Turing Machine as Transducer. Turing Machines. Computation with Turing Machines. Computation with Turing Machines. Computation with Turing Machines

Size: px
Start display at page:

Download "Turing Machine as Transducer. Turing Machines. Computation with Turing Machines. Computation with Turing Machines. Computation with Turing Machines"

Transcription

1 Turing Machine as Transducer Turing Computation and programming Transducer -- any device that converts a signal from one form to another Turning machine Converts input to output Start with string on the tape After acceptance string left on the tape Computing functions with TMs The result of the function applied to an input string x, will be left on the tape when the machine accepts. Functions with multiple arguments can be placed on the input tape with arguments separated by some character. Turing s original use of his machine was to calculate integer valued functions. Integers were represented in unary as blocks of a single symbol. Example would represent would represent 4 In our text 1s are used as the unary symbol 0s are used to separate arguments Computing functions with TMs Formally, Let M = (Q, Σ, Γ, δ, q 0,, F) be a TM and let f be a partial function on Σ *. We say T computes f (or f is Turing-computable) if for every x Σ * where f is defined: q 0 x a * pf(x) Where p F And for every other x, T rejects on input x. Computing functions with TMs Formally (with multiple arguments) Let M = (Q, Σ, Γ, δ, q 0,, F) be a TM and let f be a partial function on (Σ*) k. We say T computes f (or f is Turing-computable) if for every (x 1, x 2., x k ) where f is defined: q 0 x 1 0x 2 0x k a * pf(x 1, x 2., x k ) Where p F And for every other k-tuple, T rejects on input x. 1

2 Example Addition x + y Create a machine that will perform the computation q 0 1 x 01 y a * p1 x 1 y Where p F Example Addition x + y q 0 1 x 01 y a * p1 x 1 y Basic idea: Simply remove the 0 between the two sets of ones. Read all 1s up to 1st 0 Replace 0 with 1 Remove last 1 Example Addition (JFLAP) Another example Copy routine Copies its input and concatenates a copy of itself on the tape q 0 1 x a * p1 x 1 x Another example copy routine Basic idea: count number of 1 s by replacing with X Go back and re-read all Xs and as you re-read each X, add a 1 to the end of the tape. Repeat until all Xs are converted back to 1s Another example copy routine 2

3 One more example One more example A simple if statement Create a TM that will accept in one state if a condition is true (e.g. x y) and another if the condition is false. q 0 1 x 01 y a * p1 x 01 y if x > y q 0 1 x 01 y a * r1 x 01 y if x y Note that contents of tape is the same after computation. Simple if statement Basic idea: similar to 0 i 1 i example Match 1 s before 0 with 1 s after. Will either exhaust all initial 1s or trailing 1 s. Go to target state based on cases above MUST return tape to initial input when done. If statement Reality check Turing Machine as transducer Converts input to output Turing-Computable functions Combining Turing Suppose an algorithm has a number of tasks to perform Each task has its own TM Much like subroutines or functions They can be combined into a single TM T 1 T 2 is the composite TM T 1 T 2 Combining Turing Composite TMs T 1 T 2 Start at start state of T 1 For any move that causes T 1 to enter the halt state, have T 1 move to the start state of T 2. So T 2 will get executed immediately after T 1 as long as T 1 will halt on a given input. Allows one to define subroutines. 3

4 TMs and subroutines Each TM subroutine must define Start state The final state (with conditions) Contents of tape after acceptance Position of tape head after acceptance TMs and subroutines Example " f (x, y) = # x + y if x > y $ 0 otherwise TMs and subroutines Now we have TMs for doing the following Logical compare of x with y Addition of x with y We could easily write one: Erasing all 1s TM and Subroutines The Eraser TM building blocks " f (x, y) = # x + y if x > y $ 0 otherwise TM and subroutines Modified if 4

5 Building TM from blocks Example L = { xx x { a, b } * } Basic idea Find and mark the middle of the string Compare characters starting from the start of the string with characters starting from the middle of the string. Example L = { xx x { a, b } * } Three subroutines Find and mark the middle of the string Convert the 1 st half of the string back to lower case. Match and compare Example L = { xx x { a, b } * } Finding the middle of the string Convert first character to it s upper case equiv. Move all the way to the right to the last lower case character and change it to upper case. Move all the way back left to the first lower case character and change it to upper case And so on. Example L = { xx x { a, b } * } Finding the middle of the string Start with tape head at first symbol on tape End with tape head at the last character of the 1st half of string Will reject if string is not even. Middle 5

6 Once you ve found the middle, Convert the 1 st half of the string back to lower case. Start from current tape position and change read backwards to end converting characters along the way. Leaves tape at start of input when done. Tolower Once you ve found the middle and converted to lower case Start from the left of the tape Match lower case chars in 1 st half with upper case chars in the 2 nd. Replace a matched upper case char with blanks Repeat until only 1st half remains Assumes string of form lluu Match The routine will leave the repeated string on the tape Questions? Putting it together 6

7 Summary Turing Computation on TMs Subroutines To come Next time: TM Variants Languages associated with TMs. Questions 7

CS 125 Section #4 RAMs and TMs 9/27/16

CS 125 Section #4 RAMs and TMs 9/27/16 CS 125 Section #4 RAMs and TMs 9/27/16 1 RAM A word-ram consists of: A fixed set of instructions P 1,..., P q. Allowed instructions are: Modular arithmetic and integer division on registers; the standard

More information

Closure Properties of CFLs; Introducing TMs. CS154 Chris Pollett Apr 9, 2007.

Closure Properties of CFLs; Introducing TMs. CS154 Chris Pollett Apr 9, 2007. Closure Properties of CFLs; Introducing TMs CS154 Chris Pollett Apr 9, 2007. Outline Closure Properties of Context Free Languages Algorithms for CFLs Introducing Turing Machines Closure Properties of CFL

More information

Turing Machines. A transducer is a finite state machine (FST) whose output is a string and not just accept or reject.

Turing Machines. A transducer is a finite state machine (FST) whose output is a string and not just accept or reject. Turing Machines Transducers: A transducer is a finite state machine (FST) whose output is a string and not just accept or reject. Each transition of an FST is labeled with two symbols, one designating

More information

Lecture 7: Primitive Recursion is Turing Computable. Michael Beeson

Lecture 7: Primitive Recursion is Turing Computable. Michael Beeson Lecture 7: Primitive Recursion is Turing Computable Michael Beeson Closure under composition Let f and g be Turing computable. Let h(x) = f(g(x)). Then h is Turing computable. Similarly if h(x) = f(g 1

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Fall 2016 http://cseweb.ucsd.edu/classes/fa16/cse105-abc/ Today's learning goals Sipser sec 3.2 Describe several variants of Turing machines and informally explain why they

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation CISC 4090 Theory of Computation Turing machines Professor Daniel Leeds dleeds@fordham.edu JMH 332 Alan Turing (1912-1954) Father of Theoretical Computer Science Key figure in Artificial Intelligence Codebreaker

More information

Variants of Turing Machines

Variants of Turing Machines November 4, 2013 Robustness Robustness Robustness of a mathematical object (such as proof, definition, algorithm, method, etc.) is measured by its invariance to certain changes Robustness Robustness of

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 9 January 26, 2018 Outline Turing Machines and variants multitape TMs nondeterministic TMs Church-Turing Thesis decidable, RE, co-re languages Deciding and Recognizing

More information

Recursively Enumerable Languages, Turing Machines, and Decidability

Recursively Enumerable Languages, Turing Machines, and Decidability Recursively Enumerable Languages, Turing Machines, and Decidability 1 Problem Reduction: Basic Concepts and Analogies The concept of problem reduction is simple at a high level. You simply take an algorithm

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2016 http://cseweb.ucsd.edu/classes/sp16/cse105-ab/ Today's learning goals Sipser Ch 3.2, 3.3 Define variants of TMs Enumerators Multi-tape TMs Nondeterministic TMs

More information

CSE 105 THEORY OF COMPUTATION

CSE 105 THEORY OF COMPUTATION CSE 105 THEORY OF COMPUTATION Spring 2017 http://cseweb.ucsd.edu/classes/sp17/cse105-ab/ Today's learning goals Sipser Ch 2, 3.1 State and use the Church-Turing thesis. Describe several variants of Turing

More information

pp Variants of Turing Machines (Sec. 3.2)

pp Variants of Turing Machines (Sec. 3.2) pp. 176-176-182. Variants of Turing Machines (Sec. 3.2) Remember: a language is Turing recognizable if some TM accepts it. Adding features may simplify programmability but DO NOT affect what a TM can compute.

More information

TAFL 1 (ECS-403) Unit- V. 5.1 Turing Machine. 5.2 TM as computer of Integer Function

TAFL 1 (ECS-403) Unit- V. 5.1 Turing Machine. 5.2 TM as computer of Integer Function TAFL 1 (ECS-403) Unit- V 5.1 Turing Machine 5.2 TM as computer of Integer Function 5.2.1 Simulating Turing Machine by Computer 5.2.2 Simulating Computer by Turing Machine 5.3 Universal Turing Machine 5.4

More information

CSCI 3130: Formal Languages and Automata Theory Lecture 16 The Chinese University of Hong Kong, Fall 2010

CSCI 3130: Formal Languages and Automata Theory Lecture 16 The Chinese University of Hong Kong, Fall 2010 CSCI 3130: Formal Languages and Automata Theory Lecture 16 The Chinese University of Hong Kong, Fall 2010 Andrej Bogdanov The Church-Turing thesis states that the Turing Machine is as capable as any realistic

More information

Actually talking about Turing machines this time

Actually talking about Turing machines this time Actually talking about Turing machines this time 10/25/17 (Using slides adapted from the book) Administrivia HW due now (Pumping lemma for context-free languages) HW due Friday (Building TMs) Exam 2 out

More information

Turing Machine Languages

Turing Machine Languages Turing Machine Languages Based on Chapters 23-24-25 of (Cohen 1997) Introduction A language L over alphabet is called recursively enumerable (r.e.) if there is a Turing Machine T that accepts every word

More information

Storage capacity of labeled graphs

Storage capacity of labeled graphs Dana Angluin 1 James Aspnes 1 Rida A. Bazzi 2 Jiang Chen 3 David Eisenstat 4 Goran Konjevod 2 1 Department of Computer Science, Yale University 2 Department of Computer Science and Engineering, Arizona

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Lecture 15 Ana Bove May 23rd 2016 More on Turing machines; Summary of the course. Overview of today s lecture: Recap: PDA, TM Push-down

More information

ECS 120 Lesson 16 Turing Machines, Pt. 2

ECS 120 Lesson 16 Turing Machines, Pt. 2 ECS 120 Lesson 16 Turing Machines, Pt. 2 Oliver Kreylos Friday, May 4th, 2001 In the last lesson, we looked at Turing Machines, their differences to finite state machines and pushdown automata, and their

More information

CpSc 421 Final Solutions

CpSc 421 Final Solutions CpSc 421 Final Solutions Do any eight of the ten problems below. If you attempt more than eight problems, please indicate which ones to grade (otherwise we will make a random choice). This allows you to

More information

Computability via Recursive Functions

Computability via Recursive Functions Computability via Recursive Functions Church s Thesis All effective computational systems are equivalent! To illustrate this point we will present the material from chapter 4 using the partial recursive

More information

Theory of Computation, Homework 3 Sample Solution

Theory of Computation, Homework 3 Sample Solution Theory of Computation, Homework 3 Sample Solution 3.8 b.) The following machine M will do: M = "On input string : 1. Scan the tape and mark the first 1 which has not been marked. If no unmarked 1 is found,

More information

Enumerations and Turing Machines

Enumerations and Turing Machines Enumerations and Turing Machines Mridul Aanjaneya Stanford University August 07, 2012 Mridul Aanjaneya Automata Theory 1/ 35 Finite Sets Intuitively, a finite set is a set for which there is a particular

More information

SECTION A (40 marks)

SECTION A (40 marks) OLLSCOIL NA héireann, MÁ NUAD NATIONAL UNIVERSITY OF IRELAND, MAYNOOTH THIRD COMPUTER SCIENCE AND SOFTWARE ENGINEERING EXAMINATION FEBRUARY 2002 PAPER SE307 COMPUTATION AND COMPLEXITY THEORY Dr. P. Stevens,

More information

Theory of Languages and Automata

Theory of Languages and Automata Theory of Languages and Automata Chapter 3- The Church-Turing Thesis Sharif University of Technology Turing Machine O Several models of computing devices Finite automata Pushdown automata O Tasks that

More information

CS 44 Exam #2 February 14, 2001

CS 44 Exam #2 February 14, 2001 CS 44 Exam #2 February 14, 2001 Name Time Started: Time Finished: Each question is equally weighted. You may omit two questions, but you must answer #8, and you can only omit one of #6 or #7. Circle the

More information

Outline. Language Hierarchy

Outline. Language Hierarchy Outline Language Hierarchy Definition of Turing Machine TM Variants and Equivalence Decidability Reducibility Language Hierarchy Regular: finite memory CFG/PDA: infinite memory but in stack space TM: infinite

More information

More Simulations. CS154 Chris Pollett Apr 25, 2007.

More Simulations. CS154 Chris Pollett Apr 25, 2007. More Simulations CS154 Chris Pollett Apr 25, 2007. Outline Multi-tape Turing Machines RAMS k-tape Turing Machine One way you might try to improve the power of a TM is to allow multiple tapes. Definition

More information

I have read and understand all of the instructions below, and I will obey the Academic Honor Code.

I have read and understand all of the instructions below, and I will obey the Academic Honor Code. Midterm Exam CS 341-451: Foundations of Computer Science II Fall 2014, elearning section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand all

More information

Does this program exist? Limits of computability. Does this program exist? A helper function. For example, if the string program is

Does this program exist? Limits of computability. Does this program exist? A helper function. For example, if the string program is Does this program exist? For example, if the string program is Limits of computability public void abc(string s) { if( s == "abc" ) { print "Hello world!"; } else { print "Whatever"; }} then test called

More information

14.1 Encoding for different models of computation

14.1 Encoding for different models of computation Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

More information

CSC-461 Exam #2 April 16, 2014

CSC-461 Exam #2 April 16, 2014 Pledge: On my honor, I pledge that I have not discussed any of the questions on this exam with fellow students, nor will I until after 7 p.m. tonight. Signed: CSC-461 Exam #2 April 16, 2014 Name Time Started:

More information

Computability and Complexity

Computability and Complexity Computability and Complexity Turing Machines CAS 705 Ryszard Janicki Department of Computing and Software McMaster University Hamilton, Ontario, Canada janicki@mcmaster.ca Ryszard Janicki Computability

More information

Computability Summary

Computability Summary Computability Summary Recursive Languages The following are all equivalent: A language B is recursive iff B = L(M) for some total TM M. A language B is (Turing) computable iff some total TM M computes

More information

Turing Machines Part Two

Turing Machines Part Two Turing Machines Part Two Recap from Last Time The Turing Machine A Turing machine consists of three parts: A finite-state control that issues commands, an infinite tape for input and scratch space, and

More information

CSCI 340: Computational Models. Turing Machines. Department of Computer Science

CSCI 340: Computational Models. Turing Machines. Department of Computer Science CSCI 340: Computational Models Turing Machines Chapter 19 Department of Computer Science The Turing Machine Regular Expressions Acceptor: FA, TG Nondeterminism equal? Yes Closed Under: L 1 + L 2 L 1 L

More information

Limited Automata and Unary Languages

Limited Automata and Unary Languages Limited Automata and Unary Languages Giovanni Pighizzini and Luca Prigioniero Dipartimento di Informatica, Università degli Studi di Milano, Italy {pighizzini,prigioniero}@di.unimi.it Abstract. Limited

More information

CS 531: Notes II. January 31, 2014

CS 531: Notes II. January 31, 2014 CS 531: Notes II January 31, 2014 1 Acceptable and Decidable Languages Let P be a program and x be a string. What happens when we run P on on input x. There are there possibilities. i) The program runs

More information

Name: CS 341 Practice Final Exam. 1 a 20 b 20 c 20 d 20 e 20 f 20 g Total 207

Name: CS 341 Practice Final Exam. 1 a 20 b 20 c 20 d 20 e 20 f 20 g Total 207 Name: 1 a 20 b 20 c 20 d 20 e 20 f 20 g 20 2 10 3 30 4 12 5 15 Total 207 CS 341 Practice Final Exam 1. Please write neatly. You will lose points if we cannot figure out what you are saying. 2. Whenever

More information

Lecture 18: Turing Machines

Lecture 18: Turing Machines Lecture 18: Turing Machines Some Languages are not Context-Free At the end of the last section, we used the Pumping Lemma for Context Free Languages to prove that there are languages that are not context

More information

DECLARAING AND INITIALIZING POINTERS

DECLARAING AND INITIALIZING POINTERS DECLARAING AND INITIALIZING POINTERS Passing arguments Call by Address Introduction to Pointers Within the computer s memory, every stored data item occupies one or more contiguous memory cells (i.e.,

More information

Material from Recitation 1

Material from Recitation 1 Material from Recitation 1 Darcey Riley Frank Ferraro January 18, 2011 1 Introduction In CSC 280 we will be formalizing computation, i.e. we will be creating precise mathematical models for describing

More information

The Turing Machine. Unsolvable Problems. Undecidability. The Church-Turing Thesis (1936) Decision Problem. Decision Problems

The Turing Machine. Unsolvable Problems. Undecidability. The Church-Turing Thesis (1936) Decision Problem. Decision Problems The Turing Machine Unsolvable Problems Motivating idea Build a theoretical a human computer Likened to a human with a paper and pencil that can solve problems in an algorithmic way The theoretical machine

More information

CSE 120. Computer Science Principles

CSE 120. Computer Science Principles Adam Blank Lecture 17 Winter 2017 CSE 120 Computer Science Principles CSE 120: Computer Science Principles Proofs & Computation e w h e q 0 q 1 q 2 q 3 h,e w,e w,h w,h q garbage w,h,e CSE = Abstraction

More information

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C.

We show that the composite function h, h(x) = g(f(x)) is a reduction h: A m C. 219 Lemma J For all languages A, B, C the following hold i. A m A, (reflexive) ii. if A m B and B m C, then A m C, (transitive) iii. if A m B and B is Turing-recognizable, then so is A, and iv. if A m

More information

6. Advanced Topics in Computability

6. Advanced Topics in Computability 227 6. Advanced Topics in Computability The Church-Turing thesis gives a universally acceptable definition of algorithm Another fundamental concept in computer science is information No equally comprehensive

More information

Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and Computer Language Theory Chapter 4: Decidability 1 Limitations of Algorithmic Solvability In this Chapter we investigate the power of algorithms to solve problems Some can be solved algorithmically and

More information

CS 275 Automata and Formal Language Theory. First Problem of URMs. (a) Definition of the Turing Machine. III.3 (a) Definition of the Turing Machine

CS 275 Automata and Formal Language Theory. First Problem of URMs. (a) Definition of the Turing Machine. III.3 (a) Definition of the Turing Machine CS 275 Automata and Formal Language Theory Course Notes Part III: Limits of Computation Chapt. III.3: Turing Machines Anton Setzer http://www.cs.swan.ac.uk/ csetzer/lectures/ automataformallanguage/13/index.html

More information

COMP 382: Reasoning about algorithms

COMP 382: Reasoning about algorithms Spring 2015 Unit 2: Models of computation What is an algorithm? So far... An inductively defined function Limitation Doesn t capture mutation of data Imperative models of computation Computation = sequence

More information

Context Free Languages and Pushdown Automata

Context Free Languages and Pushdown Automata Context Free Languages and Pushdown Automata COMP2600 Formal Methods for Software Engineering Ranald Clouston Australian National University Semester 2, 2013 COMP 2600 Context Free Languages and Pushdown

More information

Theory of Computation p.1/?? Theory of Computation p.2/?? A Turing machine can do everything that any computing

Theory of Computation p.1/?? Theory of Computation p.2/?? A Turing machine can do everything that any computing Turing Machines A Turing machine is similar to a finite automaton with supply of unlimited memory. A Turing machine can do everything that any computing device can do. There exist problems that even a

More information

what are strings today: strings strings: output strings: declaring and initializing what are strings and why to use them reading: textbook chapter 8

what are strings today: strings strings: output strings: declaring and initializing what are strings and why to use them reading: textbook chapter 8 today: strings what are strings what are strings and why to use them reading: textbook chapter 8 a string in C++ is one of a special kind of data type called a class we will talk more about classes in

More information

Turing Machines, continued

Turing Machines, continued Previously: Turing Machines, continued CMPU 240 Language Theory and Computation Fall 2018 Introduce Turing machines Today: Assignment 5 back TM variants, relation to algorithms, history Later Exam 2 due

More information

CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia

CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia Gabriel Robins Please start solving these problems immediately, and work in study groups. Please prove

More information

2.8 Universal Turing Machines and the Halting Problem

2.8 Universal Turing Machines and the Halting Problem 2.8 Universal Turing Machines and the Halting Problem Through the hierarchy of Slide 74 we indirectly get a sense that Turing Machines are at least as computationally powerful as any other known model

More information

Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D.

Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman And Introduction to Languages and The by J. C. Martin Basic Mathematical

More information

From Theorem 8.5, page 223, we have that the intersection of a context-free language with a regular language is context-free. Therefore, the language

From Theorem 8.5, page 223, we have that the intersection of a context-free language with a regular language is context-free. Therefore, the language CSCI 2400 Models of Computation, Section 3 Solutions to Practice Final Exam Here are solutions to the practice final exam. For some problems some details are missing for brevity. You should write complete

More information

Case by Case. Chapter 3

Case by Case. Chapter 3 Chapter 3 Case by Case In the previous chapter, we used the conditional expression if... then... else to define functions whose results depend on their arguments. For some of them we had to nest the conditional

More information

Chapter 3 Linear Structures: Lists

Chapter 3 Linear Structures: Lists Plan Chapter 3 Linear Structures: Lists 1. Lists... 3.2 2. Basic operations... 3.4 3. Constructors and pattern matching... 3.5 4. Polymorphism... 3.8 5. Simple operations on lists... 3.11 6. Application:

More information

It is better to have 100 functions operate one one data structure, than 10 functions on 10 data structures. A. Perlis

It is better to have 100 functions operate one one data structure, than 10 functions on 10 data structures. A. Perlis Chapter 14 Functional Programming Programming Languages 2nd edition Tucker and Noonan It is better to have 100 functions operate one one data structure, than 10 functions on 10 data structures. A. Perlis

More information

arxiv: v1 [cs.cc] 9 Jan 2015

arxiv: v1 [cs.cc] 9 Jan 2015 Efficient Computation by Three Counter Machines arxiv:1501.02212v1 [cs.cc] 9 Jan 2015 Holger Petersen Reinsburgstr. 75 70197 Stuttgart Germany May 13, 2018 Abstract Weshow that multiplication can be done

More information

Formal languages and computation models

Formal languages and computation models Formal languages and computation models Guy Perrier Bibliography John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman - Introduction to Automata Theory, Languages, and Computation - Addison Wesley, 2006.

More information

Midterm Exam II CIS 341: Foundations of Computer Science II Spring 2006, day section Prof. Marvin K. Nakayama

Midterm Exam II CIS 341: Foundations of Computer Science II Spring 2006, day section Prof. Marvin K. Nakayama Midterm Exam II CIS 341: Foundations of Computer Science II Spring 2006, day section Prof. Marvin K. Nakayama Print family (or last) name: Print given (or first) name: I have read and understand all of

More information

Chapter 14: Pushdown Automata

Chapter 14: Pushdown Automata Chapter 14: Pushdown Automata Peter Cappello Department of Computer Science University of California, Santa Barbara Santa Barbara, CA 93106 cappello@cs.ucsb.edu The corresponding textbook chapter should

More information

CS W Introduction to Databases Spring Computer Science Department Columbia University

CS W Introduction to Databases Spring Computer Science Department Columbia University CS W4111.001 Introduction to Databases Spring 2018 Computer Science Department Columbia University 1 in SQL 1. Key constraints (PRIMARY KEY and UNIQUE) 2. Referential integrity constraints (FOREIGN KEY

More information

Chapter 3 Linear Structures: Lists

Chapter 3 Linear Structures: Lists Plan Chapter 3 Linear Structures: Lists 1. Two constructors for lists... 3.2 2. Lists... 3.3 3. Basic operations... 3.5 4. Constructors and pattern matching... 3.6 5. Simple operations on lists... 3.9

More information

Abstract Thinking, Intro to the Theory of Computation. SC/COSC Lecture Notes

Abstract Thinking, Intro to the Theory of Computation. SC/COSC Lecture Notes Abstract Thinking, Intro to the Theory of Computation SC/COSC 2 3. Lecture Notes Jeff Edmonds Winter 99-, Version.2 Contents Preface 2 2 Computational Problems and Models of Computation 5 2. History of

More information

We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack.

We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack. Other Automata We can create PDAs with multiple stacks. At each step we look at the current state, the current input symbol, and the top of each stack. From all of this information we decide what state

More information

Relational Algebra. Study Chapter Comp 521 Files and Databases Fall

Relational Algebra. Study Chapter Comp 521 Files and Databases Fall Relational Algebra Study Chapter 4.1-4.2 Comp 521 Files and Databases Fall 2010 1 Relational Query Languages Query languages: Allow manipulation and retrieval of data from a database. Relational model

More information

Multiple Choice Questions

Multiple Choice Questions Techno India Batanagar Computer Science and Engineering Model Questions Subject Name: Formal Language and Automata Theory Subject Code: CS 402 Multiple Choice Questions 1. The basic limitation of an FSM

More information

Semantics of programming languages

Semantics of programming languages Semantics of programming languages Informatics 2A: Lecture 27 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 21 November, 2011 1 / 19 1 2 3 4 2 / 19 Semantics for programming

More information

Informatics Ingeniería en Electrónica y Automática Industrial

Informatics Ingeniería en Electrónica y Automática Industrial Informatics Ingeniería en Electrónica y Automática Industrial Operators and expressions in C Operators and expressions in C Numerical expressions and operators Arithmetical operators Relational and logical

More information

Lec-5-HW-1, TM basics

Lec-5-HW-1, TM basics Lec-5-HW-1, TM basics (Problem 0)-------------------- Design a Turing Machine (TM), T_sub, that does unary decrement by one. Assume a legal, initial tape consists of a contiguous set of cells, each containing

More information

Automata Theory CS F-14 Counter Machines & Recursive Functions

Automata Theory CS F-14 Counter Machines & Recursive Functions Automata Theory CS411-2015F-14 Counter Machines & Recursive Functions David Galles Department of Computer Science University of San Francisco 14-0: Counter Machines Give a Non-Deterministic Finite Automata

More information

CSE Theory of Computing Fall 2017 Project 3: K-tape Turing Machine

CSE Theory of Computing Fall 2017 Project 3: K-tape Turing Machine CSE 30151 Theory of Computing Fall 2017 Project 3: K-tape Turing Machine Version 1: Oct. 23, 2017 1 Overview The goal of this project is to have each student understand at a deep level the functioning

More information

Implementation of Neural Network with a variant of Turing Machine for Traffic Flow Control

Implementation of Neural Network with a variant of Turing Machine for Traffic Flow Control Implementation of Neural Network with a variant of Turing Machine for Traffic Flow Control Rashmi Sehrawat Computer Science & Engineering B.S Anangpuria Institute of Technology and Management Faridabad,India

More information

Introduction to Computers & Programming

Introduction to Computers & Programming 16.070 Introduction to Computers & Programming Theory of computation 5: Reducibility, Turing machines Prof. Kristina Lundqvist Dept. of Aero/Astro, MIT States and transition function State control A finite

More information

Theory of Computations III. WMU CS-6800 Spring -2014

Theory of Computations III. WMU CS-6800 Spring -2014 Theory of Computations III WMU CS-6800 Spring -2014 Markov Algorithm (MA) By Ahmed Al-Gburi & Barzan Shekh 2014 Outline Introduction How to execute a MA Schema Examples Formal Definition Formal Algorithm

More information

Equivalence of NTMs and TMs

Equivalence of NTMs and TMs Equivalence of NTMs and TMs What is a Turing Machine? Similar to a finite automaton, but with unlimited and unrestricted memory. It uses an infinitely long tape as its memory which can be read from and

More information

1. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which:

1. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which: P R O B L E M S Finite Autom ata. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which: a) Are a multiple of three in length. b) End with the string

More information

CSE 130 [Winter 2014] Programming Languages

CSE 130 [Winter 2014] Programming Languages CSE 130 [Winter 2014] Programming Languages Introduction to OCaml (Continued) Ravi Chugh! Jan 14 Announcements HW #1 due Mon Jan 20 Post questions/discussion to Piazza Check Piazza for TA/Tutor lab hours

More information

III. Supplementary Materials

III. Supplementary Materials III. Supplementary Materials The Three Hour Tour Through Automata Theory Analyzing Problems as Opposed to Algorithms In CS336 you learned to analyze algorithms. This semester, we're going to analyze problems.

More information

6.045J/18.400J: Automata, Computability and Complexity. Practice Quiz 2

6.045J/18.400J: Automata, Computability and Complexity. Practice Quiz 2 6.045J/18.400J: Automata, omputability and omplexity March 21, 2007 Practice Quiz 2 Prof. Nancy Lynch Elena Grigorescu Please write your name in the upper corner of each page. INFORMATION ABOUT QUIZ 2:

More information

Theory of Computations Spring 2016 Practice Final

Theory of Computations Spring 2016 Practice Final 1 of 6 Theory of Computations Spring 2016 Practice Final 1. True/False questions: For each part, circle either True or False. (23 points: 1 points each) a. A TM can compute anything a desktop PC can, although

More information

Programming Languages

Programming Languages Programming Languages Week 2 Exercises 0. a) Open an interactive Python 2 session (either in a terminal window, or in an IDE that allows small sections of code to be executed). To open a terminal window

More information

Type Checking and Type Equality

Type Checking and Type Equality Type Checking and Type Equality Type systems are the biggest point of variation across programming languages. Even languages that look similar are often greatly different when it comes to their type systems.

More information

VALLIAMMAI ENGNIEERING COLLEGE SRM Nagar, Kattankulathur 603203. DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Year & Semester : III Year, V Semester Section : CSE - 1 & 2 Subject Code : CS6503 Subject

More information

LECTURE 16. Functional Programming

LECTURE 16. Functional Programming LECTURE 16 Functional Programming WHAT IS FUNCTIONAL PROGRAMMING? Functional programming defines the outputs of a program as a mathematical function of the inputs. Functional programming is a declarative

More information

Where Can We Draw The Line?

Where Can We Draw The Line? Where Can We Draw The Line? On the Hardness of Satisfiability Problems Complexity 1 Introduction Objectives: To show variants of SAT and check if they are NP-hard Overview: Known results 2SAT Max2SAT Complexity

More information

PROGRAMMING IN HASKELL. Chapter 10 - Interactive Programming

PROGRAMMING IN HASKELL. Chapter 10 - Interactive Programming PROGRAMMING IN HASKELL Chapter 10 - Interactive Programming 0 Introduction To date, we have seen how Haskell can be used to write batch programs that take all their inputs at the start and give all their

More information

Theory Bridge Exam Example Questions Version of June 6, 2008

Theory Bridge Exam Example Questions Version of June 6, 2008 Theory Bridge Exam Example Questions Version of June 6, 2008 This is a collection of sample theory bridge exam questions. This is just to get some idea of the format of the bridge exam and the level of

More information

1 Parsing (25 pts, 5 each)

1 Parsing (25 pts, 5 each) CSC173 FLAT 2014 ANSWERS AND FFQ 30 September 2014 Please write your name on the bluebook. You may use two sides of handwritten notes. Perfect score is 75 points out of 85 possible. Stay cool and please

More information

Haskell Overview II (2A) Young Won Lim 8/9/16

Haskell Overview II (2A) Young Won Lim 8/9/16 (2A) Copyright (c) 2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published

More information

SOFTWARE ENGINEERING DESIGN I

SOFTWARE ENGINEERING DESIGN I 2 SOFTWARE ENGINEERING DESIGN I 3. Schemas and Theories The aim of this course is to learn how to write formal specifications of computer systems, using classical logic. The key descriptional technique

More information

CSE 5A Final Fall 2006

CSE 5A Final Fall 2006 Student ID cs5f Name Signature CSE 5A Final Fall 2006 Page 1 (18 points) Page 2 (26 points) Page 3 (28 points) Page 4 (16 points) Page 5 (40 points) Page 6 (44 points) Total (172 points = 164 points +

More information

Quiz 2 CSCI 1103 Computer Science I Honors KEY. Tuesday November 8, 2016 Instructor Muller Boston College. Fall 2016

Quiz 2 CSCI 1103 Computer Science I Honors KEY. Tuesday November 8, 2016 Instructor Muller Boston College. Fall 2016 Quiz 2 CSCI 1103 Computer Science I Honors KEY Tuesday November 8, 2016 Instructor Muller Boston College Fall 2016 Please do not write your name on the top of this quiz. Before reading further, please

More information

CS 297 Report. By Yan Yao

CS 297 Report. By Yan Yao CS 297 Report By Yan Yao Introduction In recent years there has been an active research area which tries to give functional characterizations of time-bounded or space bounded complexity classes. An old

More information

CS402 - Theory of Automata Glossary By

CS402 - Theory of Automata Glossary By CS402 - Theory of Automata Glossary By Acyclic Graph : A directed graph is said to be acyclic if it contains no cycles. Algorithm : A detailed and unambiguous sequence of instructions that describes how

More information

(p 300) Theorem 7.27 SAT is in P iff P=NP

(p 300) Theorem 7.27 SAT is in P iff P=NP pp. 292-311. The Class NP-Complete (Sec. 7.4) P = {L L decidable in poly time} NP = {L L verifiable in poly time} Certainly all P is in NP Unknown if NP is bigger than P (p. 299) NP-Complete = subset of

More information

A Second Look At ML. Chapter Seven Modern Programming Languages, 2nd ed. 1

A Second Look At ML. Chapter Seven Modern Programming Languages, 2nd ed. 1 A Second Look At ML Chapter Seven Modern Programming Languages, 2nd ed. 1 Outline Patterns Local variable definitions A sorting example Chapter Seven Modern Programming Languages, 2nd ed. 2 Two Patterns

More information