hammond, (sdh@dcs.warwick.ac.uk) WPRF/PhD Research student, High Performance Systems Group,

More information

Outline. CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2

Outline. CSC 447: Parallel Programming for Multi-Core and Cluster Systems 2 CSC 447: Parallel Programming for Multi-Core and Cluster Systems Message Passing with MPI Instructor: Haidar M. Harmanani Outline Message-passing model Message Passing Interface (MPI) Coding MPI programs

More information

CS 179: GPU Programming. Lecture 14: Inter-process Communication

CS 179: GPU Programming. Lecture 14: Inter-process Communication CS 179: GPU Programming Lecture 14: Inter-process Communication The Problem What if we want to use GPUs across a distributed system? GPU cluster, CSIRO Distributed System A collection of computers Each

More information

Introduction to Parallel Programming & Cluster Computing Distributed Multiprocessing Josh Alexander, University of Oklahoma Ivan Babic, Earlham

Introduction to Parallel Programming & Cluster Computing Distributed Multiprocessing Josh Alexander, University of Oklahoma Ivan Babic, Earlham Introduction to Parallel Programming & Cluster Computing Distributed Multiprocessing Josh Alexander, University of Oklahoma Ivan Babic, Earlham College Andrew Fitz Gibbon, Shodor Education Foundation Inc.

More information