Advanced Prolog Programming

Size: px
Start display at page:

Download "Advanced Prolog Programming"

Transcription

1 1 Introduction CIS335, Assignment 4 Advanced Prolog Programming Geraint Wiggins November 12, 2004 This practical is the second self-assessed exercise for MSc students on the Prolog module. It is intended to reinforce the information taught in the lectures, and to give practice in relatively advanced Prolog programming. Unless otherwise stated, the exercises should be answered first away from the computer, and then the answers checked by running them. Feel free to ask your tutor, me, or your fellow students if you get stuck; if you are a student who is secure in Prolog, remember that explaining to others can be a very good way of reaching a better understanding yourself. To save you pointless typing, example code for the exercises which require it may be found in on my web site. 2 Debugging 2.1 Tracing Use the trace command to follow and compare the execution of the following queries, to predicates whose definitions are given in the examples file. Remember that reverse/2 and reverse/3 are distinct predicates. % call to naive reverse?- reverse( [a,b,c], Answer ) % call to accumulating reverse?- reverse( [a,b,c], [], Answer ). Remember that you will need to see the source code as you use the debugger. Concentrate particularly on the two different approaches to reversing lists, and make sure you understand how the accumulator argument works in the second query.? is the help command when in trace mode. 1

2 2.2 Debugging Use on-paper analysis and the debugger to solve the following problem. I have implemented some prolog predicates according to the following specification. Most of them seem to work, but one or more is/are apparently faulty. Work out, from the specification and supplied code, which of the predicates is/are incorrect, then set a spy point on it/them, and use the debugger to work out what is wrong. It seems fairly likely that at least the quicksort/2 predicate is faulty. Specification This is a specification for a piece of Prolog code which interfaces between two other programs. In other words, it converts the output format of one (a planning program, for storage of shop goods) into the input format of the other (an inventory database system). The output format (ie the input to our program) is a list of terms of the form identifier( reference number, size ) where identifier is one of box, lid, bottle, tin, bag, the referencenumber is an integer, and the size is small, medium, or large. The order of the list is the order in which the planning program has chosen to store the goods. The input format (ie the output of our program) is a list of terms of the form reference numbersize/type, which are sorted by reference number. Type is the same value as the identifier in the output format; size is 1, 2, or 3. A predicate is supplied which will give you some sample output (sample output/1); use it in a query to pass that output to your conversion routine, which will give a result like this when the program works correctly:?- sample output(x),conversion(x,y). X = [box(1,large),lid(1,large),bottle(3,small),bottle(12,sma ll),tin(5,small),lid(5,small),bag(20,large),bag(8,small),bag (6,medium)], Y = [1-box/3,1-lid/3,3-bottle/1,5-tin/1,5-lid/1,6-bag/2,8-ba g/1,12-bottle/1,20-bag/3] 3 Cut 3.1 Coloured cuts Decide which of these predicates contain red or green cuts. If you are unsure, check, by removing the cut and seeing if the logical behaviour is the same (especially when backtracking). % which is the maximum of two numbers? max( X, Y, X ) :- X > Y,!. max( X, Y, Y ) :- X =< Y. 2

3 % is a value a or not? test( a ). a only( X, yes ) :-!,test( X ). a only( X, no ) :- \+ test( X ). % is a value a or not? (version 2) test( a ) :-!. a only( X, yes ) :- test( X ). a only( X, no ) :-!, \+ test( X ). 3.2 Committing to solutions How many solutions will the following programs/queries yield on exhaustive backtracking (ie using ; until we get no)? In what order will they appear? % commit 1 p(c).?- p(x). % commit 2 p(b) :-!. p(c).?- p(x). % commit 3?- p(x),!. 3

4 % commit 4 q(b).?- p(x),!,q(x). 4 Operators Refer to the SWIProlog manual and look up how to use the predicates op/3 and current op/3 to define and check Prolog operators. Use op/3 to define an operator ++ so that the following goals are true. Note that you will redefine ++ for each example, so don t expect all of them to work at once. You will need to use current op/3 to look up the details of the existing operators, like + and =. % op1? = ( 1 + ( 2 ++ )). % op2? = (( ) ++). % op3?- a - ++ b = ( a - ( ++ b )). % op4?- ++ a - b = (++ ( a - b )). % op5?- a = ( a ++ ( - 3 )). % op6?- a ++ b ++ c = ( a ++ ( b ++ c )). % op7?- a ++ b ++ c = (( a ++ b ) ++ c )). % op8?- a c = ( a ++ ( ++ c )). % op9?- a c = (( a ++ ) ++ c ). 4

5 5 Meta-programming Using the meta-programming facilities of Prolog, we can write a simple Prolog interpreter. We use the built-in predicate clause to give us access to the database look it up in the manual if you are not sure how it works. The basic interpreter (usually called solve/1) looks like this. It deals only with conjunctions in clauses and disjunctions between (but not within) clauses. solve( true ). solve( Goal ) :- \+ Goal = (, ), clause( Goal, Body ), solve( Body ). solve(( Goal1, Goal2 )) :- solve( Goal1 ), solve( Goal2 ). Use this basic program (in the examples file) to explore the operation of the append/3 program in the examples file. Compare the trace of solve calling append with that of a direct call at the prompt, and verify that the effect is the same. If you wish to try any other predicates with solve/1 remember that you must declare them as dynamic before you can do so. Remember also that if you wish to use conjunctions in your call to solve/1 you must put them in () otherwise they will be mistaken as calls to solve/2 or solve/3 because of the comma operator. Having understood the operation of the program, add a further two clauses so that the interpreter can solve disjunctive goals, to achieve the following behaviour:?- solve(( append( [a,b], [c], D ); append( [x], [y,z], D ))). D = [a,b,c]? ; D = [x,y,z]? ; no Hint: consider how conjunction is implemented, by taking the meta-level comma and replacing it by an object-level one. You will need to make minor modifications to some of the other clauses too, because ;/2 is defined as a built-in, static (not dynamic) predicate. Finally, rewrite the clause that deals with looking up the program clause (clause 2 of solve/1) as follows. It is often (though not always) the case that executing goals with fewer uninstantiated variables first can lead to a more efficient execution. Here s an example: 5

6 q(b).?- p(x),q(a). In this case, q(a) always fails, and because it is determinate that is, there is no choice to be made in its arguments it might as well be executed first. The examples file contains a predicate called conjunction to list/2 which will be helpful here. Use it to unpack the clause body returned to solve/1 by clause/2 into a list, and then write a predicate which will split the list into two lists, one of ground conjuncts and one of non-ground conjuncts (use the meta-predicate ground/1 to test this). You may like to look at the split/4 predicate, above, to get some hints on how to do the splitting up. Put the two lists back together again, the ground ones at the front, and convert them back into a goal using conjunction to list backwards. Then pass that new goal to solve/1. Now use the debugger to investigate the behaviour of the following query:?- solve(( p( X ), p( Y ), append( [x,y], [X], [x,y,d] ))). When you run this, it should fail. Work out why, using the normal Prolog left-to-right computation rule. Then compare the usual behaviour with that of the solve version, above. You should find that your new computation rule never bothers with p(y), because the other two goals can never succeed together. 6

More Non-logical Features of Prolog

More Non-logical Features of Prolog More Non-logical Features of Prolog Prof. Geraint A. Wiggins Centre for Cognition, Computation and Culture Goldsmiths College, University of London Contents Commit operators Implementing Negation as Failure

More information

Exercises on the Fundamentals of Prolog

Exercises on the Fundamentals of Prolog 1 Introduction Exercises on the Fundamentals of Prolog These exercises are intended to help reinforce material taught in the lectures of CIS335 course in Prolog. They do not contribute any marks to the

More information

Topic B: Backtracking and Lists

Topic B: Backtracking and Lists Topic B: Backtracking and Lists 1 Recommended Exercises and Readings From Programming in Prolog (5 th Ed.) Readings: Chapter 3 2 Searching for the Answer In order for a Prolog program to report the correct

More information

Part I Logic programming paradigm

Part I Logic programming paradigm Part I Logic programming paradigm 1 Logic programming and pure Prolog 1.1 Introduction 3 1.2 Syntax 4 1.3 The meaning of a program 7 1.4 Computing with equations 9 1.5 Prolog: the first steps 15 1.6 Two

More information

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog

CS 360: Programming Languages Lecture 10: Logic Programming with Prolog CS 360: Programming Languages Lecture 10: Logic Programming with Prolog Geoffrey Mainland Drexel University Section 1 Administrivia Midterm Tuesday Midterm is Tuesday, February 14! Study guide is on the

More information

Combining Lists & Built-in Predicates

Combining Lists & Built-in Predicates Combining Lists & Built-in Predicates Artificial Intelligence Programming in Prolog Lecturer: Tim Smith Lecture 6 11/10/04 11/10/04 AIPP Lecture 6: Built-in Predicates 1 Collecting Results Last time we

More information

LING/C SC/PSYC 438/538. Lecture 20 Sandiway Fong

LING/C SC/PSYC 438/538. Lecture 20 Sandiway Fong LING/C SC/PSYC 438/538 Lecture 20 Sandiway Fong Today's Topics SWI-Prolog installed? We will start to write grammars today Quick Homework 8 SWI Prolog Cheatsheet At the prompt?- 1. halt. 2. listing. listing(name).

More information

Project 5 - The Meta-Circular Evaluator

Project 5 - The Meta-Circular Evaluator MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Fall Semester, 2005 Project 5 - The Meta-Circular

More information

Fundamentals of Prolog

Fundamentals of Prolog Fundamentals of Prolog Prof. Geraint A. Wiggins Centre for Cognition, Computation and Culture Goldsmiths College, University of London Contents Summary of Lecture 1 What makes a good Prolog program? What

More information

INTRODUCTION TO PROLOG

INTRODUCTION TO PROLOG INTRODUCTION TO PROLOG PRINCIPLES OF PROGRAMMING LANGUAGES Norbert Zeh Winter 2018 Dalhousie University 1/44 STRUCTURE OF A PROLOG PROGRAM Where, declaratively, Haskell expresses a computation as a system

More information

CSC384: Intro to Artificial Intelligence Prolog Tutorials 3&4. Hojjat Ghaderi, Fall 2006, University of Toronto

CSC384: Intro to Artificial Intelligence Prolog Tutorials 3&4. Hojjat Ghaderi, Fall 2006, University of Toronto CSC384: Intro to Artificial Intelligence Prolog Tutorials 3&4 1 Debugging Programs in Prolog We talked about the graphical debugger under Windows. Now, the text-based debugger: You can put a breakpoint

More information

Prolog-2 nd Lecture. Prolog Predicate - Box Model

Prolog-2 nd Lecture. Prolog Predicate - Box Model Prolog-2 nd Lecture Tracing in Prolog Procedural interpretation of execution Box model of Prolog predicate rule How to follow a Prolog trace? Trees in Prolog use nested terms Unification Informally Formal

More information

LING/C SC/PSYC 438/538. Lecture 15 Sandiway Fong

LING/C SC/PSYC 438/538. Lecture 15 Sandiway Fong LING/C SC/PSYC 438/538 Lecture 15 Sandiway Fong Did you install SWI Prolog? SWI Prolog Cheatsheet At the prompt?- Everything typed at the 1. halt. prompt must end in a period. 2. listing. listing(name).

More information

1. M,M sequential composition: try tactic M; if it succeeds try tactic M. sequential composition (, )

1. M,M sequential composition: try tactic M; if it succeeds try tactic M. sequential composition (, ) Dipl.-Inf. Achim D. Brucker Dr. Burkhart Wolff Computer-supported Modeling and Reasoning http://www.infsec.ethz.ch/ education/permanent/csmr/ (rev. 16802) Submission date: FOL with Equality: Equational

More information

Intro to Bottom-up Parsing. Lecture 9

Intro to Bottom-up Parsing. Lecture 9 Intro to Bottom-up Parsing Lecture 9 Bottom-Up Parsing Bottom-up parsing is more general than topdown parsing And just as efficient Builds on ideas in top-down parsing Bottom-up is the preferred method

More information

Operators (2A) Young Won Lim 10/2/13

Operators (2A) Young Won Lim 10/2/13 Operators (2A) Copyright (c) 2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Operational Semantics

Operational Semantics 15-819K: Logic Programming Lecture 4 Operational Semantics Frank Pfenning September 7, 2006 In this lecture we begin in the quest to formally capture the operational semantics in order to prove properties

More information

Bachelor/Master Exam Version V3B

Bachelor/Master Exam Version V3B Prof. aadr. Jürgen Giesl Carsten Otto Bachelor/Master Exam Version V3B First Name: Last Name: Course of Studies (please mark exactly one): Informatik Bachelor TK Master Mathematik Master Other: Maximal

More information

Backtracking. Backtracking. Backtracking. Backtracking. Backtracking. Backtracking. Functional & Logic Programming - Backtracking October, 01

Backtracking. Backtracking. Backtracking. Backtracking. Backtracking. Backtracking. Functional & Logic Programming - Backtracking October, 01 Functional & Logic Programming - October, 01 already seen how to control execution ordering the clauses and goals can affect the speed of execution and the order of evaluation of the clauses now going

More information

Software Testing Prof. Meenakshi D Souza Department of Computer Science and Engineering International Institute of Information Technology, Bangalore

Software Testing Prof. Meenakshi D Souza Department of Computer Science and Engineering International Institute of Information Technology, Bangalore Software Testing Prof. Meenakshi D Souza Department of Computer Science and Engineering International Institute of Information Technology, Bangalore Lecture 04 Software Test Automation: JUnit as an example

More information

Project 5 - The Meta-Circular Evaluator

Project 5 - The Meta-Circular Evaluator MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring Semester, 2005 Project 5 - The Meta-Circular

More information

Backtrack control. Chapter 5

Backtrack control. Chapter 5 Chapter 5 Backtrack control Prolog will automatically backtrack to satisfy a goal. This relieves the programmer of the burden of putting in backtrack explicitly. On the negative side, this might lead to

More information

Operators (2A) Young Won Lim 10/5/13

Operators (2A) Young Won Lim 10/5/13 Operators (2A) Copyright (c) 2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

RELATIONAL OPERATORS #1

RELATIONAL OPERATORS #1 RELATIONAL OPERATORS #1 CS 564- Spring 2018 ACKs: Jeff Naughton, Jignesh Patel, AnHai Doan WHAT IS THIS LECTURE ABOUT? Algorithms for relational operators: select project 2 ARCHITECTURE OF A DBMS query

More information

Introduction to Bottom-Up Parsing

Introduction to Bottom-Up Parsing Introduction to Bottom-Up Parsing Lecture 11 CS 536 Spring 2001 1 Outline he strategy: shift-reduce parsing Ambiguity and precedence declarations Next lecture: bottom-up parsing algorithms CS 536 Spring

More information

Prolog. Intro to Logic Programming

Prolog. Intro to Logic Programming Prolog Logic programming (declarative) Goals and subgoals Prolog Syntax Database example rule order, subgoal order, argument invertibility, backtracking model of execution, negation by failure, variables

More information

Tests, Backtracking, and Recursion

Tests, Backtracking, and Recursion Tests, Backtracking, and Recursion Artificial Intelligence Programming in Prolog Lecture 3 30/09/04 30/09/04 AIPP Lecture 3: Rules, Results, and Backtracking 1 Re-cap A Prolog program consists of predicate

More information

CAP 5602 Summer, Lesson 4: Loops. The topics 1. the cut and some of its uses 2. the while loop 3. the do until loop

CAP 5602 Summer, Lesson 4: Loops. The topics 1. the cut and some of its uses 2. the while loop 3. the do until loop CAP 5602 Summer, 2011 Lesson 4: Loops The topics 1. the cut and some of its uses 2. the while loop 3. the do until loop 1. The cut The cut (!) is a way of controlling backtracking. If a rule contains a

More information

Introduction to Prolog Paper Refs. Prolog tutor. Julian Verdurmen. Seminar Softw. tech. for teaching and learning. September 30, 2009

Introduction to Prolog Paper Refs. Prolog tutor. Julian Verdurmen. Seminar Softw. tech. for teaching and learning. September 30, 2009 Seminar Softw. tech. for teaching and learning September 30, 2009 Outline 1 Introduction to Prolog Basics Simple example 2 Basics Simple example Outline 1 Introduction to Prolog Basics Simple example 2

More information

Infinite Derivations as Failures

Infinite Derivations as Failures Infinite Derivations as Failures Andrea Corradi and Federico Frassetto DIBRIS, Università di Genova, Italy name.surname@dibris.unige.it Abstract. When operating on cyclic data, programmers have to take

More information

Agenda. CS301 Session 20. A logic programming trick. A simple Prolog program. Introduction to logic programming Examples Semantics

Agenda. CS301 Session 20. A logic programming trick. A simple Prolog program. Introduction to logic programming Examples Semantics CS301 Session 20 Introduction to logic programming Examples Semantics Agenda 1 2 A logic programming trick A two-way translator in two lines of code: translate([],[]). translate([word Words],[Mot Mots])

More information

The object level in Prolog. Meta-level predicates and operators. Contents. The flow of computation. The meta level in Prolog

The object level in Prolog. Meta-level predicates and operators. Contents. The flow of computation. The meta level in Prolog Lecture 8 Meta-level predicates and operators Contents Object level vs. meta level Controlling flow of computation Checking and dismantling expressions Comparison operators The object level in Prolog Prolog

More information

6.001 Notes: Section 6.1

6.001 Notes: Section 6.1 6.001 Notes: Section 6.1 Slide 6.1.1 When we first starting talking about Scheme expressions, you may recall we said that (almost) every Scheme expression had three components, a syntax (legal ways of

More information

Programming Paradigms

Programming Paradigms PP 2017/18 Unit 9 Prolog: Accumulators, Order of Goals/Clauses, and the Cut 1/38 Programming Paradigms Unit 9 Prolog: Accumulators, Order of Goals/Clauses, and the Cut J. Gamper Free University of Bozen-Bolzano

More information

Lecture 11: Feb. 10, 2016

Lecture 11: Feb. 10, 2016 CS323: AI (Hands on with Prolog) Spring 2016 Lecturer: K.R. Chowdhary Lecture 11: Feb. 10, 2016 : Professor of CS (VF) Disclaimer: These notes have not been subjected to the usual scrutiny reserved for

More information

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation

Matrices. Chapter Matrix A Mathematical Definition Matrix Dimensions and Notation Chapter 7 Introduction to Matrices This chapter introduces the theory and application of matrices. It is divided into two main sections. Section 7.1 discusses some of the basic properties and operations

More information

Hardware Description and Verification Lava Exam

Hardware Description and Verification Lava Exam Hardware Description and Verification Lava Exam Mary Sheeran Revised by Thomas Hallgren hallgren@chalmers.se May 16, 2010 Introduction The purpose of this take-home exam is to give you further practice

More information

What is Prolog? - 1. A Prolog Tutorial. What is Prolog? - 2. Prolog Programming. » Declaring some facts about objects and their relationships

What is Prolog? - 1. A Prolog Tutorial. What is Prolog? - 2. Prolog Programming. » Declaring some facts about objects and their relationships What is Prolog? - 1 Prolog is an example of a logic programming language Invented by Alain Colmeraurer in 1972 A Prolog Tutorial Based on Clocksin and Mellish Chapter 1 The version implemented at the University

More information

What is Prolog? - 1. A Prolog Tutorial. Prolog Programming. What is Prolog? - 2. » Declaring some facts about objects and their relationships

What is Prolog? - 1. A Prolog Tutorial. Prolog Programming. What is Prolog? - 2. » Declaring some facts about objects and their relationships What is Prolog? - 1 Prolog is an example of a logic programming language A Prolog Tutorial Based on Clocksin and Mellish Chapter 1 Invented by Alain Colmeraurer in 1972 The version implemented at the University

More information

IP Routing Lab Assignment Configuring Basic Aspects of IP IGP Routing Protocols

IP Routing Lab Assignment Configuring Basic Aspects of IP IGP Routing Protocols IP Routing Lab Assignment Configuring Basic Aspects of IP IGP Routing Protocols 1 PURPOSE AND GOALS This lab assignment will give you a hands-on experience in configuring and managing routers and particularly

More information

Prolog Assessed Exercise

Prolog Assessed Exercise Prolog Assessed Exercise David Eyers 21st April 2009 The purpose of this exercise is to implement in Prolog the Bellman-Ford algorithm for computing singlesource shortest paths

More information

COMPUTER SCIENCE TRIPOS

COMPUTER SCIENCE TRIPOS CST.2011.3.1 COMPUTER SCIENCE TRIPOS Part IB Monday 6 June 2011 1.30 to 4.30 COMPUTER SCIENCE Paper 3 Answer five questions. Submit the answers in five separate bundles, each with its own cover sheet.

More information

CSE Theory of Computing Fall 2017 Project 1-SAT Solving

CSE Theory of Computing Fall 2017 Project 1-SAT Solving CSE 30151 Theory of Computing Fall 2017 Project 1-SAT Solving Version 3: Sept. 21, 2017 The purpose of this project is to gain an understanding of one of the most central problems of computing: Boolean

More information

3 Lists. List Operations (I)

3 Lists. List Operations (I) 3 Lists. List Operations (I) The list is the simplest yet the most useful Prolog structure. A list is a sequence of any number of objects. Example 3.1: L = [1, 2, 3], R = [a, b, c], T = [john, marry, tim,

More information

This lecture covers: Prolog s execution strategy explained more precisely. Revision of the elementary Prolog data types

This lecture covers: Prolog s execution strategy explained more precisely. Revision of the elementary Prolog data types This lecture covers: Prolog s execution strategy explained more precisely The execution strategy has been presented as simply placing all matching clauses onto the stack. In fact, Prolog is slightly more

More information

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy

Chapter 16. Logic Programming. Topics. Unification. Resolution. Prolog s Search Strategy. Prolog s Search Strategy Topics Chapter 16 Logic Programming Summary (resolution, unification, Prolog search strategy ) Disjoint goals The cut operator Negative goals Predicate fail Debugger / tracer Lists 2 Resolution Resolution

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

Bachelor/Master Exam Version V3B

Bachelor/Master Exam Version V3B Prof aadr Jürgen Giesl Carsten Otto Bachelor/Master Exam Version V3B First Name: Last Name: Immatriculation Number: Course of Studies (please mark exactly one): Informatik Bachelor TK Master Mathematik

More information

Chapter 5. Pure PROLOG. Foundations of Logic Programming

Chapter 5. Pure PROLOG. Foundations of Logic Programming Chapter 5 1 Outline vs. logic programming Lists in Adding Arithmetics to Adding the Cut to 2 Syntax of Pure Prolog p(x,a) :- q(x), r(x,yi). p(x, a) q(x), r(x,y i ) % Comment Ambivalent syntax: p(p(a,b),

More information

Logic Programming. Efficiency Issues. Temur Kutsia

Logic Programming. Efficiency Issues. Temur Kutsia Logic Programming Efficiency Issues Temur Kutsia Research Institute for Symbolic Computation Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at Efficiency Issues in Prolog Narrow the

More information

Introduction to Algorithms 6.046J/18.401J

Introduction to Algorithms 6.046J/18.401J Introduction to Algorithms 6.046J/18.401J Menu for Today Show that Θ (n lg n) is the best possible running time for a sorting algorithm. Design an algorithm that sorts in linear time. Hint: maybe the models

More information

Generative and accumulative recursion. What is generative recursion? Example revisited: GCD. Readings: Sections 25, 26, 27, 30, 31

Generative and accumulative recursion. What is generative recursion? Example revisited: GCD. Readings: Sections 25, 26, 27, 30, 31 Generative and accumulative recursion Readings: Sections 25, 26, 27, 30, 31 Some subsections not explicitly covered in lecture Section 27.2 technique applied to strings CS 135 Fall 2017 11: Generative

More information

EECS 140 Laboratory Exercise 5 Prime Number Recognition

EECS 140 Laboratory Exercise 5 Prime Number Recognition 1. Objectives EECS 140 Laboratory Exercise 5 Prime Number Recognition A. Become familiar with a design process B. Practice designing, building, and testing a simple combinational circuit 2. Discussion

More information

MORE SCHEME. 1 What Would Scheme Print? COMPUTER SCIENCE MENTORS 61A. October 30 to November 3, Solution: Solutions begin on the following page.

MORE SCHEME. 1 What Would Scheme Print? COMPUTER SCIENCE MENTORS 61A. October 30 to November 3, Solution: Solutions begin on the following page. MORE SCHEME COMPUTER SCIENCE MENTORS 61A October 30 to November 3, 2017 1 What Would Scheme Print? Solutions begin on the following page. 1. What will Scheme output? Draw box-and-pointer diagrams to help

More information

Page 1 of 5. University of Toronto CSC326 Programming Languages, Fall 2009

Page 1 of 5. University of Toronto CSC326 Programming Languages, Fall 2009 University of Toronto CSC326 Programming Languages, Fall 2009 Assignment # 4 Part B (Due: Monday, Dec. 7rd 2009, 11:00am sharp) Details: - Programming in Prolog. This is the Part B of assignment 4, and

More information

Difference lists in Prolog

Difference lists in Prolog tmcs-csenki 2010/4/12 23:38 page 73 #1 8/1 (2010), 73 87 Difference lists in Prolog Attila Csenki Abstract. Prolog is taught at Bradford University within the two-semester module Symbolic and Declarative

More information

Lecture Notes on Prolog

Lecture Notes on Prolog Lecture Notes on Prolog 15-317: Constructive Logic Frank Pfenning Lecture 14 October 15, 2009 In this lecture we introduce some simple data structures such as lists, and simple algorithms on them such

More information

Department of Electrical Engineering and Computer Sciences Fall 2000 Instructor: Dan Garcia CS 3 Final Exam

Department of Electrical Engineering and Computer Sciences Fall 2000 Instructor: Dan Garcia CS 3 Final Exam University of California, Berkeley College of Engineering Department of Electrical Engineering and Computer Sciences Fall 2000 Instructor: Dan Garcia 2000-12-15 CS 3 Final Exam Last name First name SID

More information

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book)

COMP2411 Lecture 20: Logic Programming Examples. (This material not in the book) COMP2411 Lecture 20: Logic Programming Examples (This material not in the book) There are several distinct but often equivalent ways to think about logic programs 1. As computing logical consequences of

More information

815338A Principles of Programming Languages. Exercise 7 answers

815338A Principles of Programming Languages. Exercise 7 answers 815338A Principles of Programming Languages. Exercise 7 answers The topic of this exercise is logic programming in Prolog. Prolog programs can be executed at https://ideone.com/ or http://www.tutorialspoint.com/codingground.htm.

More information

Laboratory 5: Implementing Loops and Loop Control Strategies

Laboratory 5: Implementing Loops and Loop Control Strategies Laboratory 5: Implementing Loops and Loop Control Strategies Overview: Objectives: C++ has three control structures that are designed exclusively for iteration: the while, for and do statements. In today's

More information

Computer Science 236 Fall Nov. 11, 2010

Computer Science 236 Fall Nov. 11, 2010 Computer Science 26 Fall Nov 11, 2010 St George Campus University of Toronto Assignment Due Date: 2nd December, 2010 1 (10 marks) Assume that you are given a file of arbitrary length that contains student

More information

Review Functions Subroutines Flow Control Summary

Review Functions Subroutines Flow Control Summary OUTLINE 1 REVIEW 2 FUNCTIONS Why use functions How do they work 3 SUBROUTINES Why use subroutines? How do they work 4 FLOW CONTROL Logical Control Looping 5 SUMMARY OUTLINE 1 REVIEW 2 FUNCTIONS Why use

More information

Symbolic Computation Example Programming Exercises for Prolog

Symbolic Computation Example Programming Exercises for Prolog 2001 July 16 3401 Prolog Programming Exercises Page 1 of 8 Symbolic Computation Example Programming Exercises for Prolog 1. Write a Prolog predicate countbt(tree, Count) to count the number of des in a

More information

CSSE2002/7023 The University of Queensland

CSSE2002/7023 The University of Queensland CSSE2002 / CSSE7023 Semester 1, 2016 Assignment 1 Goal: The goal of this assignment is to gain practical experience with data abstraction, unit testing and using the Java class libraries (the Java 8 SE

More information

Recursion, Structures, and Lists

Recursion, Structures, and Lists Recursion, Structures, and Lists Artificial Intelligence Programming in Prolog Lecturer: Tim Smith Lecture 4 04/10/04 30/09/04 AIPP Lecture 3: Recursion, Structures, and Lists 1 The central ideas of Prolog

More information

April 2 to April 4, 2018

April 2 to April 4, 2018 MORE SCHEME COMPUTER SCIENCE MENTORS 61A April 2 to April 4, 2018 1 Scheme 1. What will Scheme output? Draw box-and-pointer diagrams to help determine this. (a) (cons (cons 1 nil) (cons 2 (cons (cons 3

More information

Lecture 6: More Lists

Lecture 6: More Lists Lecture 6: More Lists Theory Define append/3, a predicate for concatenating two lists, and illustrate what can be done with it Discuss two ways of reversing a list A naïve way using append/3 A more efficient

More information

So what does studying PL buy me?

So what does studying PL buy me? So what does studying PL buy me? Enables you to better choose the right language but isn t that decided by libraries, standards, and my boss? Yes. Chicken-and-egg. My goal: educate tomorrow s tech leaders

More information

Logic Programming Languages

Logic Programming Languages Logic Programming Languages Introduction Logic programming languages, sometimes called declarative programming languages Express programs in a form of symbolic logic Use a logical inferencing process to

More information

Statistics Case Study 2000 M. J. Clancy and M. C. Linn

Statistics Case Study 2000 M. J. Clancy and M. C. Linn Statistics Case Study 2000 M. J. Clancy and M. C. Linn Problem Write and test functions to compute the following statistics for a nonempty list of numeric values: The mean, or average value, is computed

More information

Prolog. Logic Programming vs Prolog

Prolog. Logic Programming vs Prolog Language constructs Prolog Facts, rules, queries through examples Horn clauses Goal-oriented semantics Procedural semantics How computation is performed? Comparison to logic programming 1 Logic Programming

More information

Prolog - 3 Prolog search trees + traces

Prolog - 3 Prolog search trees + traces Prolog - 3 Prolog search trees + traces 1 Review member(a, [A B]). member(a, [B C]) :- member (A,C). goal-oriented semantics: can get value assignment for goal member(a,[b C]) by showing truth of subgoal

More information

Week 5 Tutorial Structural Induction

Week 5 Tutorial Structural Induction Department of Computer Science, Australian National University COMP2600 / COMP6260 Formal Methods in Software Engineering Semester 2, 2016 Week 5 Tutorial Structural Induction You should hand in attempts

More information

Course on Artificial Intelligence and Intelligent Systems. A short introduction to CHR and its application for rule-based expert systems

Course on Artificial Intelligence and Intelligent Systems. A short introduction to CHR and its application for rule-based expert systems Course on Artificial Intelligence and Intelligent Systems A short introduction to CHR and its application for rule-based expert systems A course note Henning Christiansen Roskilde University, Computer

More information

Introduction to predicate calculus

Introduction to predicate calculus Logic Programming Languages Logic programming systems allow the programmer to state a collection of axioms from which theorems can be proven. Express programs in a form of symbolic logic Use a logical

More information

Part III Appendices 165

Part III Appendices 165 Part III Appendices 165 Appendix A Technical Instructions Learning Outcomes This material will help you learn how to use the software you need to do your work in this course. You won t be tested on it.

More information

Introduction to Logic Programming. Ambrose

Introduction to Logic Programming. Ambrose Introduction to Logic Programming Ambrose Bonnaire-Sergeant @ambrosebs abonnairesergeant@gmail.com Introduction to Logic Programming Fundamental Logic Programming concepts Related to FP General implementation

More information

Announcements for this Lecture

Announcements for this Lecture Lecture 6 Objects Announcements for this Lecture Last Call Quiz: About the Course Take it by tomorrow Also remember survey Assignment 1 Assignment 1 is live Posted on web page Due Thur, Sep. 18 th Due

More information

Turtle Graphics and L-systems Informatics 1 Functional Programming: Tutorial 7

Turtle Graphics and L-systems Informatics 1 Functional Programming: Tutorial 7 Turtle Graphics and L-systems Informatics 1 Functional Programming: Tutorial 7 Heijltjes, Wadler Due: The tutorial of week 9 (20/21 Nov.) Reading assignment: Chapters 15 17 (pp. 280 382) Please attempt

More information

Q1:a. Best first search algorithm:

Q1:a. Best first search algorithm: Q1:a Best first search algorithm: 1. Open=[A10]; closed=[] 2. Evaluate A10; open=[c20,b30,d40];closed=[a10] 3. Evaluate C20; open=[b30,g35,d40,h40]; closed=[c20, A10] 4. Evaluate B30; open=[e10,f20,g35,d40,h40];

More information

6.S189 Homework 1. What to turn in. Exercise 1.1 Installing Python. Exercise 1.2 Hello, world!

6.S189 Homework 1. What to turn in. Exercise 1.1 Installing Python. Exercise 1.2 Hello, world! 6.S189 Homework 1 http://web.mit.edu/6.189/www/materials.html What to turn in Do the warm-up problems for Days 1 & 2 on the online tutor. Complete the problems below on your computer and get a checkoff

More information

BTEC Nationals IT - Unit2 FAQs

BTEC Nationals IT - Unit2 FAQs BTEC Nationals IT - Unit2 FAQs Q1 Q2 I need more clarity on what is required in the design task Is it expected that the race officials are entering times as raw times and then the table is set up so it

More information

Programming Paradigms Written Exam (6 CPs)

Programming Paradigms Written Exam (6 CPs) Programming Paradigms Written Exam (6 CPs) 22.06.2017 First name Student number Last name Signature Instructions for Students Write your name and student number on the exam sheet and on every solution

More information

Backtracking. Ch. 5 Controlling Backtracking. Backtracking. Backtracking Example. Example. Example

Backtracking. Ch. 5 Controlling Backtracking. Backtracking. Backtracking Example. Example. Example Backtracking Ch. 5 Controlling Backtracking Backtracking is the attempt to (re)satisfy a goal by exploring alternative ways to satisfy it. Chronological backtracking is backtracking in which we always

More information

We first learn one useful option of gcc. Copy the following C source file to your

We first learn one useful option of gcc. Copy the following C source file to your Lecture 5 p.1 Faculty of Computer Science, Dalhousie University CSCI 2132 Software Development Lab 5: gcc and gdb tools 10-Oct-2018 Location: Teaching Labs Time: Thursday Instructor: Vlado Keselj Lab 5:

More information

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions

Notes for Chapter 12 Logic Programming. The AI War Basic Concepts of Logic Programming Prolog Review questions Notes for Chapter 12 Logic Programming The AI War Basic Concepts of Logic Programming Prolog Review questions The AI War How machines should learn: inductive or deductive? Deductive: Expert => rules =>

More information

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation

Integrity Constraints (Chapter 7.3) Overview. Bottom-Up. Top-Down. Integrity Constraint. Disjunctive & Negative Knowledge. Proof by Refutation CSE560 Class 10: 1 c P. Heeman, 2010 Integrity Constraints Overview Disjunctive & Negative Knowledge Resolution Rule Bottom-Up Proof by Refutation Top-Down CSE560 Class 10: 2 c P. Heeman, 2010 Integrity

More information

Scheme of work Cambridge International AS & A Level Computing (9691)

Scheme of work Cambridge International AS & A Level Computing (9691) Scheme of work Cambridge International AS & A Level Computing (9691) Unit 2: Practical programming techniques Recommended prior knowledge Students beginning this course are not expected to have studied

More information

About these slides Prolog programming hints

About these slides Prolog programming hints About these slides Prolog programming hints COMP9414-2008 Semester 1 Ronnie Taib (ronniet@cse.unsw.edu.au)! Practical notes on using Prolog! Some hints for better code! LECTURE NOTES ALWAYS PREVAIL!! The

More information

Lecture Notes on Prolog

Lecture Notes on Prolog Lecture Notes on Prolog 15-317: Constructive Logic Frank Pfenning Lecture 14 October 27, 2015 In this lecture we introduce some simple data structures such as lists, and simple algorithms on them such

More information

Plan (next 4 weeks) 1. Fast forward. 2. Rewind. 3. Slow motion. Rapid introduction to what s in OCaml. Go over the pieces individually

Plan (next 4 weeks) 1. Fast forward. 2. Rewind. 3. Slow motion. Rapid introduction to what s in OCaml. Go over the pieces individually Plan (next 4 weeks) 1. Fast forward Rapid introduction to what s in OCaml 2. Rewind 3. Slow motion Go over the pieces individually History, Variants Meta Language Designed by Robin Milner @ Edinburgh Language

More information

Variables and Constants

Variables and Constants 87 Chapter 5 Variables and Constants 5.1 Storing Information in the Computer 5.2 Declaring Variables 5.3 Inputting Character Strings 5.4 Mistakes in Programs 5.5 Inputting Numbers 5.6 Inputting Real Numbers

More information

Chapter 16. Logic Programming Languages

Chapter 16. Logic Programming Languages Chapter 16 Logic Programming Languages Chapter 16 Topics Introduction A Brief Introduction to Predicate Calculus Predicate Calculus and Proving Theorems An Overview of Logic Programming The Origins of

More information

Lecture 16: Logic Programming in Prolog

Lecture 16: Logic Programming in Prolog Lecture 16: Logic Programming in Prolog COMP 524 Programming Language Concepts Stephen Olivier March 26, 2009 Based on slides by A. Block, notes by N. Fisher, F. Hernandez-Campos, and D. Stotts Goal of

More information

Introduction to Prolog

Introduction to Prolog Introduction to Prolog David Woods dwoods@scss.tcd.ie Week 3 - HT Declarative Logic The Prolog programming language is, at its theoretical core, a declarative language. This is unlike more commonly used

More information

An Explicit Continuation Evaluator for Scheme

An Explicit Continuation Evaluator for Scheme Massachusetts Institute of Technology Course Notes 2 6.844, Spring 05: Computability Theory of and with Scheme February 17 Prof. Albert R. Meyer revised March 3, 2005, 1265 minutes An Explicit Continuation

More information

Building a system for symbolic differentiation

Building a system for symbolic differentiation Computer Science 21b Structure and Interpretation of Computer Programs Building a system for symbolic differentiation Selectors, constructors and predicates: (constant? e) Is e a constant? (variable? e)

More information

Prof. Dr. A. Podelski, Sommersemester 2017 Dr. B. Westphal. Softwaretechnik/Software Engineering

Prof. Dr. A. Podelski, Sommersemester 2017 Dr. B. Westphal. Softwaretechnik/Software Engineering Prof. Dr. A. Podelski, Sommersemester 2017 Dr. B. Westphal Softwaretechnik/Software Engineering http://swt.informatik.uni-freiburg.de/teaching/ss2017/swtvl Exercise Sheet 6 Early submission: Wednesday,

More information

Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

More information