Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008

Size: px
Start display at page:

Download "Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008"

Transcription

1 Math 202 Test Problem Solving, Sets, and Whole Numbers 19 September, 2008 Ten questions, each worth the same amount. Complete six of your choice. I will only grade the first six I see. Make sure your name is on the top of each page you return. Explain your reasoning for each problem whenever appropriate; that helps me give partial credit. Perform scratch work on scratch paper; keep your explanations clean. Make final answers obvious by boxing or circling them. nd remember to read and answer the entire question. 1 Problem solving: searching This problem is from G. Pólya s How to Solve It. mong Grandfather s papers a bill was found: 72 turkeys $ 67.9 The first and last digits of the number that obviously represented the total prive of those fowls are replaced here by blanks, for they have faded and are now illegible. What are the two faded digits and what was the price of one turkey? Explain your reasoning. Hint: The total is less than $500 and greater than $300. The price per turkey is not a whole number of dollars, but it is a whole number of cents. Structure your explanation according to Pólya s principles: understanding the problem, devising a plan, carrying out the plan, and looking back. 1.1 Solutions Understanding the problem We need a total number T such that T/72 is an integer number of pennies. From the hint, we know the first digit is either 3 or 4. nd the total (in pennies) must be a multiple of 72, an even number, so we can limit the final digit to one of 0, 2, 4, 6, or Devising a plan We could form a list. There are 10 possible combinations to try. In each line, we list the first and last digit, the total price, and the price per turkey. ny lines where the price per turkey is an integer number of pennies are possible solutions. 1

2 1.1.3 Carry out the plan First Last Total Total/ The only entry that produces an integer number of pennies is /72 = 5.11, so the price must have been $ The price per turkey is $ Looking back We can check the result easily, = In the longer expansion of T/72, some of the patterns look familiar. The decimal expansions eventually repeat a constant digit. This is the effect of dividing by 3 or 9, and both are factors of lternate method Looking back suggests another method for solving the problem. Let f and d be the first and last digits. Then the number of pennies in the total is P = 10000f + d = 1000(10f + 6) + d We need this number to be divisible by 8 and by 9. Note that 1000 is divisible by 8 already, so we need only that d be divisible by 8. We could form a smaller, five entry list to find d. Or we could note that (790 + d)/2 = d/2 must be a multiple of four, thus 95 + d/2 must be a multiple of four (the 300 portion already is divisible by 4), and d = 2. Now we have the number of pennies as P = 10000f and we must find an f such that P is divisible by 9. n integer is divisible by 9 if the sum of its digits are divisible by 9 (we will discuss this later in class). So f = f + 24 must be divisible by 9. This is true only when f = 3. Thus f = 3, d = 2, and the final price again is $ with the cost per turkey being $ Problem solving: finding and following dependencies You are watching the line form in front of a bank teller before the teller opens. The line forms and is served in order of arrival. 2

3 ill arrives 10 minutes after Joan. Robert held the door open for Morgan and thus arrived after Morgan. Chris rushed in the door shortly before Morgan and Robert arrived, and no one else arrived between Robert, Morgan, and Chris. Chris thankful to see only one person in line. ssuming that these are all the people who arrived, what is the order in which the people are served? Explain how you arrive at your answer. Structure your explanation according to Pólya s principles: understanding the problem, devising a plan, carrying out the plan, and looking back. 2.1 Solution Understanding the problem The problem is to place the five people ill, Joan, Robert, Morgan, and Chris in order of arrival. The arrivals are described in five statements; the third bullet point contains two statements. Most of the statements directly relate relative arrival times between people. Two are somewhat implicit: No one arrived between Robert, Morgan, and Chris. Only one person arrived before Chris. Chris appears in both these rules Devising a plan We try placing people in order by following the dependencies in the statements. Not all statements are explicit, and we will keep those statements in mind throughout. ecause Chris appears in the more implicit rules, we start by placing Chris. Others will be placed relative to Chris Carrying out the plan The first person to place is Chris. We know Chris arrived before Morgan and Robert and behind one unspecified person. The unspecified person must be one of the remaining two people, either ill or Joan. ut we know Joan was in line when ill arrived. ecause no one was served before the teller opened, Joan must have been first. From the last and first rules, we know that the line begins with Joan, and Chris. The rules relating Chris, Morgan, and Robert place Morgan and Robert after Chris. ecause Robert held the door open, Morgan was first. nd we know that Chris, Morgan, and Robert arrived without anyone else between them, so now we have 3

4 Joan, Chris, Morgan, and Robert. Only one person remains, ill. He arrived after Chris, because Chris saw only one person waiting. nd no one arrived between Chris, Morgan, and Robert, so ill must be last. The final arrival order is Joan, Chris, Morgan, Robert, and finally ill Looking back We can verify each statement in the problem against the ordering. The key here was keeping the implicit rules in mind and trying to make them concrete quickly. 3 Problem solving: patterns What is the units digit (last digit) of 3 25? Using the pattern found for 3 k, find the units digit of 9 25, 27 25, and 81 25? Remember that 9 = 3 2, 27 = 3 3, and 81 = 3 4. Now find the units digit of Given the units digit of 3 25 and 5 25, what is the units digit of 15 25? Explain your reasoning throughout. Structure your explanation according to Pólya s principles: understanding the problem, devising a plan, carrying out the plan, and looking back. 3.1 Solution Understanding the initial problem The multi-part problem has three components: finding the units digit of 3 25, 9 25 = 3 50, = 3 75, and = ; finding the units digit of 5 25 ; and finding the units digit of ecause 15 = 3 5, = , so the last portion will be answered by the two earlier pieces Devising a plan Remembering that we need track only the last digit, we can skip breaking this into multiple sub-problems. We simply make a table of units digits for powers of 3 and powers of 5. Then we find where 25, 50, 75, and 100 would be in the powers of 3, and where 25 would be in the powers of 5. Then we can multiply the units digits of 3 25 and 5 25 to obtain the units digit of

5 3.1.3 Carrying out the plan First we consider powers of 3: k units digit of 3 k The units digit of powers of 3 repeats every 4 entries. We can write 25 = , so 3 25 will have a units digit of 3. ecause 9 25 = 3 50 and 50 = , the units digit here is 9. nd = 3 75 with 75 = , so the units digit is 7. Finally = and 100 = , so the units digit is 1. Summarizing, 3 25 has a units digit of 3, 9 25 has a units digit of 9, has a units digit of 7, and has a units digit of 1.. The powers of five are much less complicated: k units digit of 5 k The units digit of 5 k is 5 when k 1, so 5 25 has a units digit of 5.. Now = , so we first multiply their units digits. That leaves 15, with its units digit of 5. So has units digit Looking back The result is difficult to check without modular arithmetic and a computer or calculator. ut we can at least check that makes sense by considering only the units digit. We already discussed that we need only the units digit, and we demonstrated that 5 k has a units digit of 5 for any k 1. So the result of 5 matches. nd notice that the powers of powers of three (3 25, 9 25, etc.) walked along the table. Note that powers multiply, so we multiply the expansion for 24 = by an integer k to see that k ( ) = (6k) 4 + k. So for 9 = 3 2, we look at the k = 2 line, 27 = 3 3 leads to the k = 3 line, and so on. 5

6 4 Set theory: definitions and relations nswer clearly: Write out the set {2x + 1 x J, 3 < x 2} by listing all its elements appropriately. Write the following set succinctly in set-builder notation: {7, 10, 13, 16, 19, 22}. Given two sets and, when is? Given two sets and, when is? What is a proper subset? What are two ways to write an empty set symbolically? Fill in each with the most appropriate relation (,,, =,, or no relation at all): 1 { } {x/3 x is a whole number less than five} for all sets 6 {1, 2, 3, 4, 5, 6} {x x is an odd number divisible by two} {6} {1, 2, 3, 4, 5, 6} {1, 2, 4, 8,..., 64} {1, 3, 9, 27,..., 729} Under what circumstances are each of the following true for sets and? = \ = for any set 4.1 Solutions nswers: { 3, 1, 1, 3, 5} {7 + 3x x J, 0 x 5} when all elements of are in. Logically, x x. when all elements of are in. Logically, x x. proper subset, here denoted, is one where but there is some x such that x /. Two expressions: {}, Relations: 1 {x/3 x is a whole number less than five}, because 3/3 = 1 and 3 < 5. { } for all sets. No relation at all. The set { } is not empty. 6

7 6 {1, 2, 3, 4, 5, 6} = {x x is an odd number divisible by two} {6} {1, 2, 3, 4, 5, 6} {1, 2, 4, 8,..., 64} {1, 3, 9, 27,..., 729} Conditions: = when. On the left-hand side, = {x x x }. We can write the right-hand side as = {x x }. So we need x to always be true when x is true, or x x. This is the subset relation. \ = when =. The left is \ = {x x x / }, and the right is just = {x x }. If the result has any entries, then it must have elements x such that x and x /. This is impossible, so the result must be empty. for any set when =. Here is a different way to think about the problem. If for any, then 1 and 2 for two specific sets. Then we must have ( 1 2 ). We could have picked any two sets as 1 and 2, including disjoint sets where 1 2 =. Thus, or =. 5 Set theory: operations and relations Define the result of the following operations using set-builder notation: \ ( \ ) C Draw two Venn diagrams for each of the following illustrating different ways and can be related (e.g. one is a subset of another, all sets are distinct, or other possibilities): \ ( \ C) ( \ C) 5.1 Solution = {x x or x } \ = {x x and x / } ( \ ) C = {x (x and x / ) or x C} 7

8 Two examples of : Two examples of \ : \ \ = Two examples of ( \ C) ( \ C): ( \ C) ( \ C) ( \ C) ( \ C) C C 6 Cardinalities and one-to-one mappings Let and be finite sets. Explain why. Explain why. If =, how are and related? Venn diagrams may be useful. Find a one-to-one correspondence between the following pairs of sets. The correspondence can be a listing if the sets are finite or an equation relating elements if the sets are infinite. = {1, 2, 4, 8,..., 64} and = {1, 3, 9, 27,..., 729} = {red, orange, yellow, green, blue, indigo, violet}, the traditional colors of the rainbow (roygbiv), and be the days of the week. 8

9 = {x x is an even positive integer} and = {x x is an odd positive integer} 6.1 Solution because removes elements and must be no larger than. because adds elements and must be no smaller than. If =, then =. If there were some element in but not in, then >. The same argument applies to elements in but not in. Thus there are no elements that are in one set but not the other, and the sets are equal. (Venn diagrams...) = {1, 2, 4, 8,..., 64} = {2 k k J, 0 j 6} and = {1, 3, 9, 27,..., 729} = {3 k k J, 0 j 6}. So a one-to-one correpondence maps 2 k to (and from) 3 k. One such mapping is red Monday, orange Tuesday, yellow Wednesday, green Thursday, blue Friday, indigo Saturday, and violet Sunday. Interestingly enough, Isaac Newton insisted on including violet in the standard rainbow colors so there would be seven colors. The mapping f(a) = a + 1 is a one-to-one mapping from to. This mapping has f 1 (b) = b 1 as its inverse mapping from to. 7 Properties of operations Is the union operation closed over all sets? Is subtraction closed over whole numbers? If either is not, provide an example. Define the commutative and associative properties for addition on whole numbers, and union of sets. Illustrate both properties for whole numbers with number lines. Define the distributive property for multiplication over addition for whole numbers, and 9

10 unions over intersections for sets. Illustrate the distributive property for sets with Venn diagrams. 7.1 Solutions The union is closed over sets, but subtraction is not closed over whole numbers. The subtraction 1 3 implies there is a number k such that 3 + k = 1. That number k cannot be a whole number. For addition of whole numbers, the commutative property states that a+b = b+a. The associative property states that (a + b) + c = a + (b + c). For the union of sets, the commutative property states that =. The associative property states that ( ) C = ( C). 8 Illustrating multiplication Illustrate the following properties using sketched areas or volumes: the commutative property, the associative property, the multiplicative identity, and the distributive property of multiplication over addition. Remember that a factor of an integer M is another integer d that cleanly divides into M. So 8 is a factor of 40 because 5 8 = 40. Using boxes of area 16, find all the factors of 16. Which property allows you to construct only some of the boxes? Using a box of area 15 and one of area one, illustrate 16 = Draw a similar illustration for 16 = q 7 + r where q and r are positive integers, and r is the smallest positive integer for which there is a q. You have just illustrated division with remainders. 8.1 Solutions (to draw...) 10

Matrices. A Matrix (This one has 2 Rows and 3 Columns) To add two matrices: add the numbers in the matching positions:

Matrices. A Matrix (This one has 2 Rows and 3 Columns) To add two matrices: add the numbers in the matching positions: Matrices A Matrix is an array of numbers: We talk about one matrix, or several matrices. There are many things we can do with them... Adding A Matrix (This one has 2 Rows and 3 Columns) To add two matrices:

More information

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton

Fundamental Mathematical Concepts Math 107A. Professor T. D. Hamilton Fundamental Mathematical Concepts Math 107A Professor T. D. Hamilton January 17, 2007 2 Contents 1 Set Theory 7 What is a set?.......................................... 7 Describing a Set.........................................

More information

Example: Which of the following expressions must be an even integer if x is an integer? a. x + 5

Example: Which of the following expressions must be an even integer if x is an integer? a. x + 5 8th Grade Honors Basic Operations Part 1 1 NUMBER DEFINITIONS UNDEFINED On the ACT, when something is divided by zero, it is considered undefined. For example, the expression a bc is undefined if either

More information

Objectives/Outcomes. Introduction: If we have a set "collection" of fruits : Banana, Apple and Grapes.

Objectives/Outcomes. Introduction: If we have a set collection of fruits : Banana, Apple and Grapes. 1 September 26 September One: Sets Introduction to Sets Define a set Introduction: If we have a set "collection" of fruits : Banana, Apple Grapes. 4 F={,, } Banana is member "an element" of the set F.

More information

Common Core State Standards Mathematics (Subset K-5 Counting and Cardinality, Operations and Algebraic Thinking, Number and Operations in Base 10)

Common Core State Standards Mathematics (Subset K-5 Counting and Cardinality, Operations and Algebraic Thinking, Number and Operations in Base 10) Kindergarten 1 Common Core State Standards Mathematics (Subset K-5 Counting and Cardinality,, Number and Operations in Base 10) Kindergarten Counting and Cardinality Know number names and the count sequence.

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

Problem One: A Quick Algebra Review

Problem One: A Quick Algebra Review CS103A Winter 2019 Solutions for Week One Handout 01S Problem One: A Quick Algebra Review In the first week of CS103, we'll be doing a few proofs that will require some algebraic manipulations and reasoning

More information

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Gateway Regional School District VERTICAL ALIGNMENT OF MATHEMATICS STANDARDS Grades 3-6

Gateway Regional School District VERTICAL ALIGNMENT OF MATHEMATICS STANDARDS Grades 3-6 NUMBER SENSE & OPERATIONS 3.N.1 Exhibit an understanding of the values of the digits in the base ten number system by reading, modeling, writing, comparing, and ordering whole numbers through 9,999. Our

More information

Chapter 5 DECIMAL NOTATION

Chapter 5 DECIMAL NOTATION Name: Instructor: Date: Section: Chapter 5 DECIMAL NOTATION 5.1 Decimal Notation, Order, and Rounding Learning Objectives A Given decimal notation, write a word name. B Convert between decimal notation

More information

Excerpt from "Art of Problem Solving Volume 1: the Basics" 2014 AoPS Inc.

Excerpt from Art of Problem Solving Volume 1: the Basics 2014 AoPS Inc. Chapter 5 Using the Integers In spite of their being a rather restricted class of numbers, the integers have a lot of interesting properties and uses. Math which involves the properties of integers is

More information

MAT 090 Brian Killough s Instructor Notes Strayer University

MAT 090 Brian Killough s Instructor Notes Strayer University MAT 090 Brian Killough s Instructor Notes Strayer University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Math 125 Little Book Homework Chapters 7, 10, 11, and 12

Math 125 Little Book Homework Chapters 7, 10, 11, and 12 Math 125 Little Book Homework Chapters 7, 10, 11, and 12 Do NOT copy the book follow the guidelines given for each section. NO CREDIT will be given if you copy the book! You earn 2 points if you turn in

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

More information

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set

Outline. CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets. Sets. Enumerating the elements of a set Outline CISC 1100/1400 Structures of Comp. Sci./Discrete Structures Chapter 1 Sets rthur G. Werschulz Fordham University Department of Computer and Information Sciences Copyright rthur G. Werschulz, 2017.

More information

FROM FRACTIONS TO DECIMALS (V2) WARM UP!

FROM FRACTIONS TO DECIMALS (V2) WARM UP! FROM FRACTIONS TO DECIMALS (V2) LAMC INTERMEDIATE GROUP - 10/06/13 WARM UP! The instructors have been noticing some strange coincidences. Determine whether each of the following observations were indeed

More information

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic

Chapter 3: Theory of Modular Arithmetic 1. Chapter 3: Theory of Modular Arithmetic Chapter 3: Theory of Modular Arithmetic 1 Chapter 3: Theory of Modular Arithmetic SECTION A Introduction to Congruences By the end of this section you will be able to deduce properties of large positive

More information

Math Circle Beginners Group October 18, 2015 Solutions

Math Circle Beginners Group October 18, 2015 Solutions Math Circle Beginners Group October 18, 2015 Solutions Warm-up problem 1. Let n be a (positive) integer. Prove that if n 2 is odd, then n is also odd. (Hint: Use a proof by contradiction.) Suppose that

More information

Senior Math Circles Cryptography and Number Theory Week 1

Senior Math Circles Cryptography and Number Theory Week 1 Senior Math Circles Cryptography and Number Theory Week 1 Dale Brydon Feb. 2, 2014 1 One-Time Pads Cryptography deals with the problem of encoding a message in such a way that only the intended recipient

More information

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

GUIDELINES FOR COMPLETING THE ASSIGNMENT

GUIDELINES FOR COMPLETING THE ASSIGNMENT RAHWAY HIGH SCHOOL MATHEMATICS DEPARTMENT Algebra 1 Summer Assignment packet Summer 2018 Due date: September 7th GUIDELINES FOR COMPLETING THE ASSIGNMENT This packet was created to help you succeed in

More information

Hillel Academy. Grade 9 Mathematics End of Year Study Guide September June 2013

Hillel Academy. Grade 9 Mathematics End of Year Study Guide September June 2013 Hillel Academy Grade 9 Mathematics End of Year Study Guide September 2012 - June 2013 Examination Duration Date The exam consists of 2 papers: Paper 1: Paper 2: Short Response No Calculators Allowed Structured

More information

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

Section 1.2 Fractions

Section 1.2 Fractions Objectives Section 1.2 Fractions Factor and prime factor natural numbers Recognize special fraction forms Multiply and divide fractions Build equivalent fractions Simplify fractions Add and subtract fractions

More information

Today s Topics. What is a set?

Today s Topics. What is a set? Today s Topics Introduction to set theory What is a set? Set notation Basic set operations What is a set? Definition: A set is an unordered collection of objects Examples: Sets can contain items of mixed

More information

Bulgarian Math Olympiads with a Challenge Twist

Bulgarian Math Olympiads with a Challenge Twist Bulgarian Math Olympiads with a Challenge Twist by Zvezdelina Stankova Berkeley Math Circle Beginners Group September 0, 03 Tasks throughout this session. Harder versions of problems from last time appear

More information

Gateway Regional School District VERTICAL ARTICULATION OF MATHEMATICS STANDARDS Grades K-4

Gateway Regional School District VERTICAL ARTICULATION OF MATHEMATICS STANDARDS Grades K-4 NUMBER SENSE & OPERATIONS K.N.1 Count by ones to at least 20. When you count, the last number word you say tells the number of items in the set. Counting a set of objects in a different order does not

More information

Counting. Andreas Klappenecker

Counting. Andreas Klappenecker Counting Andreas Klappenecker Counting k = 0; for(int i=1; i

More information

MATH 211 FINAL EXAM REVIEW PROBLEMS. c. Illustrating 12-7 for the take away concept of subtraction

MATH 211 FINAL EXAM REVIEW PROBLEMS. c. Illustrating 12-7 for the take away concept of subtraction MATH 211 FINAL EXAM REVIEW PROBLEMS 1. 32 4 in the sharing interpretation of division, base ten pieces 2. 32 4 in the measurement interpretation of division, base ten pieces 3. Write a short and simple

More information

following determine whether it is an element, subset or neither of A and

following determine whether it is an element, subset or neither of A and 1. Let A, B, and C be subsets of the universal set U. Draw Venn diagrams illustrating the following: First, we have a square representing the universe U and three circles, one for each of A, B and C. Each

More information

Math 6 Notes Unit One: Whole Numbers and Patterns

Math 6 Notes Unit One: Whole Numbers and Patterns Math 6 Notes Unit One: Whole Numbers and Patterns Whole Numbers The following is the set of numbers on the number line called whole numbers: {0, 1,, 3, 4, } All numbers in base 10 are made up of 10 digits:

More information

Grade 4 CCSS Pacing Guide: Math Expressions

Grade 4 CCSS Pacing Guide: Math Expressions Grade 4 CCSS Pacing Guide: Math Expressions Green : Areas of intensive focus, where students need fluent understanding and application of the core concepts (Approximately 70%) Blue : Rethinking and linking;

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

Encryption à la Mod Name

Encryption à la Mod Name Rock Around the Clock Part Encryption à la Mod Let s call the integers,, 3,, 5, and the mod 7 encryption numbers and define a new mod 7 multiplication operation, denoted by, in the following manner: a

More information

Section 1.1 Definitions and Properties

Section 1.1 Definitions and Properties Section 1.1 Definitions and Properties Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Abbreviate repeated addition using Exponents and Square

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

Pre-Algebra Notes Unit Five: Rational Numbers and Equations

Pre-Algebra Notes Unit Five: Rational Numbers and Equations Pre-Algebra Notes Unit Five: Rational Numbers and Equations Rational Numbers Rational numbers are numbers that can be written as a quotient of two integers. Since decimals are special fractions, all the

More information

Lab 2: Structured Program Development in C

Lab 2: Structured Program Development in C Lab 2: Structured Program Development in C (Part A: Your first C programs - integers, arithmetic, decision making, Part B: basic problem-solving techniques, formulating algorithms) Learning Objectives

More information

Example 2: Simplify each of the following. Round your answer to the nearest hundredth. a

Example 2: Simplify each of the following. Round your answer to the nearest hundredth. a Section 5.4 Division with Decimals 1. Dividing by a Whole Number: To divide a decimal number by a whole number Divide as you would if the decimal point was not there. If the decimal number has digits after

More information

Name Period Date. REAL NUMBER SYSTEM Student Pages for Packet 3: Operations with Real Numbers

Name Period Date. REAL NUMBER SYSTEM Student Pages for Packet 3: Operations with Real Numbers Name Period Date REAL NUMBER SYSTEM Student Pages for Packet : Operations with Real Numbers RNS. Rational Numbers Review concepts of experimental and theoretical probability. a Understand why all quotients

More information

Combinatorics Prof. Dr. L. Sunil Chandran Department of Computer Science and Automation Indian Institute of Science, Bangalore

Combinatorics Prof. Dr. L. Sunil Chandran Department of Computer Science and Automation Indian Institute of Science, Bangalore Combinatorics Prof. Dr. L. Sunil Chandran Department of Computer Science and Automation Indian Institute of Science, Bangalore Lecture - 5 Elementary concepts and basic counting principles So, welcome

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Solutions to Homework 10

Solutions to Homework 10 CS/Math 240: Intro to Discrete Math 5/3/20 Instructor: Dieter van Melkebeek Solutions to Homework 0 Problem There were five different languages in Problem 4 of Homework 9. The Language D 0 Recall that

More information

Vocabulary: Bits and Pieces III

Vocabulary: Bits and Pieces III Vocabulary: Bits and Pieces III Concept Example Meaning of decimal There are two ways to think of a decimal: As a number whose value is signaled by place value, or as a representation of a fraction.. 43

More information

Cardinality of Sets. Washington University Math Circle 10/30/2016

Cardinality of Sets. Washington University Math Circle 10/30/2016 Cardinality of Sets Washington University Math Circle 0/0/06 The cardinality of a finite set A is just the number of elements of A, denoted by A. For example, A = {a, b, c, d}, B = {n Z : n } = {,,, 0,,,

More information

Unit 3: Multiplication and Division Reference Guide pages x 7 = 392 factors: 56, 7 product 392

Unit 3: Multiplication and Division Reference Guide pages x 7 = 392 factors: 56, 7 product 392 Lesson 1: Multiplying Integers and Decimals, part 1 factor: any two or more numbers multiplied to form a product 56 x 7 = 392 factors: 56, 7 product 392 Integers: all positive and negative whole numbers

More information

It is important that you show your work. There are 134 points available on this test.

It is important that you show your work. There are 134 points available on this test. Math 1165 Discrete Math Test April 4, 001 Your name It is important that you show your work There are 134 points available on this test 1 (10 points) Show how to tile the punctured chess boards below with

More information

Topic 2: Decimals. Topic 1 Integers. Topic 2 Decimals. Topic 3 Fractions. Topic 4 Ratios. Topic 5 Percentages. Topic 6 Algebra

Topic 2: Decimals. Topic 1 Integers. Topic 2 Decimals. Topic 3 Fractions. Topic 4 Ratios. Topic 5 Percentages. Topic 6 Algebra 41 Topic 2: Decimals Topic 1 Integers Topic 2 Decimals Topic 3 Fractions Topic 4 Ratios Duration 1/2 week Content Outline Introduction Addition and Subtraction Multiplying and Dividing by Multiples of

More information

Coached Instruction Supplement

Coached Instruction Supplement Practice Coach PLUS Coached Instruction Supplement Mathematics 5 Practice Coach PLUS, Coached Instruction Supplement, Mathematics, Grade 5 676NASP Triumph Learning Triumph Learning, LLC. All rights reserved.

More information

a b c d a b c d e 5 e 7

a b c d a b c d e 5 e 7 COMPSCI 230 Homework 9 Due on April 5, 2016 Work on this assignment either alone or in pairs. You may work with different partners on different assignments, but you can only have up to one partner for

More information

Math Week in Review #5

Math Week in Review #5 Math 141 Spring 2006 c Heather Ramsey Page 1 Math 141 - Week in Review #5 Section 4.1 - Simplex Method for Standard Maximization Problems A standard maximization problem is a linear programming problem

More information

Solution: It may be helpful to list out exactly what is in each of these events:

Solution: It may be helpful to list out exactly what is in each of these events: MATH 5010(002) Fall 2017 Homework 1 Solutions Please inform your instructor if you find any errors in the solutions. 1. You ask a friend to choose an integer N between 0 and 9. Let A = {N 5}, B = {3 N

More information

Modular Arithmetic. Marizza Bailey. December 14, 2015

Modular Arithmetic. Marizza Bailey. December 14, 2015 Modular Arithmetic Marizza Bailey December 14, 2015 Introduction to Modular Arithmetic If someone asks you what day it is 145 days from now, what would you answer? Would you count 145 days, or find a quicker

More information

Number Sense. I CAN DO THIS! Third Grade Mathematics Name. Problems or Examples. 1.1 I can count, read, and write whole numbers to 10,000.

Number Sense. I CAN DO THIS! Third Grade Mathematics Name. Problems or Examples. 1.1 I can count, read, and write whole numbers to 10,000. Number Sense 1.1 I can count, read, and write whole numbers to 10,000. 1.2 I can compare and order numbers to 10,000. What is the smallest whole number you can make using the digits 4, 3, 9, and 1? Use

More information

EC121 Mathematical Techniques A Revision Notes

EC121 Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes Mathematical Techniques A begins with two weeks of intensive revision of basic arithmetic and algebra, to the level

More information

MATH STUDENT BOOK. 11th Grade Unit 1

MATH STUDENT BOOK. 11th Grade Unit 1 MATH STUDENT BOOK 11th Grade Unit 1 Unit 1 SETS, STRUCTURE, AND FUNCTIONS MATH 1101 SETS, STRUCTURE, AND FUNCTIONS INTRODUCTION 3 1. SETS 5 PROPERTIES 5 OPERATIONS 8 SELF TEST 1 11 2. STRUCTURE 12 AXIOMS

More information

Anadarko Public Schools MATH Power Standards

Anadarko Public Schools MATH Power Standards Anadarko Public Schools MATH Power Standards Kindergarten 1. Say the number name sequence forward and backward beginning from a given number within the known sequence (counting on, spiral) 2. Write numbers

More information

1.1 Count, read, and write whole numbers to

1.1 Count, read, and write whole numbers to Correlation of Moving with Math Foundations-by-Topic Grade 3 To California Standards NUMBER SENSE 1.0 Students understand the place value of whole numbers: 1.1 Count, read, and write whole numbers to 10,000.

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

To add or subtract, just add or subtract the numbers in the same column and row and place answer accordingly.

To add or subtract, just add or subtract the numbers in the same column and row and place answer accordingly. Math 3 Variable Manipulation Part 2 Systems with Matrices MATRICES An alternative method to solving system of equations is using Matrices. However, before we can solve systems of equations using matrices,

More information

Error-Correcting Codes

Error-Correcting Codes Error-Correcting Codes Michael Mo 10770518 6 February 2016 Abstract An introduction to error-correcting codes will be given by discussing a class of error-correcting codes, called linear block codes. The

More information

Lesson 9: Decimal Expansions of Fractions, Part 1

Lesson 9: Decimal Expansions of Fractions, Part 1 Classwork Opening Exercises 1 2 1. a. We know that the fraction can be written as a finite decimal because its denominator is a product of 2 s. Which power of 10 will allow us to easily write the fraction

More information

FRACTIONS. Printable Review Problems. Kristine Nannini

FRACTIONS. Printable Review Problems. Kristine Nannini FRACTIONS Printable Review Problems Standards Included: 4.NF.1- Explain why a fraction a/b is equivalent to a fraction (n a)/(n b) by using visual fraction models, with attention to how the number and

More information

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties Chapter 3: Arithmetic Properties CHAPTER 3: ARITHMETIC PROPERTIES Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 3: Arithmetic Properties Date: Lesson: Learning Log Title:

More information

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus)

Math 302 Introduction to Proofs via Number Theory. Robert Jewett (with small modifications by B. Ćurgus) Math 30 Introduction to Proofs via Number Theory Robert Jewett (with small modifications by B. Ćurgus) March 30, 009 Contents 1 The Integers 3 1.1 Axioms of Z...................................... 3 1.

More information

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology. Scotland T 3. Matrices. Teachers Teaching with Technology (Scotland)

Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology. Scotland T 3. Matrices. Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology (Scotland) Teachers Teaching with Technology T 3 Scotland Matrices Teachers Teaching with Technology (Scotland) MATRICES Aim To demonstrate how the TI-83 can be used to

More information

Pre-Algebra Notes Unit Five: Rational Numbers and Equations

Pre-Algebra Notes Unit Five: Rational Numbers and Equations Pre-Algebra Notes Unit Five: Rational Numbers and Equations Rational Numbers Rational numbers are numbers that can be written as a quotient of two integers. Since decimals are special fractions, all the

More information

4 th Grade Summer Mathematics Review #1. Name: 1. How many sides does each polygon have? 2. What is the rule for this function machine?

4 th Grade Summer Mathematics Review #1. Name: 1. How many sides does each polygon have? 2. What is the rule for this function machine? . How many sides does each polygon have? th Grade Summer Mathematics Review #. What is the rule for this function machine? A. Pentagon B. Nonagon C. Octagon D. Quadrilateral. List all of the factors of

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

MAT 003 Brian Killough s Instructor Notes Saint Leo University

MAT 003 Brian Killough s Instructor Notes Saint Leo University MAT 003 Brian Killough s Instructor Notes Saint Leo University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Examination Duration Date

Examination Duration Date Hillel Academy High School Grade 9 Mathematics End of Year Study Guide September2013- June 2014 Examination Duration Date The exam consists of 2 papers: Paper 1: Short Response Calculator Paper 2:Structured

More information

MATH STUDENT BOOK. 6th Grade Unit 3

MATH STUDENT BOOK. 6th Grade Unit 3 MATH STUDENT BOOK 6th Grade Unit 3 Unit 3 Decimals MATH 603 Decimals INTRODUCTION 3 1. DECIMAL NUMBERS 5 DECIMALS AND PLACE VALUE 6 ORDERING AND COMPARING 12 ROUNDING AND ESTIMATING 16 ADDING AND SUBTRACTING

More information

Course Outlines. Elementary Mathematics (Grades K-5) Kids and Numbers (Recommended for K-1 students)

Course Outlines. Elementary Mathematics (Grades K-5) Kids and Numbers (Recommended for K-1 students) Course Outlines Elementary Mathematics (Grades K-5) Kids and Numbers (Recommended for K-1 students) Shapes and Patterns. Grouping objects by similar properties. Identifying simple figures within a complex

More information

GRADE 7 MATH LEARNING GUIDE

GRADE 7 MATH LEARNING GUIDE GRADE 7 MATH Lesson 9: Properties of the Operations on Rational Numbers Time:.5 hours Pre-requisite Concepts: Operations on rational numbers About the Lesson: The purpose of this lesson is to use properties

More information

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy.

Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy. Math 340 Fall 2014, Victor Matveev Binary system, round-off errors, loss of significance, and double precision accuracy. 1. Bits and the binary number system A bit is one digit in a binary representation

More information

6.001 Notes: Section 8.1

6.001 Notes: Section 8.1 6.001 Notes: Section 8.1 Slide 8.1.1 In this lecture we are going to introduce a new data type, specifically to deal with symbols. This may sound a bit odd, but if you step back, you may realize that everything

More information

Chapter 1: Number and Operations

Chapter 1: Number and Operations Chapter 1: Number and Operations 1.1 Order of operations When simplifying algebraic expressions we use the following order: 1. Perform operations within a parenthesis. 2. Evaluate exponents. 3. Multiply

More information

1. Let n be a positive number. a. When we divide a decimal number, n, by 10, how are the numeral and the quotient related?

1. Let n be a positive number. a. When we divide a decimal number, n, by 10, how are the numeral and the quotient related? Black Converting between Fractions and Decimals Unit Number Patterns and Fractions. Let n be a positive number. When we divide a decimal number, n, by 0, how are the numeral and the quotient related?.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Write a description of the set. 1) {January, February, March, April, May, June, July, August,

More information

HOW TO DIVIDE: MCC6.NS.2 Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE

HOW TO DIVIDE: MCC6.NS.2 Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE MCC6.NS. Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE Dividend A number that is divided by another number. Divisor A number by which another number

More information

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers Real Numbers We have been studying integer arithmetic up to this point. We have discovered that a standard computer can represent a finite subset of the infinite set of integers. The range is determined

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

Lesson 13: Exploring Factored Form

Lesson 13: Exploring Factored Form Opening Activity Below is a graph of the equation y = 6(x 3)(x + 2). It is also the graph of: y = 3(2x 6)(x + 2) y = 2(3x 9)(x + 2) y = 2(x 3)(3x + 6) y = 3(x 3)(2x + 4) y = (3x 9)(2x + 4) y = (2x 6)(3x

More information

AQA Decision 1 Algorithms. Section 1: Communicating an algorithm

AQA Decision 1 Algorithms. Section 1: Communicating an algorithm AQA Decision 1 Algorithms Section 1: Communicating an algorithm Notes and Examples These notes contain subsections on Flow charts Pseudo code Loops in algorithms Programs for the TI-83 graphical calculator

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information

The Size of the Cantor Set

The Size of the Cantor Set The Size of the Cantor Set Washington University Math Circle November 6, 2016 In mathematics, a set is a collection of things called elements. For example, {1, 2, 3, 4}, {a,b,c,...,z}, and {cat, dog, chicken}

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology A is a collection of objects or things. The objects belonging to the are called the, or. - : there is a way of determining for sure whether a particular item is an element of

More information

Cantor s Diagonal Argument for Different Levels of Infinity

Cantor s Diagonal Argument for Different Levels of Infinity JANUARY 2015 1 Cantor s Diagonal Argument for Different Levels of Infinity Michael J. Neely University of Southern California http://www-bcf.usc.edu/ mjneely Abstract These notes develop the classic Cantor

More information

Mississippi College and Career Readiness Standards for Mathematics Scaffolding Document. Grade 2

Mississippi College and Career Readiness Standards for Mathematics Scaffolding Document. Grade 2 Mississippi College and Career Readiness Standards for Mathematics Scaffolding Document Grade 2 Operations and Algebraic Thinking Represent and solve problems involving addition and subtraction 2.OA.1

More information

Formative Benchmark 1

Formative Benchmark 1 Key Tested Formative Benchmark 1 November 213-20, 2013 Section 1: Lessons 1-10 Number Sentences, Show Data through Graphs, Repeating Patterns with Colors, Shapes and Letters Section 2: Lessons 11-20 Fractions

More information

Definition. A set is a collection of objects. The objects in a set are elements.

Definition. A set is a collection of objects. The objects in a set are elements. Section 1.1: Sets Definition A set is a collection of objects. The objects in a set are elements. Definition A set is a collection of objects. The objects in a set are elements. Examples: {1, cat, ψ} (Sets

More information