5. Key ingredients for programming a random walk

Size: px
Start display at page:

Download "5. Key ingredients for programming a random walk"

Transcription

1 1. Random Walk = Brownian Motion = Markov Chain (with caveat that each of these is a class of different models, not all of which are exactly equal) 2. A random walk is a specific kind of time series process in which the next step is random with respect to previous steps. A time series process is any process in which a series of events occur starting with the state after the last event. Evolution, both within a lineage and on a phylogeny, is a type of time series, though not always a random walk. Random walks are often used as null models for the evolutionary process because they specify what happens in a time series if all the events are completely random. 3. Outcomes of random walks are predictable, in a statistical sense, if the number of steps and the average amount of change at each step is known. The statistics of random walks thus form an important part of quantitative analysis of evolutionary patterns within lineages and on phylogenetic trees. 4. Statistical outcomes of univariate, unbiased random walks: 4.1. The most likely end point is the starting point 4.2. End points are normally distributed with the mean equal to the starting point 4.3. The variance of the end points equals the variance of the per-step change times the number of steps 4.4. The standard deviation of the end points is equal to the standard deviaton of the per-step change times the square-root of the number of steps 5. Key ingredients for programming a random walk 5.1. Choose a starting point and record it 5.2. Draw a random number from a distribution whose average is 0 and where there is equal probability of getting a positive or negative outcome 5.3. Add the random value to the previous value and repeat 1. Do loop: Do loops are standard programming structures that do something repeatedly until told to stop. Mathematica can handle these loops. Key ingredients are: 1.1. setting up variables to record the outcomes of each step of the Do loop 1.2. setting up the structure to repeat commands 1.3. saving the outcome at each step

2 2 Lecture 3 - Trait evolution, random walks.nb 1.4. setting up a control to end the loop (often this simply involves specifying the number of times to repeat as an iterator at the end of the Do function) Here is a short do loop that generates a random walk starting at zero. The repeated commands appear before the comma within the Do[] function. The iterator is {x, 00}, which repeats the loop 10,000 times. First, a step value of -1 or 1 is chosen randomly with the RandomChoice[] function. Then that value is added to the previous value stored in the randomwalk variable(randomwalk[[-1]]) and appends it to the values already stored there. = {- }] = [- ]] + ] ] - Note that you can trigger the Do loop to end early when conditions that you specify are reached. For example, you can end early if the value reaches or higher, or you could end early if a random extinction event happens. Use the If[] function to do this. If has two or three parameters, the first of which is a logical statement that specifies the condition, the second is the command to execute if the statement is true (the third is optional, an alternative command to execute if the statement is false). Break[] is a function to end a loop. Note that I have added options to the ListPlot so that all 00 steps are shown even if the lineage becomes extinct early so that that the effect of the If[] function is more obvious. = {- }] = [- ]] + ] [- ]] ]] {{ } {- }}] - -

3 Lecture 3 - Trait evolution, random walks.nb 3 In the following example we simulate a random walk that has a 1% chance of becoming extinct at each step. In the If[] function, a random number between 0 and 1 is chosen and the walk is terminated if that number is greater than.99 (i.e., there is a 99% chance of not becoming extinct, and a 1% chance of ending. Why doesn t the walk ever get very far? How far, on average, does it get? How can you change the code so that % of the walks end before finishing, but the other % make it all the way through 10,000 steps? = {} = {- }] = [- ]] + ] { }] ]] = [- ]]] { }] ] Table: Table[] is a specialized Mathematica function that has many of the properties of a Do loop, but which saves each value automatically. Like Do[], the funciton ends with an iterator preceeded by a comma. You can place several commands in front of the comma by separating them with semicolons. Note that the result of commands ending with semicolons are not returned in the table, only the result of the last command before the comma. You still have to keep track of the current value of the random walk at each step. Here, this is done using a temporary variable val to hold the most recent value, while at the same time inserting it into the table.

4 4 Lecture 3 - Trait evolution, random walks.nb = = = + {- }] ] Accumulate is a function that adds up a bunch of numbers generated by a command and returns each step of the addition. This function can be used to generate a simple random walk like the first ones above. = {- } ]] ] 1 4. NestList is a generic version of Accumulate where you can perform any function on a list, including addition. If you use addition, then the result is exactly the same as Accumulate. # serves as a place holder variable for each step. Here, the random choice of -1 or 1 is added to # at each step, with the whole thing starting at 0 and repeating 10,000 times.

5 Lecture 3 - Trait evolution, random walks.nb 5 = # + {- }] ] ] The random walk code above produces binary random walks, one in which each step is +1 or -1. What is the average change each step? What is the expected variance for a given number of steps. 1. Selection coefficient drawn from normal distribution 1.1. NormalDistrubtion[] function that takes mean and standard deviation as input parameters. RandomReal can be used to select value from that distribution.

6 6 Lecture 3 - Trait evolution, random walks.nb = ]] = [- ]] + ] ] McKinney Equation 2. Different method altogether for generating a random walk. If r=1, then the formula produces a random walk. What happens if r<1 or r>1? Note that what happens if r is much bigger than 1, even 2.0. = = ]] = * [- ]] + ] { }] ] Serial correlation is one way to measure whether a sequence of data belong to a time series. If one value is dependent on the value before it, then serial correlation is high (near 1). Time series like random walks have strong serial correlations. Show this with Monte Carlo following instructions in McKinney paper.

7 Lecture 3 - Trait evolution, random walks.nb 7 1. First generate a random walk. = {{ }} = ]] = { [- ]] + }] ] [ ]] {{ } { - } { - } { - } { - } { - } { } { } { } { }} 2. Then find a linear regression line through the random walk, which describes its average trend (a random trend, in this case). Plot the regresison line to make sure it is right. = { } ] ] ] { }]] regress the residuals around the fit to the residuals in the previous step. To do this, offset the residuals by choosing the 1st step through the next to the last step. Regress the second through last residual onto them. If the regression slope is near 1.0 then the time series has a near perfect serial correlation.

8 8 Lecture 3 - Trait evolution, random walks.nb { ][[ - ]] ][[ ]]}] { } ] - + = {- } ]] = {- } ]] { } ] 1 ] // = [ + ]] - [ ]] { ] - }] = [ + ]] - [ ]] { ] - }] ] // -

Please download and install the Phylogenetics for Mathematica and the Quantitative Paleontology for Mathematica packages.

Please download and install the Phylogenetics for Mathematica and the Quantitative Paleontology for Mathematica packages. In addition to the packages that come with Mathematica, one can install packages written by other Mathematica users for special purposes. Several such packages are available from the Polly Lab website

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

Did you ever think that a four hundred year-old spider may be why we study linear relationships today?

Did you ever think that a four hundred year-old spider may be why we study linear relationships today? Show Me: Determine if a Function is Linear M8221 Did you ever think that a four hundred year-old spider may be why we study linear relationships today? Supposedly, while lying in bed Rene Descartes noticed

More information

9.8 Rockin the Residuals

9.8 Rockin the Residuals 42 SECONDARY MATH 1 // MODULE 9 9.8 Rockin the Residuals A Solidify Understanding Task The correlation coefficient is not the only tool that statisticians use to analyze whether or not a line is a good

More information

Multiple Regression White paper

Multiple Regression White paper +44 (0) 333 666 7366 Multiple Regression White paper A tool to determine the impact in analysing the effectiveness of advertising spend. Multiple Regression In order to establish if the advertising mechanisms

More information

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables

Further Maths Notes. Common Mistakes. Read the bold words in the exam! Always check data entry. Write equations in terms of variables Further Maths Notes Common Mistakes Read the bold words in the exam! Always check data entry Remember to interpret data with the multipliers specified (e.g. in thousands) Write equations in terms of variables

More information

Tutorial using BEAST v2.4.1 Troubleshooting David A. Rasmussen

Tutorial using BEAST v2.4.1 Troubleshooting David A. Rasmussen Tutorial using BEAST v2.4.1 Troubleshooting David A. Rasmussen 1 Background The primary goal of most phylogenetic analyses in BEAST is to infer the posterior distribution of trees and associated model

More information

Fathom Dynamic Data TM Version 2 Specifications

Fathom Dynamic Data TM Version 2 Specifications Data Sources Fathom Dynamic Data TM Version 2 Specifications Use data from one of the many sample documents that come with Fathom. Enter your own data by typing into a case table. Paste data from other

More information

Design of Experiments

Design of Experiments Seite 1 von 1 Design of Experiments Module Overview In this module, you learn how to create design matrices, screen factors, and perform regression analysis and Monte Carlo simulation using Mathcad. Objectives

More information

Bivariate (Simple) Regression Analysis

Bivariate (Simple) Regression Analysis Revised July 2018 Bivariate (Simple) Regression Analysis This set of notes shows how to use Stata to estimate a simple (two-variable) regression equation. It assumes that you have set Stata up on your

More information

Package treedater. R topics documented: May 4, Type Package

Package treedater. R topics documented: May 4, Type Package Type Package Package treedater May 4, 2018 Title Fast Molecular Clock Dating of Phylogenetic Trees with Rate Variation Version 0.2.0 Date 2018-04-23 Author Erik Volz [aut, cre] Maintainer Erik Volz

More information

Data Analysis and Solver Plugins for KSpread USER S MANUAL. Tomasz Maliszewski

Data Analysis and Solver Plugins for KSpread USER S MANUAL. Tomasz Maliszewski Data Analysis and Solver Plugins for KSpread USER S MANUAL Tomasz Maliszewski tmaliszewski@wp.pl Table of Content CHAPTER 1: INTRODUCTION... 3 1.1. ABOUT DATA ANALYSIS PLUGIN... 3 1.3. ABOUT SOLVER PLUGIN...

More information

Time Series Analysis by State Space Methods

Time Series Analysis by State Space Methods Time Series Analysis by State Space Methods Second Edition J. Durbin London School of Economics and Political Science and University College London S. J. Koopman Vrije Universiteit Amsterdam OXFORD UNIVERSITY

More information

Vocabulary Unit 2-3: Linear Functions & Healthy Lifestyles. Scale model a three dimensional model that is similar to a three dimensional object.

Vocabulary Unit 2-3: Linear Functions & Healthy Lifestyles. Scale model a three dimensional model that is similar to a three dimensional object. Scale a scale is the ratio of any length in a scale drawing to the corresponding actual length. The lengths may be in different units. Scale drawing a drawing that is similar to an actual object or place.

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

Multi-step transformations

Multi-step transformations October 6, 2016 Transformations (section 1.6) Day 4 page 1 Multi-step transformations Objective: Apply transformations involving multiple steps or multiple substitutions. Upcoming: We will have a test

More information

WEEK 4 REVIEW. Graphing Systems of Linear Inequalities (3.1)

WEEK 4 REVIEW. Graphing Systems of Linear Inequalities (3.1) WEEK 4 REVIEW Graphing Systems of Linear Inequalities (3.1) Linear Programming Problems (3.2) Checklist for Exam 1 Review Sample Exam 1 Graphing Linear Inequalities Graph the following system of inequalities.

More information

Robust Linear Regression (Passing- Bablok Median-Slope)

Robust Linear Regression (Passing- Bablok Median-Slope) Chapter 314 Robust Linear Regression (Passing- Bablok Median-Slope) Introduction This procedure performs robust linear regression estimation using the Passing-Bablok (1988) median-slope algorithm. Their

More information

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1

Example 1 of panel data : Data for 6 airlines (groups) over 15 years (time periods) Example 1 Panel data set Consists of n entities or subjects (e.g., firms and states), each of which includes T observations measured at 1 through t time period. total number of observations : nt Panel data have

More information

MDM 4UI: Unit 8 Day 2: Regression and Correlation

MDM 4UI: Unit 8 Day 2: Regression and Correlation MDM 4UI: Unit 8 Day 2: Regression and Correlation Regression: The process of fitting a line or a curve to a set of data. Coefficient of Correlation(r): This is a value between and allows statisticians

More information

Nina Zumel and John Mount Win-Vector LLC

Nina Zumel and John Mount Win-Vector LLC SUPERVISED LEARNING IN R: REGRESSION Evaluating a model graphically Nina Zumel and John Mount Win-Vector LLC "line of perfect prediction" Systematic errors DataCamp Plotting Ground Truth vs. Predictions

More information

Section 7D Systems of Linear Equations

Section 7D Systems of Linear Equations Section 7D Systems of Linear Equations Companies often look at more than one equation of a line when analyzing how their business is doing. For example a company might look at a cost equation and a profit

More information

Computational Methods. Randomness and Monte Carlo Methods

Computational Methods. Randomness and Monte Carlo Methods Computational Methods Randomness and Monte Carlo Methods Manfred Huber 2010 1 Randomness and Monte Carlo Methods Introducing randomness in an algorithm can lead to improved efficiencies Random sampling

More information

I211: Information infrastructure II

I211: Information infrastructure II Data Mining: Classifier Evaluation I211: Information infrastructure II 3-nearest neighbor labeled data find class labels for the 4 data points 1 0 0 6 0 0 0 5 17 1.7 1 1 4 1 7.1 1 1 1 0.4 1 2 1 3.0 0 0.1

More information

3. Data Analysis and Statistics

3. Data Analysis and Statistics 3. Data Analysis and Statistics 3.1 Visual Analysis of Data 3.2.1 Basic Statistics Examples 3.2.2 Basic Statistical Theory 3.3 Normal Distributions 3.4 Bivariate Data 3.1 Visual Analysis of Data Visual

More information

Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Bivariate Linear Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 4, 217 PDF file location: http://www.murraylax.org/rtutorials/regression_intro.pdf HTML file location:

More information

ALGEBRA II A CURRICULUM OUTLINE

ALGEBRA II A CURRICULUM OUTLINE ALGEBRA II A CURRICULUM OUTLINE 2013-2014 OVERVIEW: 1. Linear Equations and Inequalities 2. Polynomial Expressions and Equations 3. Rational Expressions and Equations 4. Radical Expressions and Equations

More information

An Introduction to Markov Chain Monte Carlo

An Introduction to Markov Chain Monte Carlo An Introduction to Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers to a suite of processes for simulating a posterior distribution based on a random (ie. monte carlo) process. In other

More information

An introduction to plotting data

An introduction to plotting data An introduction to plotting data Eric D. Black California Institute of Technology February 25, 2014 1 Introduction Plotting data is one of the essential skills every scientist must have. We use it on a

More information

Chapter 4: Analyzing Bivariate Data with Fathom

Chapter 4: Analyzing Bivariate Data with Fathom Chapter 4: Analyzing Bivariate Data with Fathom Summary: Building from ideas introduced in Chapter 3, teachers continue to analyze automobile data using Fathom to look for relationships between two quantitative

More information

CSE446: Linear Regression. Spring 2017

CSE446: Linear Regression. Spring 2017 CSE446: Linear Regression Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin and Luke Zettlemoyer Prediction of continuous variables Billionaire says: Wait, that s not what I meant! You say: Chill

More information

ST Lab 1 - The basics of SAS

ST Lab 1 - The basics of SAS ST 512 - Lab 1 - The basics of SAS What is SAS? SAS is a programming language based in C. For the most part SAS works in procedures called proc s. For instance, to do a correlation analysis there is proc

More information

STATISTICS (STAT) Statistics (STAT) 1

STATISTICS (STAT) Statistics (STAT) 1 Statistics (STAT) 1 STATISTICS (STAT) STAT 2013 Elementary Statistics (A) Prerequisites: MATH 1483 or MATH 1513, each with a grade of "C" or better; or an acceptable placement score (see placement.okstate.edu).

More information

Curve Fitting with Linear Models

Curve Fitting with Linear Models 1-4 1-4 Curve Fitting with Linear Models Warm Up Lesson Presentation Lesson Quiz Algebra 2 Warm Up Write the equation of the line passing through each pair of passing points in slope-intercept form. 1.

More information

Year 10 General Mathematics Unit 2

Year 10 General Mathematics Unit 2 Year 11 General Maths Year 10 General Mathematics Unit 2 Bivariate Data Chapter 4 Chapter Four 1 st Edition 2 nd Edition 2013 4A 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 2F (FM) 1,

More information

Chapter 7: Linear regression

Chapter 7: Linear regression Chapter 7: Linear regression Objective (1) Learn how to model association bet. 2 variables using a straight line (called "linear regression"). (2) Learn to assess the quality of regression models. (3)

More information

1. Solve the following system of equations below. What does the solution represent? 5x + 2y = 10 3x + 5y = 2

1. Solve the following system of equations below. What does the solution represent? 5x + 2y = 10 3x + 5y = 2 1. Solve the following system of equations below. What does the solution represent? 5x + 2y = 10 3x + 5y = 2 2. Given the function: f(x) = a. Find f (6) b. State the domain of this function in interval

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

Issues in MCMC use for Bayesian model fitting. Practical Considerations for WinBUGS Users

Issues in MCMC use for Bayesian model fitting. Practical Considerations for WinBUGS Users Practical Considerations for WinBUGS Users Kate Cowles, Ph.D. Department of Statistics and Actuarial Science University of Iowa 22S:138 Lecture 12 Oct. 3, 2003 Issues in MCMC use for Bayesian model fitting

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display

Learner Expectations UNIT 1: GRAPICAL AND NUMERIC REPRESENTATIONS OF DATA. Sept. Fathom Lab: Distributions and Best Methods of Display CURRICULUM MAP TEMPLATE Priority Standards = Approximately 70% Supporting Standards = Approximately 20% Additional Standards = Approximately 10% HONORS PROBABILITY AND STATISTICS Essential Questions &

More information

Linear Regression. Problem: There are many observations with the same x-value but different y-values... Can t predict one y-value from x. d j.

Linear Regression. Problem: There are many observations with the same x-value but different y-values... Can t predict one y-value from x. d j. Linear Regression (*) Given a set of paired data, {(x 1, y 1 ), (x 2, y 2 ),..., (x n, y n )}, we want a method (formula) for predicting the (approximate) y-value of an observation with a given x-value.

More information

Shape & Space Part C: Transformations

Shape & Space Part C: Transformations Name: Homeroom: Shape & Space Part C: Transformations Student Learning Expectations Outcomes: I can describe and analyze position and motion of objects and shapes by Checking for Understanding identifying

More information

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions)

THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533. Time: 50 minutes 40 Marks FRST Marks FRST 533 (extra questions) THE UNIVERSITY OF BRITISH COLUMBIA FORESTRY 430 and 533 MIDTERM EXAMINATION: October 14, 2005 Instructor: Val LeMay Time: 50 minutes 40 Marks FRST 430 50 Marks FRST 533 (extra questions) This examination

More information

Things to Know for the Algebra I Regents

Things to Know for the Algebra I Regents Types of Numbers: Real Number: any number you can think of (integers, rational, irrational) Imaginary Number: square root of a negative number Integers: whole numbers (positive, negative, zero) Things

More information

UNIT 1: NUMBER LINES, INTERVALS, AND SETS

UNIT 1: NUMBER LINES, INTERVALS, AND SETS ALGEBRA II CURRICULUM OUTLINE 2011-2012 OVERVIEW: 1. Numbers, Lines, Intervals and Sets 2. Algebraic Manipulation: Rational Expressions and Exponents 3. Radicals and Radical Equations 4. Function Basics

More information

Integrated Mathematics I Performance Level Descriptors

Integrated Mathematics I Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Integrated Mathematics I. A student at this level has an emerging ability to demonstrate

More information

A short explanation of Linear Mixed Models (LMM)

A short explanation of Linear Mixed Models (LMM) A short explanation of Linear Mixed Models (LMM) DO NOT TRUST M ENGLISH! This PDF is downloadable at "My learning page" of http://www.lowtem.hokudai.ac.jp/plantecol/akihiro/sumida-index.html ver 20121121e

More information

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24

MCMC Diagnostics. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) MCMC Diagnostics MATH / 24 MCMC Diagnostics Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) MCMC Diagnostics MATH 9810 1 / 24 Convergence to Posterior Distribution Theory proves that if a Gibbs sampler iterates enough,

More information

MATH 115: Review for Chapter 1

MATH 115: Review for Chapter 1 MATH 115: Review for Chapter 1 Can you use the Distance Formula to find the distance between two points? (1) Find the distance d P, P between the points P and 1 1, 6 P 10,9. () Find the length of the line

More information

An introduction to the picante package

An introduction to the picante package An introduction to the picante package Steven Kembel (skembel@uoregon.edu) April 2010 Contents 1 Installing picante 1 2 Data formats in picante 1 2.1 Phylogenies................................ 2 2.2 Community

More information

Section 2.3: Simple Linear Regression: Predictions and Inference

Section 2.3: Simple Linear Regression: Predictions and Inference Section 2.3: Simple Linear Regression: Predictions and Inference Jared S. Murray The University of Texas at Austin McCombs School of Business Suggested reading: OpenIntro Statistics, Chapter 7.4 1 Simple

More information

CSE 446 Bias-Variance & Naïve Bayes

CSE 446 Bias-Variance & Naïve Bayes CSE 446 Bias-Variance & Naïve Bayes Administrative Homework 1 due next week on Friday Good to finish early Homework 2 is out on Monday Check the course calendar Start early (midterm is right before Homework

More information

Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers. Phys 420/580 Lecture 6 Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

More information

Regression. Dr. G. Bharadwaja Kumar VIT Chennai

Regression. Dr. G. Bharadwaja Kumar VIT Chennai Regression Dr. G. Bharadwaja Kumar VIT Chennai Introduction Statistical models normally specify how one set of variables, called dependent variables, functionally depend on another set of variables, called

More information

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg

Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Discussion on Bayesian Model Selection and Parameter Estimation in Extragalactic Astronomy by Martin Weinberg Phil Gregory Physics and Astronomy Univ. of British Columbia Introduction Martin Weinberg reported

More information

Lesson 13: The Graph of a Linear Equation in Two Variables

Lesson 13: The Graph of a Linear Equation in Two Variables Student Outcomes Students predict the shape of a graph of a linear equation by finding and plotting solutions on a coordinate plane. Students informally explain why the graph of a linear equation is not

More information

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Examples: Mixture Modeling With Cross-Sectional Data CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Mixture modeling refers to modeling with categorical latent variables that represent

More information

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization

Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization 1 Adaptive spatial resampling as a Markov chain Monte Carlo method for uncertainty quantification in seismic reservoir characterization Cheolkyun Jeong, Tapan Mukerji, and Gregoire Mariethoz Department

More information

Serial Correlation and Heteroscedasticity in Time series Regressions. Econometric (EC3090) - Week 11 Agustín Bénétrix

Serial Correlation and Heteroscedasticity in Time series Regressions. Econometric (EC3090) - Week 11 Agustín Bénétrix Serial Correlation and Heteroscedasticity in Time series Regressions Econometric (EC3090) - Week 11 Agustín Bénétrix 1 Properties of OLS with serially correlated errors OLS still unbiased and consistent

More information

Slide Copyright 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION. Chapter 13. Statistics Sampling Techniques

Slide Copyright 2005 Pearson Education, Inc. SEVENTH EDITION and EXPANDED SEVENTH EDITION. Chapter 13. Statistics Sampling Techniques SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide - Chapter Statistics. Sampling Techniques Statistics Statistics is the art and science of gathering, analyzing, and making inferences from numerical information

More information

Data Mining: Classifier Evaluation. CSCI-B490 Seminar in Computer Science (Data Mining)

Data Mining: Classifier Evaluation. CSCI-B490 Seminar in Computer Science (Data Mining) Data Mining: Classifier Evaluation CSCI-B490 Seminar in Computer Science (Data Mining) Predictor Evaluation 1. Question: how good is our algorithm? how will we estimate its performance? 2. Question: what

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

Middle School Math Course 2

Middle School Math Course 2 Middle School Math Course 2 Correlation of the ALEKS course Middle School Math Course 2 to the Indiana Academic Standards for Mathematics Grade 7 (2014) 1: NUMBER SENSE = ALEKS course topic that addresses

More information

Scatterplot: The Bridge from Correlation to Regression

Scatterplot: The Bridge from Correlation to Regression Scatterplot: The Bridge from Correlation to Regression We have already seen how a histogram is a useful technique for graphing the distribution of one variable. Here is the histogram depicting the distribution

More information

Markov chain Monte Carlo methods

Markov chain Monte Carlo methods Markov chain Monte Carlo methods (supplementary material) see also the applet http://www.lbreyer.com/classic.html February 9 6 Independent Hastings Metropolis Sampler Outline Independent Hastings Metropolis

More information

Computational Study of Protein Diffusion in a Membrane. By Kate Schneider Advisor Dr. Ken Ritchie

Computational Study of Protein Diffusion in a Membrane. By Kate Schneider Advisor Dr. Ken Ritchie Computational Study of Protein Diffusion in a Membrane By Kate Schneider Advisor Dr. Ken Ritchie 1 Cell RBC Membrane Red blood cell membrane. Embedded Proteins Membrane protects the cell. Lipids have two

More information

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc.

Expectation-Maximization Methods in Population Analysis. Robert J. Bauer, Ph.D. ICON plc. Expectation-Maximization Methods in Population Analysis Robert J. Bauer, Ph.D. ICON plc. 1 Objective The objective of this tutorial is to briefly describe the statistical basis of Expectation-Maximization

More information

Missing Data Missing Data Methods in ML Multiple Imputation

Missing Data Missing Data Methods in ML Multiple Imputation Missing Data Missing Data Methods in ML Multiple Imputation PRE 905: Multivariate Analysis Lecture 11: April 22, 2014 PRE 905: Lecture 11 Missing Data Methods Today s Lecture The basics of missing data:

More information

Opening Windows into the Black Box

Opening Windows into the Black Box Opening Windows into the Black Box Yu-Sung Su, Andrew Gelman, Jennifer Hill and Masanao Yajima Columbia University, Columbia University, New York University and University of California at Los Angels July

More information

Mathematics. Algebra, Functions, and Data Analysis Curriculum Guide. Revised 2010

Mathematics. Algebra, Functions, and Data Analysis Curriculum Guide. Revised 2010 Mathematics Algebra, Functions, and Data Analysis Curriculum Guide Revised 010 This page is intentionally left blank. Introduction The Mathematics Curriculum Guide serves as a guide for teachers when planning

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION Introduction CHAPTER 1 INTRODUCTION Mplus is a statistical modeling program that provides researchers with a flexible tool to analyze their data. Mplus offers researchers a wide choice of models, estimators,

More information

Graphs and Linear Functions

Graphs and Linear Functions Graphs and Linear Functions A -dimensional graph is a visual representation of a relationship between two variables given by an equation or an inequality. Graphs help us solve algebraic problems by analysing

More information

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false.

ST512. Fall Quarter, Exam 1. Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. ST512 Fall Quarter, 2005 Exam 1 Name: Directions: Answer questions as directed. Please show work. For true/false questions, circle either true or false. 1. (42 points) A random sample of n = 30 NBA basketball

More information

ENGG1811: Data Analysis using Spreadsheets Part 1 1

ENGG1811: Data Analysis using Spreadsheets Part 1 1 ENGG1811 Computing for Engineers Data Analysis using Spreadsheets 1 I Data Analysis Pivot Tables Simple Statistics Histogram Correlation Fitting Equations to Data Presenting Charts Solving Single-Variable

More information

IQR = number. summary: largest. = 2. Upper half: Q3 =

IQR = number. summary: largest. = 2. Upper half: Q3 = Step by step box plot Height in centimeters of players on the 003 Women s Worldd Cup soccer team. 157 1611 163 163 164 165 165 165 168 168 168 170 170 170 171 173 173 175 180 180 Determine the 5 number

More information

GLM II. Basic Modeling Strategy CAS Ratemaking and Product Management Seminar by Paul Bailey. March 10, 2015

GLM II. Basic Modeling Strategy CAS Ratemaking and Product Management Seminar by Paul Bailey. March 10, 2015 GLM II Basic Modeling Strategy 2015 CAS Ratemaking and Product Management Seminar by Paul Bailey March 10, 2015 Building predictive models is a multi-step process Set project goals and review background

More information

Predictive Analysis: Evaluation and Experimentation. Heejun Kim

Predictive Analysis: Evaluation and Experimentation. Heejun Kim Predictive Analysis: Evaluation and Experimentation Heejun Kim June 19, 2018 Evaluation and Experimentation Evaluation Metrics Cross-Validation Significance Tests Evaluation Predictive analysis: training

More information

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc.

Chapter 1. Linear Equations and Straight Lines. 2 of 71. Copyright 2014, 2010, 2007 Pearson Education, Inc. Chapter 1 Linear Equations and Straight Lines 2 of 71 Outline 1.1 Coordinate Systems and Graphs 1.4 The Slope of a Straight Line 1.3 The Intersection Point of a Pair of Lines 1.2 Linear Inequalities 1.5

More information

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class

Ready to Go On? Skills Intervention 1-1. Exploring Transformations. 2 Holt McDougal Algebra 2. Name Date Class Lesson - Read to Go n? Skills Intervention Eploring Transformations Find these vocabular words in the lesson and the Multilingual Glossar. Vocabular transformation translation reflection stretch Translating

More information

Assignment No: 2. Assessment as per Schedule. Specifications Readability Assignments

Assignment No: 2. Assessment as per Schedule. Specifications Readability Assignments Specifications Readability Assignments Assessment as per Schedule Oral Total 6 4 4 2 4 20 Date of Performance:... Expected Date of Completion:... Actual Date of Completion:... ----------------------------------------------------------------------------------------------------------------

More information

Estimation of Item Response Models

Estimation of Item Response Models Estimation of Item Response Models Lecture #5 ICPSR Item Response Theory Workshop Lecture #5: 1of 39 The Big Picture of Estimation ESTIMATOR = Maximum Likelihood; Mplus Any questions? answers Lecture #5:

More information

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND?

Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? Date Course Name Instructor Name Student(s) Name WHERE WILL IT LAND? You have watched a ball roll off a table and strike the floor. What determines where it will land? Could you predict where it will land?

More information

8: Statistics. Populations and Samples. Histograms and Frequency Polygons. Page 1 of 10

8: Statistics. Populations and Samples. Histograms and Frequency Polygons. Page 1 of 10 8: Statistics Statistics: Method of collecting, organizing, analyzing, and interpreting data, as well as drawing conclusions based on the data. Methodology is divided into two main areas. Descriptive Statistics:

More information

Stochastic Simulation: Algorithms and Analysis

Stochastic Simulation: Algorithms and Analysis Soren Asmussen Peter W. Glynn Stochastic Simulation: Algorithms and Analysis et Springer Contents Preface Notation v xii I What This Book Is About 1 1 An Illustrative Example: The Single-Server Queue 1

More information

Data Analysis Multiple Regression

Data Analysis Multiple Regression Introduction Visual-XSel 14.0 is both, a powerful software to create a DoE (Design of Experiment) as well as to evaluate the results, or historical data. After starting the software, the main guide shows

More information

Welcome to class! Put your Create Your Own Survey into the inbox. Sign into Edgenuity. Begin to work on the NC-Math I material.

Welcome to class! Put your Create Your Own Survey into the inbox. Sign into Edgenuity. Begin to work on the NC-Math I material. Welcome to class! Put your Create Your Own Survey into the inbox. Sign into Edgenuity. Begin to work on the NC-Math I material. Unit Map - Statistics Monday - Frequency Charts and Histograms Tuesday -

More information

SLStats.notebook. January 12, Statistics:

SLStats.notebook. January 12, Statistics: Statistics: 1 2 3 Ways to display data: 4 generic arithmetic mean sample 14A: Opener, #3,4 (Vocabulary, histograms, frequency tables, stem and leaf) 14B.1: #3,5,8,9,11,12,14,15,16 (Mean, median, mode,

More information

Data Mining Lecture 8: Decision Trees

Data Mining Lecture 8: Decision Trees Data Mining Lecture 8: Decision Trees Jo Houghton ECS Southampton March 8, 2019 1 / 30 Decision Trees - Introduction A decision tree is like a flow chart. E. g. I need to buy a new car Can I afford it?

More information

1 Transforming Geometric Objects

1 Transforming Geometric Objects 1 Transforming Geometric Objects RIGID MOTION TRANSFORMA- TIONS Rigid Motions Transformations 1 Translating Plane Figures Reflecting Plane Figures Rotating Plane Figures Students will select translations

More information

LAB 2: DATA FILTERING AND NOISE REDUCTION

LAB 2: DATA FILTERING AND NOISE REDUCTION NAME: LAB SECTION: LAB 2: DATA FILTERING AND NOISE REDUCTION In this exercise, you will use Microsoft Excel to generate several synthetic data sets based on a simplified model of daily high temperatures

More information

Note that ALL of these points are Intercepts(along an axis), something you should see often in later work.

Note that ALL of these points are Intercepts(along an axis), something you should see often in later work. SECTION 1.1: Plotting Coordinate Points on the X-Y Graph This should be a review subject, as it was covered in the prerequisite coursework. But as a reminder, and for practice, plot each of the following

More information

STA 570 Spring Lecture 5 Tuesday, Feb 1

STA 570 Spring Lecture 5 Tuesday, Feb 1 STA 570 Spring 2011 Lecture 5 Tuesday, Feb 1 Descriptive Statistics Summarizing Univariate Data o Standard Deviation, Empirical Rule, IQR o Boxplots Summarizing Bivariate Data o Contingency Tables o Row

More information

EE 511 Linear Regression

EE 511 Linear Regression EE 511 Linear Regression Instructor: Hanna Hajishirzi hannaneh@washington.edu Slides adapted from Ali Farhadi, Mari Ostendorf, Pedro Domingos, Carlos Guestrin, and Luke Zettelmoyer, Announcements Hw1 due

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I. 4 th Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I. 4 th Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA I 4 th Nine Weeks, 2016-2017 1 OVERVIEW Algebra I Content Review Notes are designed by the High School Mathematics Steering Committee as a resource for

More information

Statistics & Analysis. A Comparison of PDLREG and GAM Procedures in Measuring Dynamic Effects

Statistics & Analysis. A Comparison of PDLREG and GAM Procedures in Measuring Dynamic Effects A Comparison of PDLREG and GAM Procedures in Measuring Dynamic Effects Patralekha Bhattacharya Thinkalytics The PDLREG procedure in SAS is used to fit a finite distributed lagged model to time series data

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Prentice Hall Mathematics: Geometry 2007 Correlated to: Arizona Academic Standards for Mathematics (Grades 9-12)

Prentice Hall Mathematics: Geometry 2007 Correlated to: Arizona Academic Standards for Mathematics (Grades 9-12) Strand 1: Number Sense and Operations Every student should understand and use all concepts and skills from the previous grade levels. The standards are designed so that new learning builds on preceding

More information

Algebra 1, 4th 4.5 weeks

Algebra 1, 4th 4.5 weeks The following practice standards will be used throughout 4.5 weeks:. Make sense of problems and persevere in solving them.. Reason abstractly and quantitatively. 3. Construct viable arguments and critique

More information