Digital System Design II

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Digital System Design II"

Transcription

1 Digital System Design II 数字系统设计 II Peng Liu ( 刘鹏 ) Dept. of Info. Sci. & Elec. Engg. Zhejiang University

2 Lecture 2 MIPS Instruction Set Architecture 2

3 Textbook reading MIPS ISA Look at how instructions are defined and represented What is an instruction set architecture (ISA)? Interplay of C and MIPS ISA Components of MIPS ISA Register operands Memory operands Arithmetic operations Control flow operations 3

4 5 Components of any Computer Computer Processor Memory Devices Keyboard, Mouse Control ( brain ) Datapath ( brawn ) (where programs, data live when running) Input Output Disk (where programs, data live when not running) Display, Printer 4

5 Computer (All Digital Systems) Are At Their Core Pretty Simple Computers only work with binary signals Signal on a wire is either 0, or 1 Usually called a bit More complex stuff (numbers, characters, strings, pictures) Must be built from multiple bits Built out of simple logic gates that perform boolean logic AND, OR, NOT, And memory cells that preserve bits over time Flip-flops, registers, SRAM cells, DRAM cells, To get hardware to do anything, need to break it down to bits Stings of bits that tell hardware what to do are called instructions A sequence of instructions called machine language program (machine code) 5

6 Hardware/Software Interface The Instruction Set Architecture (ISA) defines what instructions do MIPS, Intel IA32 (x86), Sun SPARC, PowerPC, IBM 390, Intel IA64 These are all ISAs Many different implementations can implement same ISA (family) 8086,386, 486, Pentium, Pentium II, Pentium 4 implement IA32 Of course they continue to extend it, while maintaining binary compatibility ISA last a long time X86 has been in use since the 70s IBM 390 started as IBM 360 in 60s 6

7 Running An Application 7

8 MIPS ISA MIPS semiconductor company that built one of the first commercial RISC architectures Founded by J.Hennessy We will study the MIPS architecture in some detail in this class Why MIPS instead of Intel 80x86? MIPS is simple, elegant and easy to understand X86 is ugly and complicated to explain X86 is dominant on desktop MIPS is prevalent in embedded applications as processor core of system on chip (SOC) 8

9 C vs MIPS Programmers Interface C MIPS I ISA Registers 32 32b integer, R0= b single FP Memory local variables global variables 16 64b double FP PC and special registers 2 32 linear array of bytes Data types int, short, char, unsigned, float, double, aggregate data types, pointers word (32b), byte (8b), half-word (16b) single FP (32b), double FP (64b) Arithmetic operators +, -, *, %, ++, <, etc. add, sub, mult, slt, etc. Memory access a, *a, a[i], a[i][j] lw, sw, lh, sh, lb, sb Control If-else, while, do-while, for, switch, procedure call, return branches, jumps, jump and link 9

10 MIPS Processor History 10

11 Memory-memory ISA Why Have Registers? ALL HLL variables declared in memory Why not operate directly on memory operands? E.g. Digital Equipment Corp (DEC) VAX ISA Benefits of registers Smaller is faster Multiple concurrent accesses Shorter names Load-Store ISA Arithmetic operations only use register operands Data is loaded into registers, operated on, and stored back to memory All RISC instruction sets 11

12 Using Registers Registers are a finite resource that needs to be managed Programmer Compilers: register allocation Goals Keep data in registers as much as possible Always use data still in registers if possible Issues Finite number of registers available Spill register to memory when all register in use Arrays Data is too large to store in registers What s the impact of fewer or more registers? 12

13 Register Naming Registers are identified by a $<num> By convention, we also give them names $zero contains the hardwired value 0 $v0, $v1 are for results and expression evaluation $a0-$a3 are for arguments $s0, $s1, $s7 are for save values $to, $t1, $t9 are for temporary values The others will be introduced as appropriate Compilers use these conventions to simplify linking 13

14 Assembly Instructions The basic type of instruction has four components: 1. Operation name 2. Destination operand 3. 1 st source operand 4. 2 nd source operand add dst, src1, src2 # dst = src1 + src2 dst, src1, and src2 are register names ($) What do these instructions do? - add $1, $1, $1 14

15 C Example Simple C procedure: sum_pow2 = 2 b+c 1:int sum_pow2 (int b, int c) 2:{ 3: int pow2[8] = {1, 2, 4, 8, 16, 32, 64, 128}; 4: int a, ret; 5: a = b + c; 6: if (a < 8) 7: ret = pow2[a]; 8: else 9: ret = 0; 10: return (ret); 11:} 15

16 Arithmetic Operators Consider line 5, C operation for addition a = b + c; Assume the variables are in register $1-$3 respectively. The add operator using registers add $1, $2, $3 # a = b +c Use the sub operator for a=b-c in MIPS sub $1, $2, $3 # a = b - c But we know that variables a,b, and c really start in some memory location Will add load & store instruction soon 16

17 Complex Operations What about more complex statements? a = b + c + d e; Break into multiple instructions add $t0, $s1, $s2 # $t0 = b + c add $t1, $t0, $s3 # $t1 = $t0 + d sub $s0, $t1, $s4 # a = $t1 - e 17

18 Signed & Unsigned Number If given b[n-1:0] in a register or in memory Unsigned value value n 1 b i 0 i 2 i Signed value (2 s complement) ( n 2 n 1 12 ) n i i 2 i 0 value b b 18

19 Unsigned & Signed Numbers Example values 4 bits Unsigned: [0, 2 4-1] Signed : [ -2 3, 2 3-1] Equivalence Same encoding for non-negative values Uniqueness Every bit pattern represents unique integer value Not true with sign magnitude 19

20 Arithmetic Overflow 20

21 Constants Often want to be able to specify operand in the instruction: immediate or literal Use the addi instruction addi dst, src1, immediate The immediate is a 16 bit signed value between -215 and Sign-extended to 32 bits Consider the following C code a++; The addi operator addi $s0, $s0, 1 # a = a

22 Memory Data Transfer Data transfer instructions are used to move data to and from memory. A load operation moves data from a memory location to a register and a store operation moves data from a register to a memory location. 22

23 Data Transfer Instructions: Loads Data transfer instructions have three parts Operator name (transfer size) Destination register Base register address and constant offset Lw dst, offset (base) Offset value is a singed constant 23

24 Memory Access All memory access happens through loads and stors Aligned words, half-words, and bytes More on this later today Floating Point loads and stores for accessing FP registers Displacement based addressing mode 24

25 Consider the example Loading Data Example a = b + *c; Use the lw instruction to load Assume a($s0), b($s1), c($s2) lw $t0, 0 ($s2) # $t0 = Memory[c] add $s0, $s1, $t0 # a = b + *c 25

26 Accessing Arrays Arrays are really pointers to the base address in memory Address of element A[0] Use offset value to indicate which index Remember that addresses are in bytes, so multiply by the size of the element Consider the integer array where pow2 is the base address With this compiler on this architecture, each int requires 4 bytes The data to be accessed is at index 5: pow2[5] Then the address from memory is pow2 + 5*4 Unlike C, assembly does not handle pointer arithmetic for you! 26

27 Array Memory Diagram 27

28 Array Example 28

29 Complex Array Example 29

30 Storing Data Storing data is just the reverse and the instruction is nearly identical. Use the sw instruction to copy a word from the source register to an address in memory. sw src, offset (base) Offset value is signed 30

31 Consider the example Storing Data Example *a = b + c; Use the sw instruction to store add $ t0, $s1, $s2 sw $t0, 0($s0) # $t0 = b + c # Memory[s0] = b + c 31

32 Consider the example a[3] = b + c; Storing to an Array Use the sw instruction offset add $t0, $s1, $s2 sw $t0, 12($s0) # $t0 = b + c # Memory[a[3]] = b + c 32

33 Complex Array Storage Consider the example a [i] = b + c; Use the sw instruction offset add $t0, $s1, $s2 # $t0 = b + c sll $t1, $s3, 2 # $t1 = 4 * I add $t2, $s0, $t1 #t2 = a + 4*I sw $t0, 0($t2) # Memory[a[i]]= b + c 33

34 A short Array Example ANSI C requires a short to be at least 16 bits and no longer than an int, but does not define the exact size For our purposes, treat a short as 2 bytes So, with a short array c[7] is at c + 7*2, shift left by 1 34

35 MIPS Integer Load/Store 35

36 Alignment Restrictions 36

37 Alignment Restrictions (cont) 37

38 Memory Mapped I/O Data transfer instructions can be used to move data to and from I/O device registers A load operation moves data from an I/O device to a CPU register and a store operation moves data from a CPU register to an I/O device register. 38

39 Endianess: Big or Little Question: what is the order of bytes within a word? Big endian: Address of most significant byte == address of word IBM 360, Motorola 68K, MIPS, SPARC Little endian: Address of least significant byte == address of word Intel x86, ARM, DEC Vax & Alpha, Important notes Endianess matters if you store words and load byte or communicate between different systems Most modern processors are bi-endian (configuration register) For entertaining details, read On holy wars and a plea for peace 39

40 Changing Control Flow One of the distinguishing characteristics of computers is the ability to evaluate conditions and change control flow If-then-else Loops Case statements Control flow instructions: two types Conditional branch instructions are known as branches Unconditional changes in the control flow are called jumps The target of the branch/jump is a label 40

41 Conditional: Equality The simplest conditional test is the beq instruction for equality beq reg1, reg2, label Consider the code if ( a == b ) go to L1; // do something L1: //continue Use the beq instruction beq $s0, $s1, L1 # do something L1: #continue 41

42 Conditional: Not equal The simplest conditional test is the bne instruction for equality bne reg1, reg2, label Consider the code if ( a!= b ) go to L1; // do something L1: //continue Use the bne instruction bne $s0, $s1, L1 # do something L1: #continue 42

43 Unconditional: Jumps The j instruction jumps to a label j label 43

44 If-then-else Example 44

45 If-then-else Solution 45

46 Other Comparisons Other conditional arithmetic operators are useful in evaluating conditional < > <= expressions using <, >, <=, >= Use compare instruction to set register to 1 when condition met Consider the following C code if (f < g) goto Less; Solution slt $t0, $s0, $s1 # $t0 = 1 if $s0 < $s1 bne $t0, $zero, Less # Goto Less if $t0!= 0 46

47 MIPS Comparisons 47

48 C Example 48

49 sum_pow2 Assembly 49

50 MIPS Jumps & Branches 50

51 Support for Simple Branches Only Notice that there is no branch less than instruction for comparing two registers? The reason is that such an instruction would be too complicated and might require a longer clock cycle time Therefore, conditionals that do not compare against zero take at least two instructions where the first is a set and the second is a conditional branch As we ll see later, this is a design trade-off Less time per instruction vs. fewer instructions How do you decide what to do? Other RISC ISAs made a different choice. 51

52 Consider a while loop While (A[i] == k) i = i + j; While Loop in C Assembly loop Assume i = $s0, j = $s1, k = $s2 Loop: sll $t0, $s0, 2 #$t0 = 4 *i addu $t1, $t0, $s3 # $t1 = &(A[i]) lw $t2, 0($t1) # $t2 = A[i] bne $t2, $s2, Exit # goto Exit if!= addu $s0, $s0, $s1 # i = i + j j Loop # goto Loop Exit Basic Block Maximal sequence of instructions with out branches or branch targets 52

53 Improve Loop Efficiency 53

54 Improved Loop Solution Remove extra jump loop body j Cond # goto Cond Loop: addu $s0, $s0, $s1 # i = i + j Cond: sll $t0, $s0, 2 # $t0 = 4 * i addu $t1, $t0, $s3 # $t1 = &(A[i]) lw $t2, 0($t1) # $t2 = A[i] beq $t2, $s2, Loop # goto Loop if == Exit: Reduced loop from 6 to 5 instructions Even small improvements important if loop executes many times 54

55 Machine Language Representation Instructions are represented as binary data in memory Stored program Von Neumann Simplicity One memory system Same addresses used for branches, procedures, data, etc. The only difference is how bits are interpreted What are the risks of this decision? Binary compatibility (backwards) Commercial software relies on ability to work on next generation hardware This leads to very long life for an ISA 55

56 MIPS Instruction Encoding MIPS instructions are encoded in different forms, depending upon the arguments R-format, I-format, J-format MIPS architecture has three instruction formats, all 32 bits in length Regularity is simpler and improves performance A 6 bit opcode appears at the beginning of each instruction Control logic based on decode instruction type 56

57 R-Format Instructions (1/2) Define fields of the following number of bits each: = For simplicity, each field has a name: opcode rs rt rd shamt funct 57

58 R-Format Instructions (2/2) More fields: rs (Source Register): generally used to specify register containing first operand rt (Target Register): generally used to specify register containing second operand (note that name is misleading) rd (Destination Register): generally used to specify register which will receive result of computation 58

59 J-Format Instructions (1/2) Define fields of the following number of bits each: 6 bits 26 bits As usual, each field has a name: opcode target address Key Concepts Keep opcode field identical to R-format and I-format for consistency. Combine all other fields to make room for large target address. 59

60 J-Format Instructions (2/2) Summary: New PC = { PC[31..28], target address, 00 } Understand where each part came from! Note: In Verilog, {,, } means concatenation { 4 bits, 26 bits, 2 bits } = 32 bit address { 1010, , 00 } = We use Verilog in this class 60

61 Instruction Formats I-format: used for instructions with immediates, lw and sw (since the offset counts as an immediate), and the branches (beq and bne), (but not the shift instructions; later) J-format: used for j and jal R-format: used for all other instructions It will soon become clear why the instructions have been partitioned in this way. 61

62 R-Format Example MIPS Instruction: add $8,$9,$10 Decimal number per field representation: Binary number per field representation: hex representation: 012A 4020 hex hex decimal representation: 19,546,144 ten On Green Card: Format in column 1, opcodes in column 3 62

63 MIPS I Operation Overview Arithmetic Logical: Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI SLL, SRL, SRA, SLLV, SRLV, SRAV Memory Access: LB, LBU, LH, LHU, LW, LWL,LWR SB, SH, SW, SWL, SWR 63

64 MIPS Logical Instructions Instruction Example Meaning Comment and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND or or $1,$2,$3 $1 = $2 $3 3 reg. operands; Logical OR xor xor $1,$2,$3 $1 = $2 ^ $3 3 reg. operands; Logical XOR nor nor $1,$2,$3 $1 = ~($2 $3) 3 reg. operands; Logical NOR and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant or immediate ori $1,$2,10 $1 = $2 10 Logical OR reg, constant xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend) shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable Q: Can some multiply by 2 i? Divide by 2 i? Invert? 64

65 M I P S Reference Data :CORE INSTRUCTION SET (1) NAME MNE- MON-IC FOR- MAT OPERATION (in Verilog) OPCODE/FU NCT (hex) Add add R R[rd] = R[rs] + R[rt] (1) 0 / 20 hex Add Immediate addi I R[rt] = R[rs] + SignExtImm (1)(2) 8 hex Branch On Equal beq I if(r[rs]==r[rt]) PC=PC+4+ BranchAddr (4) 4 hex (1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{1b 0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2 b0} 65

66 MIPS Data Transfer Instructions Instruction sw 500($4), $3 sh 502($2), $3 sb 41($3), $2 lw $1, 30($2) lh $1, 40($3) lhu $1, 40($3) lb $1, 40($3) lbu $1, 40($3) Comment Store word Store half Store byte Load word Load halfword Load halfword unsigned Load byte Load byte unsigned lui $1, 40 Load Upper Immediate (16 bits shifted left by 16) Q: Why need lui? LUI R5 R

67 Multiply / Divide Start multiply, divide MULT rs, rt MULTU rs, rt DIV rs, rt DIVU rs, rt Move result from multiply, divide MFHI rd MFLO rd Move to HI or LO MTHI rd MTLO rd Registers HI LO 67

68 MIPS Arithmetic Instructions Instruction Example Meaning Comments add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible subtract sub $1,$2,$3 $1 = $2 $3 3 operands; exception possible add immediate addi $1,$2,100 $1 = $ constant; exception possible add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions subtract unsigned subu $1,$2,$3 $1 = $2 $3 3 operands; no exceptions add imm. unsign. addiu $1,$2,100 $1 = $ constant; no exceptions multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product divide div $2,$3 Lo = $2 $3, Lo = quotient, Hi = remainder Hi = $2 mod $3 divide unsigned divu $2,$3 Lo = $2 $3, Unsigned quotient & remainder Hi = $2 mod $3 Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi Move from Lo mflo $1 $1 = Lo Used to get copy of Lo Q: Which add for address arithmetic? Which add for integers? 68

69 Green Card: ARITHMETIC CORE INSTRUCTION SET (2) NAME MNE- MON-IC FOR- MAT OPERATION (in Verilog) OPCODE/FMT / FT/ FUNCT (hex) Branch On FP True bc1t FI if (FPcond) PC=PC BranchAddr (4) 11/8/1/-- Load FP Single lwc1 I F[rt] = M[R[rs] + SignExtImm] (2) 11/8/1/-- Divide div R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt] 31/--/--/-- 69

70 When does MIPS Sign Extend? When value is sign extended, copy upper bit to full value: Examples of sign extending 8 bits to 16 bits: When is an immediate operand sign extended? Arithmetic instructions (add, sub, etc.) always sign extend immediates even for the unsigned versions of the instructions! Logical instructions do not sign extend immediates (They are zero extended) Load/Store address computations always sign extend immediates Multiply/Divide have no immediate operands however: unsigned treat operands as unsigned The data loaded by the instructions lb and lh are extended as follows ( unsigned don t extend): lbu, lhu are zero extended lb, lh are sign extended Q: Then what is does add unsigned (addu) mean since not immediate? 70

71 MIPS Compare and Branch Compare and Branch BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch BNE rs, rt, offset <> Compare to zero and Branch BLEZ rs, offset if R[rs] <= 0 then PC-relative branch BGTZ rs, offset > BLT < BGEZ >= BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31) BGEZAL >=! Remaining set of compare and branch ops take two instructions Almost all comparisons are against zero! 71

72 MIPS jump, branch, compare Instructions Instruction Example Meaning branch on equal beq $1,$2,100 if ($1 == $2) go to PC Equal test; PC relative branch branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC Not equal test; PC relative set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; 2 s comp. set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0 Compare < constant; 2 s comp. set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0 Compare less than; natural numbers set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0 Compare < constant; natural numbers jump j go to Jump to target address jump register jr $31 go to $31 For switch, procedure return jump and link jal $31 = PC + 4; go to For procedure call 72

73 Signed vs. Unsigned Comparison $1= $2= $3= After executing these instructions: slt $4,$2,$1 ; if ($2 < $1) $4=1; else $4=0 slt $5,$3,$1 ; if ($3 < $1) $5=1; else $5=0 sltu $6,$2,$1 ; if ($2 < $1) $6=1; else $6=0 sltu $7,$3,$1 ; if ($3 < $1) $7=1; else $7=0 What are values of registers $4 - $7? Why? $4 = ; $5 = ; $6 = ; $7 = ; 73

74 MIPS Assembler Register Convention Name Number Usage Preserved across a call? $zero 0 the value 0 n/a $v0-$v1 2-3 return values no $a0-$a3 4-7 arguments no $t0-$t temporaries no $s0-$s saved yes $t18-$t temporaries no $sp 29 stack pointer yes $ra 31 return address yes caller saved callee saved On Green Card in Column #2 at bottom 74

75 Peer Instruction: $s3=i, $s4=j, Loop: addiu $s4,$s4,1 # j = j + 1 sll $t1,$s3,2 # $t1 = 4 * i addu $t1,$t1,$s5 # $t1 A[i] lw $t0,0($t1) # $t0 = A[i] addiu $s3,$s3,1 # i = i + 1 slti $t1,$t0,10 # $t1 = $t0 < 10 beq $t1,$0, Loop # goto Loop slti $t1,$t0, 0 # $t1 = $t0 < 0 bne $t1,$0, Loop # goto Loop do j = j + 1 while ( ); What C code properly fills in the blank in loop on right? 1: A[i++] >= 10 2: A[i++] >= 10 A[i] < 0 3: A[i] >= 10 A[i++] < 0 4: A[i++] >= 10 A[i] < 0 5: A[i] >= 10 && A[i++] < 0 6 None of the above 75

76 Green Card: OPCODES, BASE CONVERSION, ASCII (3) MIPS opcode (31:26) (1) MIPS funct (5:0) (2) MIPS funct (5:0) Binary Decimal Hexadeci-mal ASCII (1) sll add.f NUL j srl mul.f STX lui sync floor.w.f f SI lbu and cvt.w.f $ (1) opcode(31:26) == 0 (2) opcode(31:26) == 17 ten (11 hex ); if fmt(25:21)==16 ten (10 hex ) f = s (single); if fmt(25:21)==17 ten (11 hex ) f = d (double) Note: 3-in-1 - Opcodes, base conversion, ASCII! 77

77 Green Card green card /n./ [after the "IBM System/360 Reference Data" card] A summary of an assembly language, even if the color is not green. For example, "I'll go get my green card so I can check the addressing mode for that instruction." Image from Dave's Green Card Collection: 78

78 Peer Instruction Which instruction has same representation as 35 ten? A. add $0, $0, $0 B. subu $s0,$s0,$s0 C. lw $0, 0($0) D. addi $0, $0, 35 E. subu $0, $0, $0 F. Trick question! Instructions are not numbers Registers numbers and names: 0: $0, 8: $t0, 9:$t1,..15: $t7, 16: $s0, 17: $s1,.. 23: $s7 Opcodes and function fields (if necessary) add: opcode = 0, funct = 32 subu: opcode = 0, funct = 35 addi: opcode = 8 lw: opcode = 35 opcode rs rt opcode rs rt rd shamt opcode rs rt offset opcode rs rt immediate opcode rs rt rd rd shamt shamt funct funct funct 79

79 Branch & Pipelines Time li $3, #7 sub $4, $4, 1 execute ifetch execute bz $4, LL ifetch execute Branch addi $5, $3, 1 ifetch execute Delay Slot LL: slt $1, $3, $5 Branch Target ifetch execute By the end of Branch instruction, the CPU knows whether or not the branch will take place. However, it will have fetched the next instruction by then, regardless of whether or not a branch will be taken. Why not execute it? 81

80 Delayed Branches li $3, #7 sub $4, $4, 1 bz $4, LL addi $5, $3, 1 subi $6, $6, 2 LL: slt $1, $3, $5 In the Raw MIPS, the instruction after the branch is executed even when the branch is taken This is hidden by the assembler for the MIPS virtual machine allows the compiler to better utilize the instruction pipeline (???) Jump and link (jal inst): Put the return addr. Into link register ($31): PC+4 (logical architecture) Delay Slot Instruction PC+8 physical ( Raw ) architecture delay slot executed Then jump to destination address 82

81 Filling Delayed Branches Branch: Inst Fetch Dcd & Op Fetch Execute execute successor even if branch taken! Then branch target or continue Inst Fetch Dcd & Op Fetch Inst Fetch Execute Single delay slot impacts the critical path Compiler can fill a single delay slot with a useful instruction 50% of the time. try to move down from above jump move up from target, if safe add $3, $1, $2 sub $4, $4, 1 bz $4, LL NOP... LL: add rd,... Is this violating the ISA abstraction? 83

82 Summary: Salient Features of MIPS I 32-bit fixed format inst (3 formats) bit GPR (R0 contains zero) and 32 FP registers (and HI LO) partitioned by software convention 3-address, reg-reg arithmetic instr. Single address mode for load/store: base+displacement no indirection, scaled 16-bit immediate plus LUI Simple branch conditions compare against zero or two registers for =, no integer condition codes Delayed branch execute instruction after a branch (or jump) even if the branch is taken (Compiler can fill a delayed branch with useful work about 50% of the time) 84

83 And in conclusion... Continued rapid improvement in Computing 2X every 1.5 years in processor speed; every 2.0 years in memory size; every 1.0 year in disk capacity; Moore s Law enables processor, memory (2X transistors/chip/ ~1.5 ro 2.0 yrs) 5 classic components of all computers Control Datapath Memory Input Output Processor 85

84 MIPS Machine Instruction Review: Instruction Format Summary 86

85 Addressing Modes Summary Register addressing Operand is a register (e.g. ALU) Base/displacement addressing (ex. load/store) Operand is at the memory location that is the sum of a base register + a constant Immediate addressing (e.g. constants) Operand is a constant within the instruction itself PC-relative addressing (e.g. branch) Address is the sum of PC and constant in instruction (e.g. branch) Pseudo-direct addressing (e.g. jump) Target address is concatenation of field in instruction and the PC 87

86 Addressing Modes Summary 88

87 Readings: HomeWork Read Chapter , then Appendix C and D. 89

88 Acknowledgements These slides contain material from courses: UCB CS152. Stanford EE108B 90

EE108B Lecture 3. MIPS Assembly Language II

EE108B Lecture 3. MIPS Assembly Language II EE108B Lecture 3 MIPS Assembly Language II Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b 1 Announcements Urgent: sign up at EEclass and say if you are taking 3 or 4 units Homework

More information

MIPS Reference Guide

MIPS Reference Guide MIPS Reference Guide Free at PushingButtons.net 2 Table of Contents I. Data Registers 3 II. Instruction Register Formats 4 III. MIPS Instruction Set 5 IV. MIPS Instruction Set (Extended) 6 V. SPIM Programming

More information

ECE232: Hardware Organization and Design. Computer Organization - Previously covered

ECE232: Hardware Organization and Design. Computer Organization - Previously covered ECE232: Hardware Organization and Design Part 6: MIPS Instructions II http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Computer Organization

More information

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats

Today s Lecture. MIPS Assembly Language. Review: What Must be Specified? Review: A Program. Review: MIPS Instruction Formats Today s Lecture Homework #2 Midterm I Feb 22 (in class closed book) MIPS Assembly Language Computer Science 14 Lecture 6 Outline Assembly Programming Reading Chapter 2, Appendix B 2 Review: A Program Review:

More information

F. Appendix 6 MIPS Instruction Reference

F. Appendix 6 MIPS Instruction Reference F. Appendix 6 MIPS Instruction Reference Note: ALL immediate values should be sign extended. Exception: For logical operations immediate values should be zero extended. After extensions, you treat them

More information

MIPS Instruction Reference

MIPS Instruction Reference Page 1 of 9 MIPS Instruction Reference This is a description of the MIPS instruction set, their meanings, syntax, semantics, and bit encodings. The syntax given for each instruction refers to the assembly

More information

CS 4200/5200 Computer Architecture I

CS 4200/5200 Computer Architecture I CS 4200/5200 Computer Architecture I MIPS Instruction Set Architecture Dr. Xiaobo Zhou Department of Computer Science CS420/520 Lec3.1 UC. Colorado Springs Adapted from UCB97 & UCB03 Review: Organizational

More information

MACHINE LANGUAGE. To work with the machine, we need a translator.

MACHINE LANGUAGE. To work with the machine, we need a translator. LECTURE 2 Assembly MACHINE LANGUAGE As humans, communicating with a machine is a tedious task. We can t, for example, just say add this number and that number and store the result here. Computers have

More information

Anne Bracy CS 3410 Computer Science Cornell University. See P&H Chapter: , , Appendix B

Anne Bracy CS 3410 Computer Science Cornell University. See P&H Chapter: , , Appendix B Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. See P&H Chapter: 2.16-2.20, 4.1-4.4,

More information

MIPS Instruction Format

MIPS Instruction Format MIPS Instruction Format MIPS uses a 32-bit fixed-length instruction format. only three different instruction word formats: There are Register format Op-code Rs Rt Rd Function code 000000 sssss ttttt ddddd

More information

CS152 Computer Architecture and Engineering. Lecture 1 Introduction & MIPS Review Dave Patterson. www-inst.eecs.berkeley.

CS152 Computer Architecture and Engineering. Lecture 1 Introduction & MIPS Review Dave Patterson. www-inst.eecs.berkeley. CS152 Computer Architecture and Engineering Lecture 1 Introduction & MIPS Review 2003-08-26 Dave Patterson (www.cs.berkeley.edu/~patterson) www-inst.eecs.berkeley.edu/~cs152/ CS 152 L01 Introduction &

More information

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013

ECE 2035 Programming HW/SW Systems Fall problems, 7 pages Exam Two 23 October 2013 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture MIPS Functions July 1, 2014 Review I RISC Design Principles Smaller is faster: 32 registers, fewer instructions Keep it simple: rigid syntax, fixed instruction length MIPS Registers: $s0-$s7,$t0-$t9, $0

More information

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions

Outline. EEL-4713 Computer Architecture Multipliers and shifters. Deriving requirements of ALU. MIPS arithmetic instructions Outline EEL-4713 Computer Architecture Multipliers and shifters Multiplication and shift registers Chapter 3, section 3.4 Next lecture Division, floating-point 3.5 3.6 EEL-4713 Ann Gordon-Ross.1 EEL-4713

More information

Mark Redekopp, All rights reserved. EE 352 Unit 3 MIPS ISA

Mark Redekopp, All rights reserved. EE 352 Unit 3 MIPS ISA EE 352 Unit 3 MIPS ISA Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system Instruction set is the vocabulary the HW can understand and the SW is composed

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures $2M 3D camera Lecture 8 MIPS Instruction Representation I Instructor: Miki Lustig 2014-09-17 August 25: The final ISA showdown: Is ARM, x86, or

More information

MIPS%Assembly% E155%

MIPS%Assembly% E155% MIPS%Assembly% E155% Outline MIPS Architecture ISA Instruction types Machine codes Procedure call Stack 2 The MIPS Register Set Name Register Number Usage $0 0 the constant value 0 $at 1 assembler temporary

More information

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers

Instruction Set Architecture of. MIPS Processor. MIPS Processor. MIPS Registers (continued) MIPS Registers CSE 675.02: Introduction to Computer Architecture MIPS Processor Memory Instruction Set Architecture of MIPS Processor CPU Arithmetic Logic unit Registers $0 $31 Multiply divide Coprocessor 1 (FPU) Registers

More information

CPS311 - COMPUTER ORGANIZATION. A bit of history

CPS311 - COMPUTER ORGANIZATION. A bit of history CPS311 - COMPUTER ORGANIZATION A Brief Introduction to the MIPS Architecture A bit of history The MIPS architecture grows out of an early 1980's research project at Stanford University. In 1984, MIPS computer

More information

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2)

ELEC / Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) ELEC 5200-001/6200-001 Computer Architecture and Design Fall 2013 Instruction Set Architecture (Chapter 2) Victor P. Nelson, Professor & Asst. Chair Vishwani D. Agrawal, James J. Danaher Professor Department

More information

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008

Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 Math 230 Assembly Programming (AKA Computer Organization) Spring 2008 MIPS Intro II Lect 10 Feb 15, 2008 Adapted from slides developed for: Mary J. Irwin PSU CSE331 Dave Patterson s UCB CS152 M230 L10.1

More information

Assembly Programming

Assembly Programming Designing Computer Systems Assembly Programming 08:34:48 PM 23 August 2016 AP-1 Scott & Linda Wills Designing Computer Systems Assembly Programming In the early days of computers, assembly programming

More information

A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3

A Processor. Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3 A Processor Kevin Walsh CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Let s build a MIPS CPU but using Harvard architecture Basic Computer System Registers ALU

More information

EE 109 Unit 8 MIPS Instruction Set

EE 109 Unit 8 MIPS Instruction Set 1 EE 109 Unit 8 MIPS Instruction Set 2 Architecting a vocabulary for the HW INSTRUCTION SET OVERVIEW 3 Instruction Set Architecture (ISA) Defines the software interface of the processor and memory system

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Read: Chapter 2.1-2.7 L03 Instruction Set 1 A General-Purpose Computer The von

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept Instructions: Instructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch

More information

Computer Architecture

Computer Architecture Computer Architecture Chapter 2 Instructions: Language of the Computer Fall 2005 Department of Computer Science Kent State University Assembly Language Encodes machine instructions using symbols and numbers

More information

CS3350B Computer Architecture

CS3350B Computer Architecture CS3350B Computer Architecture Winter 2015 Lecture 4.1: MIPS ISA: Introduction Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted d from lectures on Computer Organization and Design, Patterson & Hennessy,

More information

Week 10: Assembly Programming

Week 10: Assembly Programming Week 10: Assembly Programming Arithmetic instructions Instruction Opcode/Function Syntax Operation add 100000 $d, $s, $t $d = $s + $t addu 100001 $d, $s, $t $d = $s + $t addi 001000 $t, $s, i $t = $s +

More information

SPIM Instruction Set

SPIM Instruction Set SPIM Instruction Set This document gives an overview of the more common instructions used in the SPIM simulator. Overview The SPIM simulator implements the full MIPS instruction set, as well as a large

More information

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats

CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats CS 61C: Great Ideas in Computer Architecture MIPS Instruction Formats Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Machine Interpretation Levels of Representation/Interpretation

More information

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction

A General-Purpose Computer The von Neumann Model. Concocting an Instruction Set. Meaning of an Instruction. Anatomy of an Instruction page 1 Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... A General-Purpose Computer The von Neumann Model Many architectural approaches

More information

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA.

Today s topics. MIPS operations and operands. MIPS arithmetic. CS/COE1541: Introduction to Computer Architecture. A Review of MIPS ISA. Today s topics CS/COE1541: Introduction to Computer Architecture MIPS operations and operands MIPS registers Memory view Instruction encoding A Review of MIPS ISA Sangyeun Cho Arithmetic operations Logic

More information

Lecture 4: MIPS Instruction Set

Lecture 4: MIPS Instruction Set Lecture 4: MIPS Instruction Set No class on Tuesday Today s topic: MIPS instructions Code examples 1 Instruction Set Understanding the language of the hardware is key to understanding the hardware/software

More information

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design

ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design ENGN1640: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu School of Engineering Brown University Spring 2014 Sources: Computer

More information

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21

Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 2.9 Communication with People: Byte Data & Constants Character Is a byte quantity (00~FF or 0~255) ASCII (American Standard Code for Information Interchange) Page 91, Fig. 2.21 32: space 33:! 34: 35: #...

More information

ECE Exam I February 19 th, :00 pm 4:25pm

ECE Exam I February 19 th, :00 pm 4:25pm ECE 3056 Exam I February 19 th, 2015 3:00 pm 4:25pm 1. The exam is closed, notes, closed text, and no calculators. 2. The Georgia Tech Honor Code governs this examination. 3. There are 4 questions and

More information

MIPS Assembly Programming

MIPS Assembly Programming COMP 212 Computer Organization & Architecture COMP 212 Fall 2008 Lecture 8 Cache & Disk System Review MIPS Assembly Programming Comp 212 Computer Org & Arch 1 Z. Li, 2008 Comp 212 Computer Org & Arch 2

More information

Chapter 2: Instructions:

Chapter 2: Instructions: Chapter 2: Instructions: Language of the Computer Computer Architecture CS-3511-2 1 Instructions: To command a computer s hardware you must speak it s language The computer s language is called instruction

More information

Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer

Forecast. Instructions (354 Review) Basics. Basics. Instruction set architecture (ISA) is its vocabulary. Instructions are the words of a computer Instructions (354 Review) Forecast Instructions are the words of a computer Instruction set architecture (ISA) is its vocabulary With a few other things, this defines the interface of computers But implementations

More information

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College

Assembly Language Programming. CPSC 252 Computer Organization Ellen Walker, Hiram College Assembly Language Programming CPSC 252 Computer Organization Ellen Walker, Hiram College Instruction Set Design Complex and powerful enough to enable any computation Simplicity of equipment MIPS Microprocessor

More information

Announcements. EE108B Lecture MIPS Assembly Language III. MIPS Machine Instruction Review: Instruction Format Summary

Announcements. EE108B Lecture MIPS Assembly Language III. MIPS Machine Instruction Review: Instruction Format Summary Announcements EE108B Lecture MIPS Assembly Language III Christos Kozyrakis Stanford University http://eeclass.stanford.edu/ee108b PA1 available, due on Thursday 2/8 Work on you own (no groups) Homework

More information

A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3

A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University. See: P&H Chapter , 4.1-3 A Processor! Hakim Weatherspoon CS 3410, Spring 2010 Computer Science Cornell University See: P&H Chapter 2.16-20, 4.1-3 Announcements! HW2 available later today HW2 due in one week and a half Work alone

More information

Chapter 2. Instructions:

Chapter 2. Instructions: Chapter 2 1 Instructions: Language of the Machine More primitive than higher level languages e.g., no sophisticated control flow Very restrictive e.g., MIPS Arithmetic Instructions We ll be working with

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2009 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine

Machine Language Instructions Introduction. Instructions Words of a language understood by machine. Instruction set Vocabulary of the machine Machine Language Instructions Introduction Instructions Words of a language understood by machine Instruction set Vocabulary of the machine Current goal: to relate a high level language to instruction

More information

ECE 154A Introduction to. Fall 2012

ECE 154A Introduction to. Fall 2012 ECE 154A Introduction to Computer Architecture Fall 2012 Dmitri Strukov Lecture 4: Arithmetic and Data Transfer Instructions Agenda Review of last lecture Logic and shift instructions Load/store instructionsi

More information

CS222: MIPS Instruction Set

CS222: MIPS Instruction Set CS222: MIPS Instruction Set Dr. A. Sahu Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Previous Introduction to MIPS Instruction Set MIPS Arithmetic's Register Vs Memory, Registers

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Instructions: ti Language of the Computer Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Computer Hierarchy Levels Language understood

More information

All instructions have 3 operands Operand order is fixed (destination first)

All instructions have 3 operands Operand order is fixed (destination first) Instruction Set Architecture for MIPS Processors Overview Dr. Arjan Durresi Louisiana State University Baton Rouge, LA 70803 durresi@csc.lsu.edu These slides are available at: http://www.csc.lsu.edu/~durresi/_07/

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization Review I Prof. Michel A. Kinsy Computing: The Art of Abstraction Application Algorithm Programming Language Operating System/Virtual Machine Instruction Set Architecture (ISA)

More information

ICS 233 COMPUTER ARCHITECTURE. MIPS Processor Design Multicycle Implementation

ICS 233 COMPUTER ARCHITECTURE. MIPS Processor Design Multicycle Implementation ICS 233 COMPUTER ARCHITECTURE MIPS Processor Design Multicycle Implementation Lecture 23 1 Add immediate unsigned Subtract unsigned And And immediate Or Or immediate Nor Shift left logical Shift right

More information

Chapter 2. Instruction Set Architecture (ISA)

Chapter 2. Instruction Set Architecture (ISA) Chapter 2 Instruction Set Architecture (ISA) MIPS arithmetic Design Principle: simplicity favors regularity. Why? Of course this complicates some things... C code: A = B + C + D; E = F - A; MIPS code:

More information

Mips Code Examples Peter Rounce

Mips Code Examples Peter Rounce Mips Code Examples Peter Rounce P.Rounce@cs.ucl.ac.uk Some C Examples Assignment : int j = 10 ; // space must be allocated to variable j Possibility 1: j is stored in a register, i.e. register $2 then

More information

Architecture I. Computer Systems Laboratory Sungkyunkwan University

Architecture I. Computer Systems Laboratory Sungkyunkwan University MIPS Instruction ti Set Architecture I Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Architecture (1) the attributes of a system as seen by the

More information

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5

ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 ENCM 369 Winter 2013: Reference Material for Midterm #2 page 1 of 5 MIPS/SPIM General Purpose Registers Powers of Two 0 $zero all bits are zero 16 $s0 local variable 1 $at assembler temporary 17 $s1 local

More information

Overview of Today s Lecture

Overview of Today s Lecture Overview of Today s Lecture CS152 Computer Architecture and Engineering Lecture 2 Review of MIPS ISA and Performance January 18, 2001 John Kubiatowicz (http.cs.berkeley.edu/~kubitron) Review from Last

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: MIPS Instruction Set Architecture Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: MIPS Instruction Set Architecture vonneumann Architecture Modern computers use the vonneumann architecture. Idea:

More information

We will study the MIPS assembly language as an exemplar of the concept.

We will study the MIPS assembly language as an exemplar of the concept. MIPS Assembly Language 1 We will study the MIPS assembly language as an exemplar of the concept. MIPS assembly instructions each consist of a single token specifying the command to be carried out, and

More information

Inequalities in MIPS (2/4) Inequalities in MIPS (1/4) Inequalities in MIPS (4/4) Inequalities in MIPS (3/4) UCB CS61C : Machine Structures

Inequalities in MIPS (2/4) Inequalities in MIPS (1/4) Inequalities in MIPS (4/4) Inequalities in MIPS (3/4) UCB CS61C : Machine Structures CS61C L8 Introduction to MIPS : Decisions II & Procedures I (1) Instructor Paul Pearce inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures http://www.xkcd.org/627/ Lecture 8 Decisions & and Introduction

More information

Computer Architecture. Chapter 3: Arithmetic for Computers

Computer Architecture. Chapter 3: Arithmetic for Computers 182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin

More information

MIPS Integer ALU Requirements

MIPS Integer ALU Requirements MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 13 Introduction to MIPS Instruction Representation I Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Anyone seen Terminator? Military

More information

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design

EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design EN164: Design of Computing Systems Topic 03: Instruction Set Architecture Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown

More information

Concocting an Instruction Set

Concocting an Instruction Set Concocting an Instruction Set Nerd Chef at work. move flour,bowl add milk,bowl add egg,bowl move bowl,mixer rotate mixer... Lab is posted. Do your prelab! Stay tuned for the first problem set. L04 Instruction

More information

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology

Computer Organization MIPS Architecture. Department of Computer Science Missouri University of Science & Technology Computer Organization MIPS Architecture Department of Computer Science Missouri University of Science & Technology hurson@mst.edu Computer Organization Note, this unit will be covered in three lectures.

More information

Computer Architecture Experiment

Computer Architecture Experiment Computer Architecture Experiment Jiang Xiaohong College of Computer Science & Engineering Zhejiang University Architecture Lab_jxh 1 Topics 0 Basic Knowledge 1 Warm up 2 simple 5-stage of pipeline CPU

More information

Review of the Machine Cycle

Review of the Machine Cycle MIPS Branch and Jump Instructions Cptr280 Dr Curtis Nelson Review of the Machine Cycle When a program is executing, its instructions are located in main memory. The address of an instruction is the address

More information

Review of Last Lecture. CS 61C: Great Ideas in Computer Architecture. MIPS Instruction Representation II. Agenda. Dealing With Large Immediates

Review of Last Lecture. CS 61C: Great Ideas in Computer Architecture. MIPS Instruction Representation II. Agenda. Dealing With Large Immediates CS 61C: Great Ideas in Computer Architecture MIPS Instruction Representation II Guest Lecturer: Justin Hsia 2/11/2013 Spring 2013 Lecture #9 1 Review of Last Lecture Simplifying MIPS: Define instructions

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture Introduction to Assembly Language June 30, 2014 Review C Memory Layout Local variables disappear because the stack changes Global variables don t disappear because they are in static data Dynamic memory

More information

ISA: The Hardware Software Interface

ISA: The Hardware Software Interface ISA: The Hardware Software Interface Instruction Set Architecture (ISA) is where software meets hardware In embedded systems, this boundary is often flexible Understanding of ISA design is therefore important

More information

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off.

Grading: 3 pts each part. If answer is correct but uses more instructions, 1 pt off. Wrong answer 3pts off. Department of Electrical and Computer Engineering University of Wisconsin Madison ECE 552 Introductions to Computer Architecture Homework #2 (Suggested Solution) 1. (10 points) MIPS and C program translations

More information

ECE/CS 552: Introduction To Computer Architecture 1. Instructor:Mikko H. Lipasti. University of Wisconsin-Madison. Basics Registers and ALU ops

ECE/CS 552: Introduction To Computer Architecture 1. Instructor:Mikko H. Lipasti. University of Wisconsin-Madison. Basics Registers and ALU ops ECE/CS 552: Instruction Sets Instructor:Mikko H. Lipasti Fall 2010 University of Wisconsin-Madison Lecture notes partially based on set created by Mark Hill. Instructions (354 Review) Instructions are

More information

Adventures in Assembly Land

Adventures in Assembly Land Adventures in Assembly Land What is an Assembler ASM Directives ASM Syntax Intro to SPIM Simple examples L6 Simulator 1 A Simple Programming Task Add the numbers 0 to 4 10 = 0 + 1 + 2 + 3 + 4 In C : int

More information

CENG3420 L05: Arithmetic and Logic Unit

CENG3420 L05: Arithmetic and Logic Unit CENG3420 L05: Arithmetic and Logic Unit Bei Yu byu@cse.cuhk.edu.hk (Latest update: January 25, 2018) Spring 2018 1 / 53 Overview Overview Addition Multiplication & Division Shift Floating Point Number

More information

CS61C Machine Structures. Lecture 10 - MIPS Branch Instructions II. 2/8/2006 John Wawrzynek. (www.cs.berkeley.edu/~johnw)

CS61C Machine Structures. Lecture 10 - MIPS Branch Instructions II. 2/8/2006 John Wawrzynek. (www.cs.berkeley.edu/~johnw) CS61C Machine Structures Lecture 10 - MIPS Branch Instructions II 2/8/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L10 MIPS Branch II (1) Compiling C if into

More information

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015

ECE 2035 A Programming Hw/Sw Systems Spring problems, 8 pages Final Exam 29 April 2015 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands

Stored Program Concept. Instructions: Characteristics of Instruction Set. Architecture Specification. Example of multiple operands Stored Program Concept nstructions: nstructions are bits Programs are stored in memory to be read or written just like data Processor Memory memory for data, programs, compilers, editors, etc. Fetch &

More information

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14

CO Computer Architecture and Programming Languages CAPL. Lecture 13 & 14 CO20-320241 Computer Architecture and Programming Languages CAPL Lecture 13 & 14 Dr. Kinga Lipskoch Fall 2017 Frame Pointer (1) The stack is also used to store variables that are local to function, but

More information

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) Instruction Set Architecture (ISA)... the attributes of a [computing] system as seen by the programmer, i.e. the conceptual structure and functional behavior, as distinct from the organization of the data

More information

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda

MIPS ISA and MIPS Assembly. CS301 Prof. Szajda MIPS ISA and MIPS Assembly CS301 Prof. Szajda Administrative HW #2 due Wednesday (9/11) at 5pm Lab #2 due Friday (9/13) 1:30pm Read Appendix B5, B6, B.9 and Chapter 2.5-2.9 (if you have not already done

More information

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#:

Computer Science and Engineering 331. Midterm Examination #1. Fall Name: Solutions S.S.#: Computer Science and Engineering 331 Midterm Examination #1 Fall 2000 Name: Solutions S.S.#: 1 41 2 13 3 18 4 28 Total 100 Instructions: This exam contains 4 questions. It is closed book and notes. Calculators

More information

MIPS (SPIM) Assembler Syntax

MIPS (SPIM) Assembler Syntax MIPS (SPIM) Assembler Syntax Comments begin with # Everything from # to the end of the line is ignored Identifiers are a sequence of alphanumeric characters, underbars (_), and dots () that do not begin

More information

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath The MIPS Datapath 1 The Critical Path and Circuit Timing The critical path is the slowest path through the circuit For a synchronous circuit, the clock cycle must be longer than the critical path otherwise

More information

Chapter 2. Instruction Set. RISC vs. CISC Instruction set. The University of Adelaide, School of Computer Science 18 September 2017

Chapter 2. Instruction Set. RISC vs. CISC Instruction set. The University of Adelaide, School of Computer Science 18 September 2017 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface RISC-V Edition Chapter 2 Instructions: Language of the Computer These slides are based on the slides by the authors. The slides doesn t

More information

The MIPS R2000 Instruction Set

The MIPS R2000 Instruction Set The MIPS R2000 Instruction Set Arithmetic and Logical Instructions In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer). The immediate forms of the instructions

More information

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath

Outline. EEL-4713 Computer Architecture Designing a Single Cycle Datapath Outline EEL-473 Computer Architecture Designing a Single Cycle path Introduction The steps of designing a processor path and timing for register-register operations path for logical operations with immediates

More information

Chapter 4. The Processor. Computer Architecture and IC Design Lab

Chapter 4. The Processor. Computer Architecture and IC Design Lab Chapter 4 The Processor Introduction CPU performance factors CPI Clock Cycle Time Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS

More information

COMP MIPS instructions 2 Feb. 8, f = g + h i;

COMP MIPS instructions 2 Feb. 8, f = g + h i; Register names (save, temporary, zero) From what I have said up to now, you will have the impression that you are free to use any of the 32 registers ($0,..., $31) in any instruction. This is not so, however.

More information

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016

ECE 2035 A Programming Hw/Sw Systems Fall problems, 10 pages Final Exam 14 December 2016 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

Five classic components

Five classic components CS/COE0447: Computer Organization and Assembly Language Chapter 2 modified by Bruce Childers original slides by Sangyeun Cho Dept. of Computer Science Five classic components I am like a control tower

More information

Tailoring the 32-Bit ALU to MIPS

Tailoring the 32-Bit ALU to MIPS Tailoring the 32-Bit ALU to MIPS MIPS ALU extensions Overflow detection: Carry into MSB XOR Carry out of MSB Branch instructions Shift instructions Slt instruction Immediate instructions ALU performance

More information

Chapter 6. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 6 <1>

Chapter 6. Digital Design and Computer Architecture, 2 nd Edition. David Money Harris and Sarah L. Harris. Chapter 6 <1> Chapter 6 Digital Design and Computer Architecture, 2 nd Edition David Money Harris and Sarah L. Harris Chapter 6 Chapter 6 :: Topics Introduction Assembly Language Machine Language Programming Addressing

More information

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c 9/7/17

More information

CHW 362 : Computer Architecture & Organization

CHW 362 : Computer Architecture & Organization CHW 362 : Computer Architecture & Organization Instructors: Dr Ahmed Shalaby Dr Mona Ali http://bu.edu.eg/staff/ahmedshalaby14# http://www.bu.edu.eg/staff/mona.abdelbaset Assignment What is the size of

More information

CENG 3420 Lecture 05: Arithmetic and Logic Unit

CENG 3420 Lecture 05: Arithmetic and Logic Unit CENG 3420 Lecture 05: Arithmetic and Logic Unit Bei Yu byu@cse.cuhk.edu.hk CENG3420 L05.1 Spring 2017 Outline q 1. Overview q 2. Addition q 3. Multiplication & Division q 4. Shift q 5. Floating Point Number

More information

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and MIPS Instruction Set Architecture

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and MIPS Instruction Set Architecture CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and MIPS Instruction Set Architecture Instructors: Bernhard Boser & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa16

More information

Architecture II. Computer Systems Laboratory Sungkyunkwan University

Architecture II. Computer Systems Laboratory Sungkyunkwan University MIPS Instruction ti Set Architecture II Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Making Decisions (1) Conditional operations Branch to a

More information

B649 Graduate Computer Architecture. Lec 1 - Introduction

B649 Graduate Computer Architecture. Lec 1 - Introduction B649 Graduate Computer Architecture Lec 1 - Introduction http://www.cs.indiana.edu/~achauhan/teaching/ B649/2009-Spring/ 1/12/09 b649, Lec 01-intro 2 Outline Computer Science at a Crossroads Computer Architecture

More information

Computer Architecture. Lecture 2 : Instructions

Computer Architecture. Lecture 2 : Instructions Computer Architecture Lecture 2 : Instructions 1 Components of a Computer Hierarchical Layers of Program Code 3 Instruction Set The repertoire of instructions of a computer 2.1 Intr roduction Different

More information