A Behavioral Type System for Memory-Leak Freedom. Qi Tan, Kohei Suenaga, and Atsushi Igarashi Kyoto University

Size: px
Start display at page:

Download "A Behavioral Type System for Memory-Leak Freedom. Qi Tan, Kohei Suenaga, and Atsushi Igarashi Kyoto University"

Transcription

1 A Behavioral Type System for Memory-Leak Freedom Qi Tan, Kohei Suenaga, and Atsushi Igarashi Kyoto University

2 Introduction n Memory leaks are very serious problems Ø Applications stop working Ø System crashes 2

3 Memory-leak freedom n All the allocated memory cells are eventually deallocated f() = let x = malloc() in free(x) Example 1: memory-leak free program 3

4 Partial memory-leak freedom n All the allocated memory cells are eventually deallocated if a program terminates f () = let x = malloc() in f (); free(x) Although it is partially memoryleak free, it consumes unbounded number of memory cells Example 2: partial memory-leak freedom 4

5 Total memory-leak freedom n A program consumes bounded number of memory cells even when it does not terminate h() = h () = let x = malloc() in let x = malloc() in let y = malloc() in let y = malloc() in free(x); free(y); h() h ();free(x);free(y) Example 3: both are partially memory-leak free. h() is totally memory-leak free, but h () is not. 5

6 Goal n Verification of total memory-leak freedom h() = h () = let x = malloc() in let x = malloc() in let y = malloc() in let y = malloc() in free(x);free(y);h() h (); free(x); free(y) Example 3 6

7 Idea n Behavioral types to abstract the behavior of a program Ø Sequential processes as types Ø Information about the number and the order of allocations, deallocations, and recursive calls Ø Used to estimate the upper bound of memory consumption of a program 7

8 Explanation of the idea Allocating two cells, freeing them, and then calling recursively h() = let x = malloc() in let y = malloc() in free(x); free(y); h() µα.malloc;malloc;free;free;α Abstracting away statements not related to allocation/deallocation 8

9 Explanation of the idea h () = let x = malloc() in let y = malloc() in h (); free(x); free(y) Allocating two cells, calling recursively, and then freeing them µα.malloc;malloc;α;free;free Abstracting away statements not related to allocation/deallocation 9

10 Overview original programs Behavioral type system µα.malloc;malloc;free;free;α Behavior types h () = let x = malloc() in let y = malloc() in h (); free(x); free(y) Success Model checker Fail totally memoryleak free Unknown 10

11 Outline n Language n Behavioral Type System n Preliminary Experiments n Related Work n Conclusion n Future Work 11

12 Language x,y, z,... (variables) Var s (statements) ::= skip s 1 ; s 2 let x = y in s f(x) *x y let x = *y in s let x = malloc() in s free(x) ifnull(x) then s 1 else s 2 let x = null in s d (proc. defs.) ::= { f (x 1,..., x n )s} D (definitions) ::= d 1... d n P (programs) ::= D, s 12

13 Outline n Language n Behavioral type system Ø Syntax of behavioral types Ø Type judgment Ø Typing rule for programs Ø OK n (P) n Preliminary Experiments n Related Work n Conclusion n Future Work 13

14 Syntax of behavioral types n P (behavioral types) ::= 0 P 1 ;P 2 P 1 +P 2 malloc free α µα.p do-nothing sequential execution of P 1 and P 2 choice between P 1 and P 2 allocation of one memory cell deallocation type variable recursion 14

15 Type judgment Θ; Γ s : P n Under Θ and Γ, the abstracted behavior of s is P Ø Θ (function type environment) ::= {f 1 :P 1,...,f n :P n } Ø Γ (variable type environment) ::= {x 1,x 2,...,x n } n For example Θ; Γ let x = malloc() in free(x) : malloc;free 15

16 Typing rule for programs D : Θ Θ; s : P OK n (P) D, s : n During execution,a program will never allocate more than n cells Ø D, s : n, a program requires at most n memory cells when it is executed Ø P represents the behavioral type of main statement s In order to guarantee D, s : n, we use condition OK n (P) 16

17 OK n (P) σ represents a sequence of actions malloc, free, and other actions τ n Definition: OK n (P) holds if, for any P, if P σ The number of malloc in σ The number of free in σ P then # malloc (σ) - # free (σ) n n Intuitively, at every running step, the number of memory cells a program consumes never exceeds the number of cells it requires. n For example P 1 = µα.malloc;malloc;free;free;α OK 2 (P 1 ) holds, that is,at most two memory cells are consumed 17

18 Outline n Language n Behavioral Type System n Preliminary Experiments Ø Objective Ø Comparison Ø Discussion n Related Work n Conclusion n Future Work 18

19 Objective n Checking whether our approach can verify total memory-leak freedom n Investigating the problems in our current type system 19

20 Two ways to verify total memory-leak freedom original programs (C programs) Model checker (CPAChecker) Success or Fail Manually extracted Behavioral types (encoded as C programs) Success or Fail Model checker (CPAChecker) We expect our approach is faster than model checking on original programs directly 20

21 Comparison original programs abstracted behavioral types s 9.580s 2.700s 3.000s 1.980s 2.060s 2.020s 1.970s poker.c database.c gen_init_cpio.c decompress_unlzo.c Table 1. Time spent by CPAChecker 21

22 Problem: Information in behavioral types is not enough to verify total memory-leak freedom! original programs abstracted behavior Result of verification Result of verification poker.c Success Fail database.c Success Fail gen_init_cpio.c Success Fail decompress_unlzo.c Success Fail Table 2. Result of verification of model checking on original programs and abstracted behavior. 22

23 Discussion n Verification failed,because our type system is not path-sensitive while( ){ if ( /* condition c */){ x = malloc(sizeof(int)); } /* Do something */ if(/* condition equivalent to c */){ free(x); } } µα.malloc;0;α µα.(0 + malloc);(0 + free);α 23

24 Discussion while( ){ if ( /* condition c */){ x = malloc(sizeof(int)); /* Do something */ free(x); } else{ /* Do something */ } } P : µα.((malloc;free) + 0);α OK 1 (P) holds We confirmed that CPAChecker can verify OK n (P) for the abstracted behaviroal type of the rewritten programs without much penalty on CPU time 24

25 Outline n Language n Behavioral type system n Preliminary Experiments n Related work n Conclusion n Future work 25

26 Related work n Static memory-leak freedom verification [Heine&Lam PLDI 03], [Suenaga&Kobayashi APLAS 09], etc Ø Partial memory-leak freedom Ø Lack of illegal accesses n Behavioral types are heavily used in concurrent programs [Kobayashi and Suenaga&Wischik LMCS 06], etc Ø Our type system is inspired by one proposed by Kobayashi et al. 26

27 Conclusion n Verification of memory-leak freedom for (possibly) nonterminating programs n A behavioral type system which abstracts the behavior of programs with allocation and deallocation n Preliminary experiments Ø Applying CPAChecker on abstracted behavioral types 27

28 Future work n Extension with variable-sized cells n Improving our type system Ø to make the verification process automatic Ø to verify programs more precisely 28

An Extended Behavioral Type System for Memory-Leak Freedom. Qi Tan, Kohei Suenaga, and Atsushi Igarashi Kyoto University

An Extended Behavioral Type System for Memory-Leak Freedom. Qi Tan, Kohei Suenaga, and Atsushi Igarashi Kyoto University An Extended Behavioral Type System for Memory-Leak Freedom Qi Tan, Kohei Suenaga, and Atsushi Igarashi Kyoto University Introduction n Memory leak, forgetting to deallocate an allocated memory cell, is

More information

A Behavioral Type System for Memory-Leak Freedom

A Behavioral Type System for Memory-Leak Freedom A Behavioral Type System for Memory-Leak Freedom Qi Tan, Kohei Suenaga, and Atsushi Igarashi Department of Communications and Computer Engineering Graduate School of Informatics Kyoto University {tanki,ksuenaga,igarashi}@fos.kuis.kyoto-u.ac.jp

More information

Type Systems for Concurrent Programs

Type Systems for Concurrent Programs Type Systems for Concurrent Programs Naoki Kobayashi Tokyo Institute of Technology Type Systems for Programming Languages Guarantee partial correctness of programs fun fact (n) = if n=0 then 1 else n fact(n-1);

More information

More on Operational Semantics

More on Operational Semantics More on Operational Semantics (Slides modified from those created by Xinyu Feng) 1 / 23 Outline Various formulations Extensions Going wrong Local variable declaration Heap Big-step operational semantics

More information

Variables. Substitution

Variables. Substitution Variables Elements of Programming Languages Lecture 4: Variables, binding and substitution James Cheney University of Edinburgh October 6, 2015 A variable is a symbol that can stand for another expression.

More information

Midterm 2 Solutions Many acceptable answers; one was the following: (defparameter g1

Midterm 2 Solutions Many acceptable answers; one was the following: (defparameter g1 Midterm 2 Solutions 1. [20 points] Consider the language that consist of possibly empty lists of the identifier x enclosed by parentheses and separated by commas. The language includes { () (x) (x,x) (x,x,x)

More information

Processes as Types: A Generic Framework of Behavioral Type Systems for Concurrent Processes

Processes as Types: A Generic Framework of Behavioral Type Systems for Concurrent Processes Processes as Types: A Generic Framework of Behavioral Type Systems for Concurrent Processes Atsushi Igarashi (Kyoto Univ.) based on joint work [POPL2001, TCS2003] with Naoki Kobayashi (Tohoku Univ.) Programming

More information

Binghamton University. CS-211 Fall Dynamic Memory

Binghamton University. CS-211 Fall Dynamic Memory Dynamic Memory Static Memory Define variables when we write code When we write the code we decide What the type of the variable is How big array sizes will be etc. These cannot change when we run the code!

More information

1 Dynamic Memory continued: Memory Leaks

1 Dynamic Memory continued: Memory Leaks CS104: Data Structures and Object-Oriented Design (Fall 2013) September 3, 2013: Dynamic Memory, continued; A Refresher on Recursion Scribes: CS 104 Teaching Team Lecture Summary In this lecture, we continue

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Winter 2017 Lecture 4a Andrew Tolmach Portland State University 1994-2017 Semantics and Erroneous Programs Important part of language specification is distinguishing valid from

More information

Hoare logic. A proof system for separation logic. Introduction. Separation logic

Hoare logic. A proof system for separation logic. Introduction. Separation logic Introduction Hoare logic Lecture 6: Examples in separation logic In the previous lecture, we saw how reasoning about pointers in Hoare logic was problematic, which motivated introducing separation logic.

More information

Note that in this definition, n + m denotes the syntactic expression with three symbols n, +, and m, not to the number that is the sum of n and m.

Note that in this definition, n + m denotes the syntactic expression with three symbols n, +, and m, not to the number that is the sum of n and m. CS 6110 S18 Lecture 8 Structural Operational Semantics and IMP Today we introduce a very simple imperative language, IMP, along with two systems of rules for evaluation called small-step and big-step semantics.

More information

1 Introduction. 3 Syntax

1 Introduction. 3 Syntax CS 6110 S18 Lecture 19 Typed λ-calculus 1 Introduction Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-proving techniques based on axiomatic semantics,

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2017 Lecture 3a Andrew Tolmach Portland State University 1994-2017 Binding, Scope, Storage Part of being a high-level language is letting the programmer name things: variables

More information

Static Semantics. Lecture 15. (Notes by P. N. Hilfinger and R. Bodik) 2/29/08 Prof. Hilfinger, CS164 Lecture 15 1

Static Semantics. Lecture 15. (Notes by P. N. Hilfinger and R. Bodik) 2/29/08 Prof. Hilfinger, CS164 Lecture 15 1 Static Semantics Lecture 15 (Notes by P. N. Hilfinger and R. Bodik) 2/29/08 Prof. Hilfinger, CS164 Lecture 15 1 Current Status Lexical analysis Produces tokens Detects & eliminates illegal tokens Parsing

More information

Heap Arrays and Linked Lists. Steven R. Bagley

Heap Arrays and Linked Lists. Steven R. Bagley Heap Arrays and Linked Lists Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index Variables and arrays have a type Create our

More information

CS558 Programming Languages

CS558 Programming Languages CS558 Programming Languages Fall 2016 Lecture 3a Andrew Tolmach Portland State University 1994-2016 Formal Semantics Goal: rigorous and unambiguous definition in terms of a wellunderstood formalism (e.g.

More information

Lecture #13: Type Inference and Unification. Typing In the Language ML. Type Inference. Doing Type Inference

Lecture #13: Type Inference and Unification. Typing In the Language ML. Type Inference. Doing Type Inference Lecture #13: Type Inference and Unification Typing In the Language ML Examples from the language ML: fun map f [] = [] map f (a :: y) = (f a) :: (map f y) fun reduce f init [] = init reduce f init (a ::

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Memory Management and Garbage Collection CMSC 330 Spring 2017 1 Memory Attributes Memory to store data in programming languages has the following lifecycle

More information

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline

CS 330 Lecture 18. Symbol table. C scope rules. Declarations. Chapter 5 Louden Outline CS 0 Lecture 8 Chapter 5 Louden Outline The symbol table Static scoping vs dynamic scoping Symbol table Dictionary associates names to attributes In general: hash tables, tree and lists (assignment ) can

More information

Sémantique des Langages de Programmation (SemLP) DM : Region Types

Sémantique des Langages de Programmation (SemLP) DM : Region Types Sémantique des Langages de Programmation (SemLP) DM : Region Types I) Submission Submission Date : 21/05/2017 Submission Format : Submit a virtual machine (.ova) 1 with 1. an executable of the interpreter,

More information

CS 6110 S11 Lecture 25 Typed λ-calculus 6 April 2011

CS 6110 S11 Lecture 25 Typed λ-calculus 6 April 2011 CS 6110 S11 Lecture 25 Typed λ-calculus 6 April 2011 1 Introduction Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-proving techniques based on axiomatic

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 7 More Memory Management CS 61C L07 More Memory Management (1) 2004-09-15 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Star Wars

More information

Programming Languages Assignment #7

Programming Languages Assignment #7 Programming Languages Assignment #7 December 2, 2007 1 Introduction This assignment has 20 points total. In this assignment, you will write a type-checker for the PolyMinML language (a language that is

More information

CMSC 330: Organization of Programming Languages. Memory Management and Garbage Collection

CMSC 330: Organization of Programming Languages. Memory Management and Garbage Collection CMSC 330: Organization of Programming Languages Memory Management and Garbage Collection CMSC330 Fall 2018 1 Memory Attributes Memory to store data in programming languages has the following lifecycle

More information

Programming Languages Lecture 15: Recursive Types & Subtyping

Programming Languages Lecture 15: Recursive Types & Subtyping CSE 230: Winter 2008 Principles of Programming Languages Lecture 15: Recursive Types & Subtyping Ranjit Jhala UC San Diego News? Formalize first-order type systems Simple types (integers and booleans)

More information

Compiler Construction

Compiler Construction Compiler Construction Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ss-16/cc/ Recap: Static Data Structures Outline of Lecture 18 Recap:

More information

CS 11 C track: lecture 5

CS 11 C track: lecture 5 CS 11 C track: lecture 5 Last week: pointers This week: Pointer arithmetic Arrays and pointers Dynamic memory allocation The stack and the heap Pointers (from last week) Address: location where data stored

More information

Introduction to Model Checking

Introduction to Model Checking Introduction to Model Checking René Thiemann Institute of Computer Science University of Innsbruck WS 2007/2008 RT (ICS @ UIBK) week 4 1/23 Outline Promela - Syntax and Intuitive Meaning Promela - Formal

More information

An Operational and Axiomatic Semantics for Non-determinism and Sequence Points in C

An Operational and Axiomatic Semantics for Non-determinism and Sequence Points in C An Operational and Axiomatic Semantics for Non-determinism and Sequence Points in C Robbert Krebbers Radboud University Nijmegen January 22, 2014 @ POPL, San Diego, USA 1 / 16 What is this program supposed

More information

Data Structure Series

Data Structure Series Data Structure Series This series is actually something I started back when I was part of the Sweet.Oblivion staff, but then some things happened and I was no longer able to complete it. So now, after

More information

Lectures 20, 21: Axiomatic Semantics

Lectures 20, 21: Axiomatic Semantics Lectures 20, 21: Axiomatic Semantics Polyvios Pratikakis Computer Science Department, University of Crete Type Systems and Static Analysis Based on slides by George Necula Pratikakis (CSD) Axiomatic Semantics

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Memory Management and Garbage Collection CMSC 330 - Spring 2013 1 Memory Attributes! Memory to store data in programming languages has the following lifecycle

More information

Stephen McLaughlin. From Uncertainty to Belief: Inferring the Specification Within

Stephen McLaughlin. From Uncertainty to Belief: Inferring the Specification Within From Uncertainty to Belief: Inferring the Specification Within Overview Area: Program analysis and error checking / program specification Problem: Tools lack adequate specification. Good specifications

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

Run-time Environments

Run-time Environments Run-time Environments Status We have so far covered the front-end phases Lexical analysis Parsing Semantic analysis Next come the back-end phases Code generation Optimization Register allocation Instruction

More information

The Wait-Free Hierarchy

The Wait-Free Hierarchy Jennifer L. Welch References 1 M. Herlihy, Wait-Free Synchronization, ACM TOPLAS, 13(1):124-149 (1991) M. Fischer, N. Lynch, and M. Paterson, Impossibility of Distributed Consensus with One Faulty Process,

More information

Programming Language Concepts, cs2104 Lecture 04 ( )

Programming Language Concepts, cs2104 Lecture 04 ( ) Programming Language Concepts, cs2104 Lecture 04 (2003-08-29) Seif Haridi Department of Computer Science, NUS haridi@comp.nus.edu.sg 2003-09-05 S. Haridi, CS2104, L04 (slides: C. Schulte, S. Haridi) 1

More information

Undefinedness and Non-determinism in C

Undefinedness and Non-determinism in C 1 Undefinedness and Non-determinism in C Nabil M. Al-Rousan Nov. 21, 2018 @ UBC Based on slides from Robbert Krebbers Aarhus University, Denmark 2 What is this program supposed to do? The C quiz, question

More information

axiomatic semantics involving logical rules for deriving relations between preconditions and postconditions.

axiomatic semantics involving logical rules for deriving relations between preconditions and postconditions. CS 6110 S18 Lecture 18 Denotational Semantics 1 What is Denotational Semantics? So far we have looked at operational semantics involving rules for state transitions, definitional semantics involving translations

More information

Modular Heap Abstraction-Based Memory Leak Detection for Heap-Manipulating Programs

Modular Heap Abstraction-Based Memory Leak Detection for Heap-Manipulating Programs Modular Heap Abstraction-Based Memory Leak Detection for Heap-Manipulating Programs Longming Dong Ji Wang Liqian Chen National University of Defense Technology, Changsha, China 05/12/2012 APSEC 2012 L

More information

Compiler Construction

Compiler Construction Compiler Construction Lecture 18: Code Generation V (Implementation of Dynamic Data Structures) Thomas Noll Lehrstuhl für Informatik 2 (Software Modeling and Verification) noll@cs.rwth-aachen.de http://moves.rwth-aachen.de/teaching/ss-14/cc14/

More information

Typed Compilation Against Non-Manifest Base Classes

Typed Compilation Against Non-Manifest Base Classes Typed Compilation Against Non-Manifest Base Classes Christopher League Long Island University christopher.league@liu.edu Stefan Monnier Université de Montréal monnier@iro.umontreal.ca FTfJP workshop 26

More information

Qualifying Exam in Programming Languages and Compilers

Qualifying Exam in Programming Languages and Compilers Qualifying Exam in Programming Languages and Compilers University of Wisconsin Fall 1991 Instructions This exam contains nine questions, divided into two parts. All students taking the exam should answer

More information

Semantical Characterization of unbounded-nondeterministic ASMs

Semantical Characterization of unbounded-nondeterministic ASMs Semantical Characterization of unbounded-nondeterministic ASMs Berlin, 26/27 Feb 2007 Andreas Glausch Humboldt-Universität zu Berlin Department of Computer Science Abstract State Machines (ASMs) state

More information

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13

Run-time Environments. Lecture 13. Prof. Alex Aiken Original Slides (Modified by Prof. Vijay Ganesh) Lecture 13 Run-time Environments Lecture 13 by Prof. Vijay Ganesh) Lecture 13 1 What have we covered so far? We have covered the front-end phases Lexical analysis (Lexer, regular expressions,...) Parsing (CFG, Top-down,

More information

Resource Usage Analysis

Resource Usage Analysis Resource Usage Analysis Atsushi Igarashi Department of Graphics and Computer Science Graduate School of Arts and Sciences University of Tokyo igarashi@graco.c.u-tokyo.ac.jp Naoki Kobayashi Department of

More information

Manual Allocation. CS 1622: Garbage Collection. Example 1. Memory Leaks. Example 3. Example 2 11/26/2012. Jonathan Misurda

Manual Allocation. CS 1622: Garbage Collection. Example 1. Memory Leaks. Example 3. Example 2 11/26/2012. Jonathan Misurda Manual llocation Dynamic memory allocation is an obvious necessity in a programming environment. S 1622: Garbage ollection Many programming languages expose some functions or keywords to manage runtime

More information

Dynamic Allocation in C

Dynamic Allocation in C Dynamic Allocation in C C Pointers and Arrays 1 The previous examples involved only targets that were declared as local variables. For serious development, we must also be able to create variables dynamically,

More information

Global Optimization. Lecture Outline. Global flow analysis. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization

Global Optimization. Lecture Outline. Global flow analysis. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization Lecture Outline Global Optimization Global flow analysis Global constant propagation Liveness analysis Compiler Design I (2011) 2 Local Optimization Recall the simple basic-block optimizations Constant

More information

Chapter 3: Processes. Operating System Concepts 8th Edition,

Chapter 3: Processes. Operating System Concepts 8th Edition, Chapter 3: Processes, Administrivia Friday: lab day. For Monday: Read Chapter 4. Written assignment due Wednesday, Feb. 25 see web site. 3.2 Outline What is a process? How is a process represented? Process

More information

Static Program Analysis

Static Program Analysis Static Program Analysis Thomas Noll Software Modeling and Verification Group RWTH Aachen University https://moves.rwth-aachen.de/teaching/ws-1617/spa/ Schedule of Lectures Jan 17/19: Interprocedural DFA

More information

Lecture 5: Declarative Programming. The Declarative Kernel Language Machine. September 12th, 2011

Lecture 5: Declarative Programming. The Declarative Kernel Language Machine. September 12th, 2011 Lecture 5: Declarative Programming. The Declarative Kernel Language Machine September 12th, 2011 1 Lecture Outline Declarative Programming contd Dataflow Variables contd Expressions and Statements Functions

More information

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT

C Review. MaxMSP Developers Workshop Summer 2009 CNMAT C Review MaxMSP Developers Workshop Summer 2009 CNMAT C Syntax Program control (loops, branches): Function calls Math: +, -, *, /, ++, -- Variables, types, structures, assignment Pointers and memory (***

More information

Meeting14:Denotations

Meeting14:Denotations Meeting14:Denotations Announcements Homework 3 due next week Friday at 6:00pm Reminder: 5-minute feedback discussion with Sean is part of the assignment ("interview light") Talk (with me, with the class

More information

Defining syntax using CFGs

Defining syntax using CFGs Defining syntax using CFGs Roadmap Last time Defined context-free grammar This time CFGs for specifying a language s syntax Language membership List grammars Resolving ambiguity CFG Review G = (N,Σ,P,S)

More information

CS 4110 Programming Languages & Logics. Lecture 27 Recursive Types

CS 4110 Programming Languages & Logics. Lecture 27 Recursive Types CS 4110 Programming Languages & Logics Lecture 27 Recursive Types 4 November 2016 Announcements 2 My office hours are at the normal time today but canceled on Monday Guest lecture by Seung Hee Han on Monday

More information

CSE 307: Principles of Programming Languages

CSE 307: Principles of Programming Languages CSE 307: Principles of Programming Languages Variables and Constants R. Sekar 1 / 22 Topics 2 / 22 Variables and Constants Variables are stored in memory, whereas constants need not be. Value of variables

More information

Thread Synchronization: Too Much Milk

Thread Synchronization: Too Much Milk Thread Synchronization: Too Much Milk 1 Implementing Critical Sections in Software Hard The following example will demonstrate the difficulty of providing mutual exclusion with memory reads and writes

More information

Last week. Data on the stack is allocated automatically when we do a function call, and removed when we return

Last week. Data on the stack is allocated automatically when we do a function call, and removed when we return Last week Data can be allocated on the stack or on the heap (aka dynamic memory) Data on the stack is allocated automatically when we do a function call, and removed when we return f() {... int table[len];...

More information

An Introduction to Heap Analysis. Pietro Ferrara. Chair of Programming Methodology ETH Zurich, Switzerland

An Introduction to Heap Analysis. Pietro Ferrara. Chair of Programming Methodology ETH Zurich, Switzerland An Introduction to Heap Analysis Pietro Ferrara Chair of Programming Methodology ETH Zurich, Switzerland Analisi e Verifica di Programmi Universita Ca Foscari, Venice, Italy Outline 1. Recall of numerical

More information

Handling Loops in Bounded Model Checking of C Programs via k-induction

Handling Loops in Bounded Model Checking of C Programs via k-induction Software Tools for Technology Transfer manuscript No. (will be inserted by the editor) Handling Loops in Bounded Model Checking of C Programs via k-induction Mikhail Y. R. Gadelha, Hussama I. Ismail, and

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

Heap, Variables, References, and Garbage. CS152. Chris Pollett. Oct. 13, 2008.

Heap, Variables, References, and Garbage. CS152. Chris Pollett. Oct. 13, 2008. Heap, Variables, References, and Garbage. CS152. Chris Pollett. Oct. 13, 2008. Outline. Dynamic Allocation. Variables and Constants. Aliases and Problems. Garbage. Introduction. On Wednesday, we were talking

More information

SYSC 2006 C Winter 2012

SYSC 2006 C Winter 2012 SYSC 2006 C Winter 2012 Pointers and Arrays Copyright D. Bailey, Systems and Computer Engineering, Carleton University updated Sept. 21, 2011, Oct.18, 2011,Oct. 28, 2011, Feb. 25, 2011 Memory Organization

More information

Class Information ANNOUCEMENTS

Class Information ANNOUCEMENTS Class Information ANNOUCEMENTS Third homework due TODAY at 11:59pm. Extension? First project has been posted, due Monday October 23, 11:59pm. Midterm exam: Friday, October 27, in class. Don t forget to

More information

Verifying Liveness Properties of ML Programs

Verifying Liveness Properties of ML Programs Verifying Liveness Properties of ML Programs M M Lester R P Neatherway C-H L Ong S J Ramsay Department of Computer Science, University of Oxford ACM SIGPLAN Workshop on ML, 2011 09 18 Gokigeny all! Motivation

More information

Heap Arrays. Steven R. Bagley

Heap Arrays. Steven R. Bagley Heap Arrays Steven R. Bagley Recap Data is stored in variables Can be accessed by the variable name Or in an array, accessed by name and index a[42] = 35; Variables and arrays have a type int, char, double,

More information

Dynamic Allocation of Memory

Dynamic Allocation of Memory Dynamic Allocation of Memory Lecture 4 Sections 10.9-10.10 Robb T. Koether Hampden-Sydney College Fri, Jan 25, 2013 Robb T. Koether (Hampden-Sydney College) Dynamic Allocation of Memory Fri, Jan 25, 2013

More information

CMSC 330: Organization of Programming Languages. Ownership, References, and Lifetimes in Rust

CMSC 330: Organization of Programming Languages. Ownership, References, and Lifetimes in Rust CMSC 330: Organization of Programming Languages Ownership, References, and Lifetimes in Rust CMSC330 Spring 2018 1 Memory: the Stack and the Heap The stack constant-time, automatic (de)allocation Data

More information

Lecture 6: The Declarative Kernel Language Machine. September 13th, 2011

Lecture 6: The Declarative Kernel Language Machine. September 13th, 2011 Lecture 6: The Declarative Kernel Language Machine September 13th, 2011 Lecture Outline Computations contd Execution of Non-Freezable Statements on the Abstract Machine The skip Statement The Sequential

More information

Process a program in execution; process execution must progress in sequential fashion. Operating Systems

Process a program in execution; process execution must progress in sequential fashion. Operating Systems Process Concept An operating system executes a variety of programs: Batch system jobs Time-shared systems user programs or tasks 1 Textbook uses the terms job and process almost interchangeably Process

More information

Safe Reactive Programming: the FunLoft Proposal

Safe Reactive Programming: the FunLoft Proposal Safe Reactive Programming: the FunLoft Proposal Frédéric Boussinot MIMOSA Project, Inria Sophia-Antipolis (Joint work with Frédéric Dabrowski) http://www.inria.fr/mimosa/rp With support from ALIDECS SYNCHRON

More information

Programmin Languages/Variables and Storage

Programmin Languages/Variables and Storage Programmin Languages/Variables and Storage Onur Tolga Şehitoğlu Computer Engineering 4 Mart 2007 Outline 1 Storage Array Variables 2 Semantics of Assignment 3 Variable Lifetime Global Lifetime Local Lifetime

More information

Reminder of the last lecture. Aliasing Issues: Call by reference, Pointer programs. Introducing Aliasing Issues. Home Work from previous lecture

Reminder of the last lecture. Aliasing Issues: Call by reference, Pointer programs. Introducing Aliasing Issues. Home Work from previous lecture Reminder of the last lecture Aliasing Issues: Call by reference, Pointer programs Claude Marché Cours MPRI 2-36-1 Preuve de Programme 18 janvier 2017 Additional features of the specification language Abstract

More information

CSE-505: Programming Languages. Lecture 20.5 Recursive Types. Zach Tatlock 2016

CSE-505: Programming Languages. Lecture 20.5 Recursive Types. Zach Tatlock 2016 CSE-505: Programming Languages Lecture 20.5 Recursive Types Zach Tatlock 2016 Where are we System F gave us type abstraction code reuse strong abstractions different from real languages (like ML), but

More information

Hierarchical Pointer Analysis for Distributed Programs

Hierarchical Pointer Analysis for Distributed Programs Hierarchical Pointer Analysis for Distributed Programs Amir Kamil Computer Science Division, University of California, Berkeley kamil@cs.berkeley.edu April 14, 2006 1 Introduction Many distributed, parallel

More information

Finding heap-bounds for hardware synthesis

Finding heap-bounds for hardware synthesis Finding heap-bounds for hardware synthesis B. Cook + A. Gupta # S. Magill* A. Rybalchenko # J. Simsa* S. Singh + V. Vafeiadis + *CMU # MPI-SWS + MSR Coding hardware in advanced languages Use of advanced

More information

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018

Object-oriented programming. and data-structures CS/ENGRD 2110 SUMMER 2018 Object-oriented programming 1 and data-structures CS/ENGRD 2110 SUMMER 2018 Lecture 1: Types and Control Flow http://courses.cs.cornell.edu/cs2110/2018su Lecture 1 Outline 2 Languages Overview Imperative

More information

CS 4110 Programming Languages & Logics. Lecture 28 Recursive Types

CS 4110 Programming Languages & Logics. Lecture 28 Recursive Types CS 4110 Programming Languages & Logics Lecture 28 Recursive Types 7 November 2014 Announcements 2 Foster office hours 11-12pm Guest lecture by Fran on Monday Recursive Types 3 Many languages support recursive

More information

Introduction to CBMC. Software Engineering Institute Carnegie Mellon University Pittsburgh, PA Arie Gurfinkel December 5, 2011

Introduction to CBMC. Software Engineering Institute Carnegie Mellon University Pittsburgh, PA Arie Gurfinkel December 5, 2011 Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213 December 5, 2011 based on slides by Daniel Kroening Bug Catching with SAT-Solvers Main Idea: Given a program and a claim use

More information

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12

Week 9 Part 1. Kyle Dewey. Tuesday, August 28, 12 Week 9 Part 1 Kyle Dewey Overview Dynamic allocation continued Heap versus stack Memory-related bugs Exam #2 Dynamic Allocation Recall... Dynamic memory allocation allows us to request memory on the fly

More information

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 19 Introduction to C++

CSE 374 Programming Concepts & Tools. Hal Perkins Fall 2015 Lecture 19 Introduction to C++ CSE 374 Programming Concepts & Tools Hal Perkins Fall 2015 Lecture 19 Introduction to C++ C++ C++ is an enormous language: All of C Classes and objects (kind of like Java, some crucial differences) Many

More information

Typing in-place update

Typing in-place update Typing in-place update David Aspinall Martin Hofmann LFCS Edinburgh Institut für Informatik Munich Motivation and background Goal: use in-place update rather than fresh creation of memory cells and GC

More information

CS-XXX: Graduate Programming Languages. Lecture 17 Recursive Types. Dan Grossman 2012

CS-XXX: Graduate Programming Languages. Lecture 17 Recursive Types. Dan Grossman 2012 CS-XXX: Graduate Programming Languages Lecture 17 Recursive Types Dan Grossman 2012 Where are we System F gave us type abstraction code reuse strong abstractions different from real languages (like ML),

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

MEMORY MANAGEMENT TEST-CASE GENERATION OF C PROGRAMS USING BOUNDED MODEL CHECKING

MEMORY MANAGEMENT TEST-CASE GENERATION OF C PROGRAMS USING BOUNDED MODEL CHECKING FEDERAL UNIVERSITY OF AMAZONAS INSTITUTE OF COMPUTING GRADUATE PROGRAM IN COMPUTER SCIENCE MEMORY MANAGEMENT TEST-CASE GENERATION OF C PROGRAMS USING BOUNDED MODEL CHECKING Herbert Rocha, Raimundo Barreto,

More information

Operational Semantics. One-Slide Summary. Lecture Outline

Operational Semantics. One-Slide Summary. Lecture Outline Operational Semantics #1 One-Slide Summary Operational semantics are a precise way of specifying how to evaluate a program. A formal semantics tells you what each expression means. Meaning depends on context:

More information

Dynamic Allocation in C

Dynamic Allocation in C Dynamic Allocation in C 1 The previous examples involved only targets that were declared as local variables. For serious development, we must also be able to create variables dynamically, as the program

More information

Dynamic Memory. Dynamic Memory Allocation Strings. September 18, 2017 Hassan Khosravi / Geoffrey Tien 1

Dynamic Memory. Dynamic Memory Allocation Strings. September 18, 2017 Hassan Khosravi / Geoffrey Tien 1 Dynamic Memory Dynamic Memory Allocation Strings September 18, 2017 Hassan Khosravi / Geoffrey Tien 1 Pointer arithmetic If we know the address of the first element of an array, we can compute the addresses

More information

Scheme in Scheme: The Metacircular Evaluator Eval and Apply

Scheme in Scheme: The Metacircular Evaluator Eval and Apply Scheme in Scheme: The Metacircular Evaluator Eval and Apply CS21b: Structure and Interpretation of Computer Programs Brandeis University Spring Term, 2015 The metacircular evaluator is A rendition of Scheme,

More information

Lecture #23: Conversion and Type Inference

Lecture #23: Conversion and Type Inference Lecture #23: Conversion and Type Inference Administrivia. Due date for Project #2 moved to midnight tonight. Midterm mean 20, median 21 (my expectation: 17.5). Last modified: Fri Oct 20 10:46:40 2006 CS164:

More information

Formal Verification Techniques for GPU Kernels Lecture 1

Formal Verification Techniques for GPU Kernels Lecture 1 École de Recherche: Semantics and Tools for Low-Level Concurrent Programming ENS Lyon Formal Verification Techniques for GPU Kernels Lecture 1 Alastair Donaldson Imperial College London www.doc.ic.ac.uk/~afd

More information

EL2310 Scientific Programming

EL2310 Scientific Programming Lecture 11: Structures and Memory (yaseminb@kth.se) Overview Overview Lecture 11: Structures and Memory Structures Continued Memory Allocation Lecture 11: Structures and Memory Structures Continued Memory

More information

https://lambda.mines.edu A pointer is a value that indicates location in memory. When we change the location the pointer points to, we say we assign the pointer a value. When we look at the data the pointer

More information

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = "Hello";

Conversion vs. Subtyping. Lecture #23: Conversion and Type Inference. Integer Conversions. Conversions: Implicit vs. Explicit. Object x = Hello; Lecture #23: Conversion and Type Inference Administrivia. Due date for Project #2 moved to midnight tonight. Midterm mean 20, median 21 (my expectation: 17.5). In Java, this is legal: Object x = "Hello";

More information

Lecture Outline. COOL operational semantics. Operational Semantics of Cool. Motivation. Lecture 13. Notation. The rules. Evaluation Rules So Far

Lecture Outline. COOL operational semantics. Operational Semantics of Cool. Motivation. Lecture 13. Notation. The rules. Evaluation Rules So Far Lecture Outline Operational Semantics of Cool Lecture 13 COOL operational semantics Motivation Notation The rules Prof. Aiken CS 143 Lecture 13 1 Prof. Aiken CS 143 Lecture 13 2 Motivation We must specify

More information

Chapter 13: Reference. Why reference Typing Evaluation Store Typings Safety Notes

Chapter 13: Reference. Why reference Typing Evaluation Store Typings Safety Notes Chapter 13: Reference Why reference Typing Evaluation Store Typings Safety Notes References Computational Effects Also known as side effects. A function or expression is said to have a side effect if,

More information

CSE341, Spring 2013, Final Examination June 13, 2013

CSE341, Spring 2013, Final Examination June 13, 2013 CSE341, Spring 2013, Final Examination June 13, 2013 Please do not turn the page until 8:30. Rules: The exam is closed-book, closed-note, except for both sides of one 8.5x11in piece of paper. Please stop

More information

Lecture 16: Static Semantics Overview 1

Lecture 16: Static Semantics Overview 1 Lecture 16: Static Semantics Overview 1 Lexical analysis Produces tokens Detects & eliminates illegal tokens Parsing Produces trees Detects & eliminates ill-formed parse trees Static semantic analysis

More information