Definition. Pointers. Outline. Why pointers? Definition. Memory Organization Overview. by Ziad Kobti. Definition. Pointers enable programmers to:

Size: px
Start display at page:

Download "Definition. Pointers. Outline. Why pointers? Definition. Memory Organization Overview. by Ziad Kobti. Definition. Pointers enable programmers to:"

Transcription

1 Pointers by Ziad Kobti Deinition When you declare a variable o any tye, say: int = ; The system will automatically allocated the required memory sace in a seciic location (tained by the system) to store an integer size value (4 bytes). When you request this value, you simly reer to its name without any other concerns about its actual (logical or hysical) memory address until now ointer is a secial tye o variable that only holds a memory address. In this case, an integer ointer would hold the memory address o an integer variable (int *;). Note that the ointer is also a variable, and itsel has its own memory address! To store the address o a ointer variable you need another secial kind o variable a ointer to ointer variable (int **;) Outline Deinition Pointer Variable Declaration Pointer Initialization Reerencing and Dereerencing Oerators rray Maniulation Passing Pointers to Functions (Pass-By- Reerence) Why ointers? Pointers enable rogrammers to: simulate call by reerence create and maniulate dynamic data structures (linked lists, stacks ) Deinition ointer variable is one that holds a valid memory address. Pointers allow direct access to memory locations, rovided you suly or query the correct address. The C language allows arithmetic maniulations on ointers. Pointer values can be incremented, decremented, etc.. By altering the ointer value we are altering the memory address value it contains, thereby making it oint to a dierent memory location. CUTION: Extreme care has to be exercised in order to avoid dangling ointers. Oten, accessing invalid or rotected memory saces lead to sudden rogram and even system crashes. Errors reorted by the comiler or at run time such as Segmentation ault, core dumed, and bus error usually hint to a aulty ointer value. Memory Organization Overview Memory cells or blocks are sequentially organized Each memory cell has a UNIQUE address memory address is reresented by a hexadecimal number (0x indicates hex) ddresses increase in one direction (ositive direction) We don t need to know the hex system details, other than be able to recognize a hex number when you see one. 0xFC00 0xFFFF 1

2 Declaring Pointer Variables Just like any other variable, a ointer variable needs to be declared. NOTE: You will see a some symbols like * and & and it is imortant to know that they will have dierent meaning in dierent contexts o the rogram! To declare a ointer variable: <data_tye> *<ointer_variable_name>; Examles: int *; loat *; Naming convention: you may call your ointer variable anything you like, however it would be more useul to tell that it is a ointer, and what it would be used to oint at. (good names:,, Ptr the ointer oints to ) Basic Oerators * Indirection or dereerencing oerator. Returns the value o the object to which its oerand (ie. a ointer) oints. rint( %d, *); means: since oints to, we want the value o (an integer). Note that this * symbol was also used in declaring the ointer variable! Initializing Pointer Variables Memory Organization Overview There are three legal values you may store in a ointer: 1. the integer 0 (the only legal integer you may assign to a ointer) 2. NULL (ointer to nothing) 3. or a valid address (best to query it using &) int *; 0xFC Basic Oerators Memory Organization Overview & ddress oerator, unary oerator that returns the address o its oerand. (also called reerencing oerator) = &; means: the ointer will have the address o variable. So now oints to. int *; = ; 0xFC 2

3 Memory Organization Overview Samle Pointer ccess: int *; = ; = &; 0xFC int *; = ; = &; rint( %d, *&); rint( %d, &*); ERROR! 0xFC Why? because * next to an integer reers to the multilication binary oerator! Reer to igure.5 age 253 Samle Pointer ccess: Relationshi between ointers and arrays int *; = ; = &; rint( %, &); rint( %, ); rint( %d, *); 0xFC rray basics: 1. arrays are a list o sequential memory cells 2. Each array element has a unique memory address 3. Every memory cell is equal to the next since all array elements are o the same tye (int=4 bytes) 4. The name o the array is a ointer to the irst element 0xFC00 0xFC04 0xFC08 0xFC10 0xFC Reer to igure.5 age 253 Samle Pointer ccess: Tracing Ti: int *; = ; = &; Scoe/Function Name: rint( %, &); Var xFC rint( %, &*); rint( %d, *&); Reer to igure.5 age 253 0xFC trvar lways draw your memory structures i you are tracing code. It hels i you draw the variables as rectangular boxes and distinguish ointers by oval shaes. The arrow ointing to Var rom trvar indicates that: trvar = &Var; 3

4 rray ccess int [5] = {0, 0, 0, 0, 0; int * = ; or int * = &[0]; rray ccess In this scenario, * and [1] reer to the same element in the array rray ccess * = ; rray ccess * = 4; rray ccess ++; This increments the ointer value by one unit address (unit is int=4bytes) rray ccess *++; Increments the contents

5 rray ccess = + 3; Passing Parameters by Reerence Pass by value is deault arameter assing or variables. That is a coy o the arameter is sent to the unction to view/edit it locally. The outcome o editing the coy does not aect the original. Pass by reerence asses a coy o the memory address or ointer that tells the unction where to ind the original value. Eicient because you don t have to dulicate memory sace usage and ass a coy Dangerous because you are telling the unction where to ind the original coy (use const i you wish to make it read only) rray ccess ++; Pass-by-Reerence void cube (int *n); Runtime ERROR! void cube (int *n) { *n = *n * *n * *n; rray ccess: Examle 1 /* oulate the array with 0 s */ int [5]; /* declare the array size 5 */ int *; /* declare a ointer */ = ; /* oints to array */ int i; /* declare a counter */ or (i = 0; i < 5; i++) { * = 0; /* same as [i] = 0; */ ++; Pass-by-Reerence void cube (int *n); <- no return, since the outut is by modiying the arameter void cube (int *n) <- declares a ointer { *n = *n * *n * *n; <- * = multily (rename n to trn would make more sense) 5

6 Examle: Examle: void (int *) { * = * * 2; int () { int a = ; int *atr = &a; (atr); (&a); a atr -> void (int *) { * = * * 2; int () { int a = ; int *atr = &a; (atr); (&a); a 28 atr Examle: Examle: void (int *) { * = * * 2; int () { int a = ; int *atr = &a; (atr); (&a); a 14 atr void (int *) { * = * * 2; int () { int a = ; int *atr = &a; (atr); (&a); a 28 atr -> 28 Examle: void (int *) { * = * * 2; int () { int a = ; int *atr = &a; (atr); (&a); a 14 atr -> 14 Passing an rray by Reerence int BubbleSort( int [], int size, int order); int BubbleSort( int *, int size, int order); Both rototyes accomlish a ass by reerence. It is more eicient to ass a ointer to the beginning o the array than to coy all the elements! Function call: #deine SCENDING 1 #deine DESCENDING 1... myrray[4] = {1, 5, 2, 65; BubbleSort( myrray, 4, SCENDING); 6

7 Swa 2 array elements Swa 2 array elements int [] = { 5, 8, 2, 6, 3; int tem; int * = ; tem = *; * = *( + 1); *( + 1) = tem; int [] = { 5, 8, 2, 6, 3; int tem; int * = ; tem = *; * = *( + 1); *( + 1) = tem; tem 5 Swa 2 array elements Swa 2 array elements int [] = { 5, 8, 2, 6, 3; int [] = { 5, 8, 2, 6, 3; int tem; int * = ; tem = *; int tem; int * = ; tem = *; * = *( + 1); *( + 1) = tem; tem * = *( + 1); *( + 1) = tem; tem 5 Swa 2 array elements Next Time: int [] = { 5, 8, 2, 6, 3; int tem; int * = ; tem = *; * = *( + 1); *( + 1) = tem; tem 5 Character rrays rrays o Pointers (section.9) Chater 8: C Characters and Strings

Lecture06: Pointers 4/1/2013

Lecture06: Pointers 4/1/2013 Lecture06: Pointers 4/1/2013 Slides modified from Yin Lou, Cornell CS2022: Introduction to C 1 Pointers A ointer is a variable that contains the (memory) address of another variable What is a memory address?

More information

Storage Allocation CSE 143. Pointers, Arrays, and Dynamic Storage Allocation. Pointer Variables. Pointers: Review. Pointers and Types

Storage Allocation CSE 143. Pointers, Arrays, and Dynamic Storage Allocation. Pointer Variables. Pointers: Review. Pointers and Types CSE 143 Pointers, Arrays, and Dynamic Storage Allocation [Chater 4,. 148-157, 172-177] Storage Allocation Storage (memory) is a linear array of cells (bytes) Objects of different tyes often reuire differing

More information

Pointers and Memory Allocation p. 1. Brooklyn College. Michael Lampis. CISC 3130 Notes. Pointers and Memory Allocation

Pointers and Memory Allocation p. 1. Brooklyn College. Michael Lampis. CISC 3130 Notes. Pointers and Memory Allocation Pointers and Memory Allocation CISC 3130 Notes Michael Lamis mlamis@cs.ntua.gr Brooklyn College Pointers and Memory Allocation. 1 int x; Pointers x Pointers and Memory Allocation. 2 Pointers int x; int

More information

Applications of Pointers (1A) Young Won Lim 3/21/18

Applications of Pointers (1A) Young Won Lim 3/21/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 3/14/18

Applications of Pointers (1A) Young Won Lim 3/14/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 4/24/18

Applications of Pointers (1A) Young Won Lim 4/24/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Pointers (1A) Young Won Lim 10/23/17

Pointers (1A) Young Won Lim 10/23/17 Pointers (1A) Coyright (c) 2010-2013 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Pointers (1A) Young Won Lim 12/4/17

Pointers (1A) Young Won Lim 12/4/17 Pointers (1A) Coyright (c) 2010-2017 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Applications of Pointers (1A) Young Won Lim 2/27/18

Applications of Pointers (1A) Young Won Lim 2/27/18 Alications of (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Applications of Pointers (1A) Young Won Lim 4/11/18

Applications of Pointers (1A) Young Won Lim 4/11/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 3/31/18

Applications of Pointers (1A) Young Won Lim 3/31/18 (1A) Coyright (c) 2010-2018 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version ublished

More information

Applications of Pointers (1A) Young Won Lim 1/5/18

Applications of Pointers (1A) Young Won Lim 1/5/18 Alications of (1A) Coyright (c) 2010-2017 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Pointers (1A) Young Won Lim 10/18/17

Pointers (1A) Young Won Lim 10/18/17 Pointers (1A) Coyright (c) 2010-2013 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Example: Runtime Memory Allocation: Example: Dynamical Memory Allocation: Some Comments: Allocate and free dynamic memory

Example: Runtime Memory Allocation: Example: Dynamical Memory Allocation: Some Comments: Allocate and free dynamic memory Runtime Memory Allocation: Examle: All external and static variables Global systemcontrol Suose we want to design a rogram for handling student information: tyedef struct { All dynamically allocated variables

More information

Classes. Code Generation for Objects. Compiling Methods. Dynamic Dispatch. The Need for Dispatching CS412/CS413

Classes. Code Generation for Objects. Compiling Methods. Dynamic Dispatch. The Need for Dispatching CS412/CS413 Classes CS4/CS43 Introduction to Comilers Tim Teitelbaum Lecture : Imlementing Objects 8 March 5 Comonents ields/instance variables values ma dier rom object to object usuall mutable methods values shared

More information

Lecture 7: Objects (Chapter 15) CS 1110 Introduction to Computing Using Python

Lecture 7: Objects (Chapter 15) CS 1110 Introduction to Computing Using Python htt://www.cs.cornell.edu/courses/cs1110/2018s Lecture 7: Objects (Chater 15) CS 1110 Introduction to Comuting Using Python [E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

More information

CS 1613 Lecture 24. Figure 1. Program p01.

CS 1613 Lecture 24. Figure 1. Program p01. Consider a rogram that is required to find all values larger than the average in a list of integers. The list is stored in a file. The rogram must read and store the list to fulfill its requirement. The

More information

GRANCLOUD: A REAL-TIME GRANULAR SYNTHESIS APPLICATION AND ITS IMPLEMENTATION IN THE INTERACTIVE COMPOSITION CREO. Terry Alan Lee, B.M.

GRANCLOUD: A REAL-TIME GRANULAR SYNTHESIS APPLICATION AND ITS IMPLEMENTATION IN THE INTERACTIVE COMPOSITION CREO. Terry Alan Lee, B.M. GRANCLOUD: A REAL-TIME GRANULAR SYNTHESIS APPLICATION AND ITS IMPLEMENTATION IN THE INTERACTIVE COMPOSITION CREO Terry Alan Lee, B.M. Thesis Preared or the Degree o MASTER OF MUSIC UNIVERSITY OF NORTH

More information

Who. Winter Compiler Construction Generic compiler structure. Mailing list and forum. IC compiler. How

Who. Winter Compiler Construction Generic compiler structure. Mailing list and forum. IC compiler. How Winter 2007-2008 Comiler Construction 0368-3133 Mooly Sagiv and Roman Manevich School of Comuter Science Tel-Aviv University Who Roman Manevich Schreiber Oen-sace (basement) Tel: 640-5358 rumster@ost.tau.ac.il

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

CMPE-013/L. Introduction to C Programming

CMPE-013/L. Introduction to C Programming CMPE-013/L Introduction to C Programming Gabriel Hugh Elkaim Winter 2015 and memory Pointer/array equivalency Pointer arithmetic and the stack and strings Arrays of ointers 1 Syntax tye *trname; How to

More information

Theoretical Analysis of Graphcut Textures

Theoretical Analysis of Graphcut Textures Theoretical Analysis o Grahcut Textures Xuejie Qin Yee-Hong Yang {xu yang}@cs.ualberta.ca Deartment o omuting Science University o Alberta Abstract Since the aer was ublished in SIGGRAPH 2003 the grahcut

More information

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2

L ENSES. Lenses Spherical refracting surfaces. n 1 n 2 Lenses 2 L ENSES 2. Sherical reracting suraces In order to start discussing lenses uantitatively, it is useul to consider a simle sherical surace, as shown in Fig. 2.. Our lens is a semi-ininte rod with

More information

C++ ARRAYS POINTERS POINTER ARITHMETIC. Problem Solving with Computers-I

C++ ARRAYS POINTERS POINTER ARITHMETIC. Problem Solving with Computers-I C++ ARRAYS POINTERS POINTER ARITHMETIC Problem Solving with Computers-I General model of memory Sequence of adjacent cells Each cell has 1-byte stored in it Each cell has an address (memory location) Memory

More information

10 File System Mass Storage Structure Mass Storage Systems Mass Storage Structure Mass Storage Structure FILE SYSTEM 1

10 File System Mass Storage Structure Mass Storage Systems Mass Storage Structure Mass Storage Structure FILE SYSTEM 1 10 File System 1 We will examine this chater in three subtitles: Mass Storage Systems OERATING SYSTEMS FILE SYSTEM 1 File System Interface File System Imlementation 10.1.1 Mass Storage Structure 3 2 10.1

More information

Gabriel Hugh Elkaim Spring CMPE 013/L: C Programming. CMPE 013/L: C Programming

Gabriel Hugh Elkaim Spring CMPE 013/L: C Programming. CMPE 013/L: C Programming 1 CMPE 013/L Gabriel Hugh Elkaim Sring 2013 2 A Variable's versus A Variable's Value In some situations, we will want to work with a variable's address in memor, rather than the value it contains Variable

More information

! A data structure representing a list. ! A series of nodes chained together in sequence. ! A separate pointer (the head) points to the first

! A data structure representing a list. ! A series of nodes chained together in sequence. ! A separate pointer (the head) points to the first Ch. 17: Linked Lists 17.1 Introduction to Linked Lists! A data structure reresenting a list! A series of nodes chained together in sequence CS 2308 Sring 2015 Jill Seaman - Each node oints to one other

More information

Linear Data Structure Linked List

Linear Data Structure Linked List . Definition. Reresenting List in C. Imlementing the oerations a. Inserting a node b. Deleting a node c. List Traversal. Linked imlementation of Stack 5. Linked imlementation of Queue 6. Circular List

More information

Pointers CMPE-013/L. Pointers. Pointers What do they do? Pointers What are pointers? Gabriel Hugh Elkaim Winter 2014

Pointers CMPE-013/L. Pointers. Pointers What do they do? Pointers What are pointers? Gabriel Hugh Elkaim Winter 2014 CMPE-013/L A Variable's versus A Variable's Value In some situations, we will want to work with a variable's address in memor, rather than the value it contains Gabriel Hugh Elkaim Winter 2014 Variable

More information

CSCB09: Software Tools and Systems Programming. Announcement. The address space. Memory model

CSCB09: Software Tools and Systems Programming. Announcement. The address space. Memory model CSCB9: Sotware Tools and Systems Programming Announcement I needed to move my oice hour today to 11am. Bianca Schroeder bianca@cs.toronto.edu IC 46 Memory model Logical address I you know such people tell

More information

Variation of Pointers

Variation of Pointers Variation of Pointers A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory location. Like any variable or constant, you must declare a pointer before

More information

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS

INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS INITIALISING POINTER VARIABLES; DYNAMIC VARIABLES; OPERATIONS ON POINTERS Pages 792 to 800 Anna Rakitianskaia, University of Pretoria INITIALISING POINTER VARIABLES Pointer variables are declared by putting

More information

Homework #3 CS2255 Fall 2012

Homework #3 CS2255 Fall 2012 Homework #3 CS2255 Fall 2012 MULTIPLE CHOICE 1. The, also known as the address operator, returns the memory address of a variable. a. asterisk ( * ) b. ampersand ( & ) c. percent sign (%) d. exclamation

More information

Optimizing Dynamic Memory Management!

Optimizing Dynamic Memory Management! Otimizing Dynamic Memory Management! 1 Goals of this Lecture! Hel you learn about:" Details of K&R hea mgr" Hea mgr otimizations related to Assignment #6" Faster free() via doubly-linked list, redundant

More information

CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic

CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic Review from Letctures 3 & 4 C++ class syntax, designing classes, classes vs. structs; Passing comparison functions to

More information

C Pointers. 6th April 2017 Giulio Picierro

C Pointers. 6th April 2017 Giulio Picierro C Pointers 6th April 07 Giulio Picierro Functions Return type Function name Arguments list Function body int sum(int a, int b) { return a + b; } Return statement (return keyword

More information

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018 Pointer Basics Lecture 13 COP 3014 Spring 2018 March 28, 2018 What is a Pointer? A pointer is a variable that stores a memory address. Pointers are used to store the addresses of other variables or memory

More information

CS61C Machine Structures. Lecture 4 C Pointers and Arrays. 1/25/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/

CS61C Machine Structures. Lecture 4 C Pointers and Arrays. 1/25/2006 John Wawrzynek. www-inst.eecs.berkeley.edu/~cs61c/ CS61C Machine Structures Lecture 4 C Pointers and Arrays 1/25/2006 John Wawrzynek (www.cs.berkeley.edu/~johnw) www-inst.eecs.berkeley.edu/~cs61c/ CS 61C L04 C Pointers (1) Common C Error There is a difference

More information

Compiler construction

Compiler construction This lecture Compiler construction Lecture 5: Project etensions Magnus Mreen Spring 2018 Chalmers Universit o Technolog Gothenburg Universit Some project etensions: Arras Pointers and structures Object-oriented

More information

by Pearson Education, Inc. All Rights Reserved.

by Pearson Education, Inc. All Rights Reserved. Let s improve the bubble sort program of Fig. 6.15 to use two functions bubblesort and swap. Function bubblesort sorts the array. It calls function swap (line 51) to exchange the array elements array[j]

More information

Lecture 05 POINTERS 1

Lecture 05 POINTERS 1 Lecture 05 POINTERS 1 Pointers Powerful, but difficult to master Simulate call-by-reference Close relationship with arrays and strings Pointer Variable vs. Normal Variable Normal variables contain a specific

More information

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University

Shuigeng Zhou. May 18, 2016 School of Computer Science Fudan University Query Processing Shuigeng Zhou May 18, 2016 School of Comuter Science Fudan University Overview Outline Measures of Query Cost Selection Oeration Sorting Join Oeration Other Oerations Evaluation of Exressions

More information

COMP26120: Pointers in C (2018/19) Lucas Cordeiro

COMP26120: Pointers in C (2018/19) Lucas Cordeiro COMP26120: Pointers in C (2018/19) Lucas Cordeiro lucas.cordeiro@manchester.ac.uk Organisation Lucas Cordeiro (Senior Lecturer, FM Group) lucas.cordeiro@manchester.ac.uk Office: 2.44 Office hours: 10-11

More information

Sage Estimating (formerly Sage Timberline Estimating) Getting Started Guide. Version has been retired. This version of the software

Sage Estimating (formerly Sage Timberline Estimating) Getting Started Guide. Version has been retired. This version of the software Sage Estimating (formerly Sage Timberline Estimating) Getting Started Guide Version 14.12 This version of the software has been retired This is a ublication of Sage Software, Inc. Coyright 2014. Sage Software,

More information

14. Memory API. Operating System: Three Easy Pieces

14. Memory API. Operating System: Three Easy Pieces 14. Memory API Oerating System: Three Easy Pieces 1 Memory API: malloc() #include void* malloc(size_t size) Allocate a memory region on the hea. w Argument size_t size : size of the memory block(in

More information

Lecture 04 Control Flow II. Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Based on Michael Bailey s ECE 422

Lecture 04 Control Flow II. Stephen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Based on Michael Bailey s ECE 422 Lecture 04 Control Flow II Stehen Checkoway University of Illinois at Chicago CS 487 Fall 2017 Based on Michael Bailey s ECE 422 Function calls on 32-bit x86 Stack grows down (from high to low addresses)

More information

Mitigating the Impact of Decompression Latency in L1 Compressed Data Caches via Prefetching

Mitigating the Impact of Decompression Latency in L1 Compressed Data Caches via Prefetching Mitigating the Imact of Decomression Latency in L1 Comressed Data Caches via Prefetching by Sean Rea A thesis resented to Lakehead University in artial fulfillment of the requirement for the degree of

More information

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver

CS 61C: Great Ideas in Computer Architecture C Pointers. Instructors: Vladimir Stojanovic & Nicholas Weaver CS 61C: Great Ideas in Computer Architecture C Pointers Instructors: Vladimir Stojanovic & Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Agenda Pointers Arrays in C 2 Address vs. Value Consider

More information

FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each):

FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): FORM 1 (Please put your name and section number (001/10am or 002/2pm) on the scantron!!!!) CS 161 Exam II: True (A)/False(B) (2 pts each): 1. If a function has default arguments, they can be located anywhere

More information

Object and Native Code Thread Mobility Among Heterogeneous Computers

Object and Native Code Thread Mobility Among Heterogeneous Computers Object and Native Code Thread Mobility Among Heterogeneous Comuters Bjarne Steensgaard Eric Jul Microsoft Research DIKU (Det. of Comuter Science) One Microsoft Way University of Coenhagen Redmond, WA 98052

More information

521493S Computer Graphics Exercise 3 (Chapters 6-8)

521493S Computer Graphics Exercise 3 (Chapters 6-8) 521493S Comuter Grahics Exercise 3 (Chaters 6-8) 1 Most grahics systems and APIs use the simle lighting and reflection models that we introduced for olygon rendering Describe the ways in which each of

More information

Argo Programming Guide

Argo Programming Guide Argo Programming Guide Evangelia Kasaaki, asmus Bo Sørensen February 9, 2015 Coyright 2014 Technical University of Denmark This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International

More information

Sage Estimating. (formerly Sage Timberline Estimating) Getting Started Guide

Sage Estimating. (formerly Sage Timberline Estimating) Getting Started Guide Sage Estimating (formerly Sage Timberline Estimating) Getting Started Guide This is a ublication of Sage Software, Inc. Document Number 20001S14030111ER 09/2012 2012 Sage Software, Inc. All rights reserved.

More information

Chapter 2 Instruction Set Architecture

Chapter 2 Instruction Set Architecture Chapter 2 Instruction Set Architecture Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering

More information

CS335 Fall 2007 Graphics and Multimedia. 2D Drawings: Lines

CS335 Fall 2007 Graphics and Multimedia. 2D Drawings: Lines CS335 Fall 007 Grahics and Multimedia D Drawings: Lines Primitive Drawing Oerations Digital Concets of Drawing in Raster Arras PIXEL is a single arra element at x, - No smaller drawing unit exists Px,

More information

Pointers, Arrays and Parameters

Pointers, Arrays and Parameters Pointers, Arrays and Parameters This exercise is different from our usual exercises. You don t have so much a problem to solve by creating a program but rather some things to understand about the programming

More information

Introduction to Computer Science Midterm 3 Fall, Points

Introduction to Computer Science Midterm 3 Fall, Points Introduction to Computer Science Fall, 2001 100 Points Notes 1. Tear off this sheet and use it to keep your answers covered at all times. 2. Turn the exam over and write your name next to the staple. Do

More information

2. Introduction to Operating Systems

2. Introduction to Operating Systems 2. Introduction to Oerating Systems Oerating System: Three Easy Pieces 1 What a haens when a rogram runs? A running rogram executes instructions. 1. The rocessor fetches an instruction from memory. 2.

More information

Pre-defined class JFrame. Object & Class an analogy

Pre-defined class JFrame. Object & Class an analogy CS1M Lecture 17 Mar 29, 25 1 Announcements: Project 4 due Sunda 4/3 at 6pm Use Keboard class or reading input Section in classrooms this week Previous Lecture: Selection statement Reading input using Keboard

More information

C Pointers. Indirection Indirection = referencing a value through a pointer. Creating Pointers. Pointer Declarations. Pointer Declarations

C Pointers. Indirection Indirection = referencing a value through a pointer. Creating Pointers. Pointer Declarations. Pointer Declarations 55:017, Computers in Engineering C Pointers C Pointers Powerful C feature but challenging to understand Some uses of pointers include Call by reference parameter passage Dynamic data structures Data structures

More information

User Defined Functions

User Defined Functions User Defined Functions CS 141 Lecture 4 Chapter 5 By Ziad Kobti 27/01/2003 (c) 2003 by Ziad Kobti 1 Outline Functions in C: Definition Function Prototype (signature) Function Definition (body/implementation)

More information

Polymorphism (1A) Young Won Lim 8/22/13

Polymorphism (1A) Young Won Lim 8/22/13 Polymorhism (1A) Coyright (c) 2011-2012 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

CA31-1K DIS. Pointers. TA: You Lu

CA31-1K DIS. Pointers. TA: You Lu CA31-1K DIS Pointers TA: You Lu Pointers Recall that while we think of variables by their names like: int numbers; Computer likes to think of variables by their memory address: 0012FED4 A pointer is a

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 4 C Pointers 2004-09-08 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Cal flies over Air Force We re ranked 13 th in the US and

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21 Department of Computer Science College of Engineering Boise State University September 11, 2017 1/21 Pointers A pointer is a variable that stores the address of another variable. Pointers are similar to

More information

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming

Jagannath Institute of Management Sciences Lajpat Nagar. BCA II Sem. C Programming Jagannath Institute of Management Sciences Lajpat Nagar BCA II Sem C Programming UNIT I Pointers: Introduction to Pointers, Pointer Notation,Decalaration and Initialization, Accessing variable through

More information

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats

William Stallings Computer Organization and Architecture 8 th Edition. Chapter 11 Instruction Sets: Addressing Modes and Formats William Stallings Computer Organization and Architecture 8 th Edition Chapter 11 Instruction Sets: Addressing Modes and Formats Addressing Modes Immediate Direct Indirect Register Register Indirect Displacement

More information

Modified Bloom filter for high performance hybrid NoSQL systems

Modified Bloom filter for high performance hybrid NoSQL systems odified Bloom filter for high erformance hybrid NoSQL systems A.B.Vavrenyuk, N.P.Vasilyev, V.V.akarov, K.A.atyukhin,..Rovnyagin, A.A.Skitev National Research Nuclear University EPhI (oscow Engineering

More information

ISO/IEC , the standard for Modula-2: Changes, Clarications and Additions. June 27, 1996

ISO/IEC , the standard for Modula-2: Changes, Clarications and Additions. June 27, 1996 ISO/IEC 10514-1, the standard for Modula-2: Changes, Clarications and Additions M. Schonhacker Vienna University of Technology Austria schoenhacker@eiunix.tuwien.ac.at C. Pronk Delft University of Technology

More information

1.5 Case Study. dynamic connectivity quick find quick union improvements applications

1.5 Case Study. dynamic connectivity quick find quick union improvements applications . Case Study dynamic connectivity quick find quick union imrovements alications Subtext of today s lecture (and this course) Stes to develoing a usable algorithm. Model the roblem. Find an algorithm to

More information

REFERENCES, POINTERS AND STRUCTS

REFERENCES, POINTERS AND STRUCTS REFERENCES, POINTERS AND STRUCTS Problem Solving with Computers-I https://ucsb-cs16-sp17.github.io/ Pointer assignment 2 int *p1, *p2, x; p1 = &x; p2 = p1; Q: Which of the following pointer diagrams best

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 13 Strings, Lists & Stacks Announcements HW #3 Due next Friday, May 15 at 5:00 PM in HFH Project #2 Due May 29 at 5:00 PM Project #3 Assigned next Thursday, May 19

More information

Lecture 4: Outline. Arrays. I. Pointers II. III. Pointer arithmetic IV. Strings

Lecture 4: Outline. Arrays. I. Pointers II. III. Pointer arithmetic IV. Strings Lecture 4: Outline I. Pointers A. Accessing data objects using pointers B. Type casting with pointers C. Difference with Java references D. Pointer pitfalls E. Use case II. Arrays A. Representation in

More information

Lecture 2: C Programm

Lecture 2: C Programm 0 3 E CS 1 Lecture 2: C Programm ing C Programming Procedural thought process No built in object abstractions data separate from methods/functions Low memory overhead compared to Java No overhead of classes

More information

Overview. CSC 2400: Computer Systems. Pointers in C. Pointers - Variables that hold memory addresses - Using pointers to do call-by-reference in C

Overview. CSC 2400: Computer Systems. Pointers in C. Pointers - Variables that hold memory addresses - Using pointers to do call-by-reference in C CSC 2400: Comuter Systems Ponters n C Overvew Ponters - Varables that hold memory addresses - Usng onters to do call-by-reference n C Ponters vs. Arrays - Array names are constant onters Ponters and Strngs

More information

Pointers. 1 Background. 1.1 Variables and Memory. 1.2 Motivating Pointers Massachusetts Institute of Technology

Pointers. 1 Background. 1.1 Variables and Memory. 1.2 Motivating Pointers Massachusetts Institute of Technology Introduction to C++ Massachusetts Institute of Technology ocw.mit.edu 6.096 Pointers 1 Background 1.1 Variables and Memory When you declare a variable, the computer associates the variable name with a

More information

A Multi-Objective Genetic Algorithm Based Optimum Schedule under Variety Capacity Restriction

A Multi-Objective Genetic Algorithm Based Optimum Schedule under Variety Capacity Restriction 2016 First International Conerence on Micro and Nano Technologies, Modelling and Simulation A Multi-Objective Genetic Algorithm Based Otimum Schedule under Variety Caacity Restriction Fanrong Sun College

More information

has been retired This version of the software Sage Timberline Office Get Started Document Management 9.8 NOTICE

has been retired This version of the software Sage Timberline Office Get Started Document Management 9.8 NOTICE This version of the software has been retired Sage Timberline Office Get Started Document Management 9.8 NOTICE This document and the Sage Timberline Office software may be used only in accordance with

More information

CMSC 341 Lecture 2 Dynamic Memory and Pointers

CMSC 341 Lecture 2 Dynamic Memory and Pointers CMSC 341 Lecture 2 Dynamic Memory and Pointers Park Sects. 01 & 02 Based on earlier course slides at UMBC Today s Topics Stack vs Heap Allocating and freeing memory new and delete Memory Leaks Valgrind

More information

CSCI-1200 Data Structures Spring 2014 Lecture 5 Pointers, Arrays, Pointer Arithmetic

CSCI-1200 Data Structures Spring 2014 Lecture 5 Pointers, Arrays, Pointer Arithmetic CSCI-1200 Data Structures Spring 2014 Lecture 5 Pointers, Arrays, Pointer Arithmetic Announcements: Test 1 Information Test 1 will be held Monday, February 10th, 2014 from 6-7:50pm, Lab sections 1-5 and

More information

Solution Manual for Data Structures and Problem Solving Using C++ 2nd edition by Mark A. Weiss

Solution Manual for Data Structures and Problem Solving Using C++ 2nd edition by Mark A. Weiss Solution Manual for Data Structures and Problem Solving Using C++ 2nd edition by Mark A. Weiss Link full download: https://getbooksolutions.com/download/solutions-manual-fordata-structures-and-problem-solving-using-c-2nd-edition-by-weiss/

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 4 Introduction to C (pt 2) 2014-09-08!!!Senior Lecturer SOE Dan Garcia!!!www.cs.berkeley.edu/~ddgarcia! C most popular! TIOBE programming

More information

Fundamentals of Programming Session 20

Fundamentals of Programming Session 20 Fundamentals of Programming Session 20 Instructor: Reza Entezari-Maleki Email: entezari@ce.sharif.edu 1 Fall 2013 These slides have been created using Deitel s slides Sharif University of Technology Outlines

More information

CS201- Introduction to Programming Latest Solved Mcqs from Midterm Papers May 07,2011. MIDTERM EXAMINATION Spring 2010

CS201- Introduction to Programming Latest Solved Mcqs from Midterm Papers May 07,2011. MIDTERM EXAMINATION Spring 2010 CS201- Introduction to Programming Latest Solved Mcqs from Midterm Papers May 07,2011 Lectures 1-22 Moaaz Siddiq Asad Ali Latest Mcqs MIDTERM EXAMINATION Spring 2010 Question No: 1 ( Marks: 1 ) - Please

More information

1. Which of the following best describes the situation after Line 1 has been executed?

1. Which of the following best describes the situation after Line 1 has been executed? Instructions: Submit your answers to these questions to the Curator as OQ3 by the posted due date and time. No late submissions will be accepted. For the next three questions, consider the following short

More information

Organization of Programming Languages CS320/520N. Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science

Organization of Programming Languages CS320/520N. Lecture 06. Razvan C. Bunescu School of Electrical Engineering and Computer Science Organization of Programming Languages CS320/520N Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Data Types A data type defines a collection of data objects and

More information

Simple example. Analysis of programs with pointers. Points-to relation. Program model. Points-to graph. Ordering on points-to relation

Simple example. Analysis of programs with pointers. Points-to relation. Program model. Points-to graph. Ordering on points-to relation Simle eamle Analsis of rograms with ointers := 5 tr := @ *tr := 9 := rogram S1 S2 S3 S4 deendences What are the deendences in this rogram? Problem: just looking at variable names will not give ou the correct

More information

Topics so far. Review. scanf/fscanf. How data is read 1/20/2011. All code handin sare at /afs/andrew/course/15/123/handin

Topics so far. Review. scanf/fscanf. How data is read 1/20/2011. All code handin sare at /afs/andrew/course/15/123/handin 15-123 Effective Programming in C and Unix Announcements SL2 is due Thursday 1/20 midnight Complete the Academic Honesty Form in class All code downloads are from /afs/andrew/course/15/123/download All

More information

Verification Options. To Store Or Not To Store? Inside the UPPAAL tool. Inactive (passive) Clock Reduction. Global Reduction

Verification Options. To Store Or Not To Store? Inside the UPPAAL tool. Inactive (passive) Clock Reduction. Global Reduction Inside the UPPAAL tool Data Structures DBM s (Difference Bounds Matrices) Canonical and Minimal Constraints Algorithms Reachability analysis Liveness checking Termination Verification Otions Verification

More information

CSCI-1200 Data Structures Spring 2017 Lecture 5 Pointers, Arrays, Pointer Arithmetic

CSCI-1200 Data Structures Spring 2017 Lecture 5 Pointers, Arrays, Pointer Arithmetic CSCI-1200 Data Structures Spring 2017 Lecture 5 Pointers, Arrays, Pointer Arithmetic Announcements Submitty iclicker registration is still open. Even if you already registered on the iclicker website,

More information

Equality-Based Translation Validator for LLVM

Equality-Based Translation Validator for LLVM Equality-Based Translation Validator for LLVM Michael Ste, Ross Tate, and Sorin Lerner University of California, San Diego {mste,rtate,lerner@cs.ucsd.edu Abstract. We udated our Peggy tool, reviously resented

More information

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries.

Range Searching. Data structure for a set of objects (points, rectangles, polygons) for efficient range queries. Range Searching Data structure for a set of objects (oints, rectangles, olygons) for efficient range queries. Y Q Deends on tye of objects and queries. Consider basic data structures with broad alicability.

More information

CS 61c: Great Ideas in Computer Architecture

CS 61c: Great Ideas in Computer Architecture Arrays, Strings, and Some More Pointers June 24, 2014 Review of Last Lecture C Basics Variables, functioss, control flow, types, structs Only 0 and NULL evaluate to false Pointers hold addresses Address

More information

Memory and Addresses. Pointers in C. Memory is just a sequence of byte-sized storage devices.

Memory and Addresses. Pointers in C. Memory is just a sequence of byte-sized storage devices. Memory and Addresses Memory is just a sequence of byte-sized storage devices. 1 The bytes are assigned numeric addresses, starting with zero, just like the indexing of the cells of an array. It is the

More information

Polymorphism (1A) Young Won Lim 8/15/13

Polymorphism (1A) Young Won Lim 8/15/13 Polymorhism (1A) Coyright (c) 2011-2012 Young W. Lim. Permission is granted to coy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Why Pointers. Pointers. Pointer Declaration. Two Pointer Operators. What Are Pointers? Memory address POINTERVariable Contents ...

Why Pointers. Pointers. Pointer Declaration. Two Pointer Operators. What Are Pointers? Memory address POINTERVariable Contents ... Why Pointers Pointers They provide the means by which functions can modify arguments in the calling function. They support dynamic memory allocation. They provide support for dynamic data structures, such

More information

CS2351 Data Structures. Lecture 7: A Brief Review of Pointers in C

CS2351 Data Structures. Lecture 7: A Brief Review of Pointers in C CS2351 Data Structures Lecture 7: A Brief Review of Pointers in C 1 About this lecture Pointer is a useful object that allows us to access different places in our memory We will review the basic use of

More information

Outline. Computer Memory Structure Addressing Concept Introduction to Pointer Pointer Manipulation Summary

Outline. Computer Memory Structure Addressing Concept Introduction to Pointer Pointer Manipulation Summary Pointers 1 2 Outline Computer Memory Structure Addressing Concept Introduction to Pointer Pointer Manipulation Summary 3 Computer Memory Revisited Computers store data in memory slots Each slot has an

More information

Modeling Dynamic Architectures Using Nets-within-Nets

Modeling Dynamic Architectures Using Nets-within-Nets Modeling Dynamic Architectures Using Nets-within-Nets Lawrence Cabac, Michael Duvigneau, Daniel Moldt and Heiko Rölke University o Hamburg, Deartment o Comuter Science, Vogt-Kölln-Str. 30, D-22527 Hamburg

More information