Team 8: Robert Blake Craig Goliber Alanna Ocampo

Size: px
Start display at page:

Download "Team 8: Robert Blake Craig Goliber Alanna Ocampo"

Transcription

1 Team 8: Robert Blake Craig Goliber Alanna Ocampo

2 Objective of the design CAD Presentation Microcontroller Implementation PCB Design Design Limitations Conclusion

3 Problem: Design a centrifuge which was capable of separating both red blood cells and platelets from a blood sample. Needs: I. Have Variable Speeds II. Temperature Controlled Samples III. A display of temperature and R.P.M. levels IV. Must work with actual cells V. Contain a process for separating specific cells from sample at specific RPM and temperature settings

4 From the beginning we wanted to implement the following Fluid Heating System Would serve to transfer thermal energy in order to regulate sample temperatures. Eight Slot Holder The device would be able to hold 8 test tube samples, and remain balanced. Conservative Size Should be compact in design so as not to take up much room in a laboratory environment. Three basic components to the design: -Fluid Holder -Test Tube Spin Assembly -Housing Unit with Cover

5 The fluid being designed for use is water. The object for the fluid holder design was to properly contain the fluid and ensure adequate room for the seated test tubes and heating elements. It is critical for no fluid to escape its proper area possibly resulting in a short out of the circuit boards or electric motor. The design implemented lips to prevent the fluid from splashing upwards, and rubber washers to prevent fluid flow between adjoining parts.

6 The Spin assembly evenly distributed the eight test tubes around a central axis which integrated with the electric motor. A 45 degree angle was used to maximize the centrifugal force exerted onto the test tube samples. A hollowed out mushroom shape design was used so only the tops of the test tubes are exposed and the underlying area is contained in the heating fluid.

7 The design contained three separate compartments: -The motor and circuit housing area -The fluid holder and spin assembly area -The cover unit which sits on top of the device - Four rubber feet pads were also attached to the bottom of the centrifuge so that the device remains stable when activated. - A front panel, tilted at a slight angle, was mounted in front of the device so that the control panel can be fixed to it.

8 The material which will be used for the fluid holder and spin assembly is aluminum because of its light weight when compared to other metals, and its strength. The sides of the device will be constructed from steel so that the outside of the centrifuge will be strong and can operate in any lab environment. The feet, and washers will be shaped from rubber so that they can repel fluid and form a tight grip on surfaces. The cover will be made from plastic so that the weight will be decreased and the operator will be able to see into the device in order to ensure proper operation.

9 The design calls for the following parts to be purchased and implemented separately: Electric motor- Model MS1509-xx/c from Dynetic Systems LCD Screen- Model 51167NCU from LCDPanels.com Hinge Joints which can be purchased from any hardware store Assorted bolts and screws: 1/8 inch screws 1/4 inch screws 1/2 inch bolts

10

11

12

13 The PIC16F877A (manufactured my MicroChip) was used and the code written in C The microcontroller controls the speed and temperature of the centrifuge and displays those values on the LCD The following is some rough microcontroller code which could accomplish these tasks; the comments will be helpful in understanding the different components of the code

14 /*Centrifuge Code */ /**********************************************************************************/ /**********************************************************************************/ #include <stdlib.h> //standard include files #include <pic.h> #include <htc.h> //Sets up some basic components of PIC CONFIG(DUNPROT & PWRTDIS & XT & WDTDIS & BORDIS & LVPDIS); #ifndef _XTAL_FREQ // Unless already defined assume 4MHz system frequency // Used to calibrate delay_us() and delay_ms() #define _XTAL_FREQ #define CHOICE1 RE0 //these buttons will set the centrifuge to a certain RPM and temperature //when pressed #define CHOICE2 RE1 #define CHOICE3 RE2 #define CHOICE4 RE3 #endif void InitLCD(void); void DisplayC(unsigned char position, const char *str); void clear_display(void); int ChangeState, DispMode, resetlcd, advalue, Temperature,ConfigureTemp, RPM, heat, option, TempValue;

15 //;;;;;;; Initial subroutine ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; { void Initial(void) //these are registers, which are a high-speed storage locations in the CPU, used to store a related string of bits, as a word or phrase. ADCON1 = 0b ; // Setup A/D converter as all analog input TRISA = 0b ; // Set PORTA as output for PWM PORTA = 0; //Clears PORTA TRISB = 0b ; // Set PORTB as all input for Temperature PORTB = 0; //Clear PORTB TRISC = 0b ; // Set PORTC as all input for the motor speed that is currently in place TRISD = 0b ; // Set PORTD as output to LCD PORTD = 0; //Clear PortD PR2 = 95; // Set up Timer2 for a looptime of 10 ms T2CON = 0b ; // Finish set up of Timer2 DispMode = 0; ChangeState = 0; resetlcd = 1; InitLCD(); // normally call just before setting up INTCON INTCON = 0b ; // Enable interrupts }

16 //;;;;;;; Mainline program ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; void LCD( //This function uses the DisplayC function { //to write text to the LCD screen { if(resetlcd) clear_display(); //This function clears the LCD display //so it can accomodate new characters DisplayC(0x80, "Current Temperature:"); //This function writes "Current Temperature" starting at //the top left of the screen (0x80) DisplayC(0 x C0, Temperature) //This function displays the numerical value of the current temp delay ms(95); clear_display(); //delays.5 sec DisplayC(0x80, "Current RPM"); //This writes "Current RPM" starting at DisplayC(0 x C0, RPM) //the bottom left of the screen (0xC0) } } } return;

17 void ADConvert() // This function converts an analog input to digital count { unsigned char i; CHS0 = 1; CHS1 = 0; // Current selection is for port AN1 which is RP1 CHS2 = 0; ADON = 1; // Turn A/D on for (i=20;i;i--); ADGO = 1; // Start conversion while ( ADGO ); // wait for ADGO to go off signaling end of conversion TempValue = ADRESH*4 + ADRESL/64; Temperature = ((TempValue )*3) //converts value from A/D to temperatue ADON = 0; // Turn A/D off to conserve power } { return; void ButtonSelection() //This function takes in the user's button selection for speed and temp and stores it DisplayC (0x80, "Select the speed and temp by pressing one of the four buttons"); if(!choice1) { option=1;} // if first button is selected set option variable to 1 else if (!CHOICE2) {option=2;} // if the second button is selected set the option variable to 2 else if (!CHOICE3) {option=3;} // if the third button is selected set the option variable to 3 else if (!CHOICE4) {option=4;} //if the fourth button is selected set the option variable to 4 return;}

18 void setrpmandtemp(){ for(;;) { if(option=1) { RPM = 2000; // sets speed to 2000 RPM ConfigureTemp= 30; // sets temp to 30 deg. C } else if(option=2) { RPM = 4000; // sets speed to 4000 RPM ConfigureTemp= 30; // sets temperature to 30 deg. C } else if(option=3) { RPM = 2000; // sets speed to 2000 RPM ConfigureTemp = 20; // sets temperature to 20 deg. C } else if(option=4) { RPM = 4000; // sets speed to 4000 RPM ConfigureTemp= 20; // sets temperature to 20 deg. C } } return;}

19 int main(void) //This is the main body of the program { //All functions of the program start here and are called //either by the endless FOR loop or a subsidiary. Initial(); //This function initializes necessary registers ButtonSelection(); //call other routines setrpmandtemp(); for(;;) { if (Temperature<ConfigureTemp) { Heat = 1; } else { Heat = 0; } } } return;

20 The PCB circuit design acts along side the microcontroller in order to control the mechanical systems of the centrifuge. The circuit inputs are as follows: 8 dpst buttons which function as the input for each push button located on the control panel. One thermister which is used as an input for sensing the temperature of the heating fluid. The circuit outputs are as follows: One five pin holder which functions as the output signal for each display that is located on the control panel.

21 In order to control the electric motor and heating elements transistors were used to act as switches. Because the output signals from the microcontroller are small the transistors act as gates which allow the motor and heating elements to turn on and off. When designing the circuit in multisim an Intel 40 pin chip was used as a placeholder for the PIC16

22

23

24 The centrifuge which was designed for this project is limited to small scale applications. When changing the heating fluid the centrifuge needs to be partially disassembled and then reassembled. Because the heating system was designed to use fluid there is always the risk of short circuiting the motor or electrical circuits.

25 The centrifuge designed relies upon the mechanical operation of the motor and heating elements with the circuit board and microcontroller. The final assembly is composed of pre-bought parts as well as fabricated pieces which all fit together. The design allows for the use of 8 test samples at once, and uses the microcontroller to control the speed and temperature of each sample. The PCB ties together the function of the mechanical and control systems with the processing power of the microcontroller.

/*Algorithm: This code display a centrifuge with five variable speed RPM by increaseing */

/*Algorithm: This code display a centrifuge with five variable speed RPM by increaseing */ /*Algorithm: This code display a centrifuge with five variable speed RPM by increaseing */ /*the speed the cell which are less dense can float and the cell that are denser can sink*/ /*the user has five

More information

BME 4900 Page 1 of 2. Meeting 2: Personal Progress Report 12/2/09 Team 12 with Drew Seils. Semester One Week Two

BME 4900 Page 1 of 2. Meeting 2: Personal Progress Report 12/2/09 Team 12 with Drew Seils. Semester One Week Two BME 4900 Page 1 of 2 Semester One Week Two These past two saw a lot of progress with the Revo stationary bike project. During Thanksgiving break Shane spent most of his time doing research for the power

More information

Speed Control of a DC Motor using Digital Control

Speed Control of a DC Motor using Digital Control Speed Control of a DC Motor using Digital Control The scope of this project is threefold. The first part of the project is to control an LCD display and use it as part of a digital tachometer. Secondly,

More information

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017

Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Philadelphia University Faculty of Engineering Course Title: Embedded Systems (630414) Instructor: Eng. Anis Nazer Dept. of Computer Engineering Final Exam, First Semester: 2016/2017 Student Name: Student

More information

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag

Timer0..Timer3. Interrupt Description Input Conditions Enable Flag Timer0..Timer3 Timers are pretty useful: likewise, Microchip provides four different timers for you to use. Like all interrupts, you have to Enable the interrupt, Set the conditions of the interrupt, and

More information

Lecture (04) PIC 16F84A programming I

Lecture (04) PIC 16F84A programming I Lecture (04) PIC 16F84A programming I Dr. Ahmed M. ElShafee ١ Agenda Introduction to PIC16F84A programming using C language Preprocessors and, Compiler directives Constants Variables and data types Pointers

More information

Embedded Systems Module. 6EJ505. C Tutorial 3: using the ICD3 rev tjw

Embedded Systems Module. 6EJ505. C Tutorial 3: using the ICD3 rev tjw Embedded Systems Module. 6EJ505 C Tutorial 3: using the ICD3 rev. 27.9.16 tjw Images are reproduced from Reference 1. Microchip permits the use of its images for educational purposes. Main Learning Points

More information

EEE394 Microprocessor and Microcontroller Laboratory Lab #6

EEE394 Microprocessor and Microcontroller Laboratory Lab #6 Exp. No #6 Date: INTERRUPTS AND ADC IN PIC MICROCONTROLLER OBJECTIVE The purpose of the experiment is to configure external interrupt and the ADC in PIC microcontrollers. (i) To flip the LED connected

More information

Embedded Systems Programming and Architectures

Embedded Systems Programming and Architectures Embedded Systems Programming and Architectures Lecture No 10 : Data acquisition and data transfer Dr John Kalomiros Assis. Professor Department of Post Graduate studies in Communications and Informatics

More information

Design Team 8: Robert Blake Biochemical Craig Goliber Bioinstrumentation Alanna Ocampo - Bioinformatics. BME 4900 December 2009

Design Team 8: Robert Blake Biochemical Craig Goliber Bioinstrumentation Alanna Ocampo - Bioinformatics. BME 4900 December 2009 Design Team 8: Robert Blake Biochemical Craig Goliber Bioinstrumentation Alanna Ocampo - Bioinformatics BME 4900 December 2009 Three assistive devices have been designed for our client, Joey Toce, to allow

More information

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background:

Timer2 Interrupts. NDSU Timer2 Interrupts September 20, Background: Background: Timer2 Interrupts The execution time for routines sometimes needs to be set. This chapter loops at several ways to set the sampling rate. Example: Write a routine which increments an 8-bit

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2016/2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2016/2017 TW30 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT SEMESTER 2 EXAMINATION 2016/2017 MICROPROCESSOR BASED SYSTEMS MODULE NO: EEM7016 Date: Wednesday 17 May

More information

Lecture (03) PIC16F84 (2)

Lecture (03) PIC16F84 (2) Lecture (03) PIC16F84 (2) By: Dr. Ahmed ElShafee ١ PIC16F84 has a RISC architecture, or Harvard architecture in another word ٢ PIC16F84 belongs to a class of 8 bit microcontrollers of RISC architecture.

More information

ECE Homework #10

ECE Homework #10 Timer 0/1/2/3 ECE 376 - Homework #10 Timer 0/1/2/3, INT Interrupts. Due Wednesday, November 14th, 2018 1) Write a program which uses INT and Timer 0/1/2/3 interrupts to play the cord C#major for 1.000

More information

Input/Output Ports and Interfacing

Input/Output Ports and Interfacing Input/Output Ports and Interfacing ELEC 330 Digital Systems Engineering Dr. Ron Hayne Images Courtesy of Ramesh Gaonkar and Delmar Learning Basic I/O Concepts Peripherals such as LEDs and keypads are essential

More information

More Fun with Timer Interrupts

More Fun with Timer Interrupts More Fun with Timer Interrupts Chords Objective: Play a musical chord each time you press a button: Button RC0 RC1 RC2 Timer Timer0 Timer1 Timer3 RB0 A3 C4 E4 RB1 B3 D4 F4 RB2 C4 E4 G4 Calculations: Assume

More information

LCD. Configuration and Programming

LCD. Configuration and Programming LCD Configuration and Programming Interfacing and Programming with Input/Output Device: LCD LCD (liquid crystal display) is specifically manufactured to be used with microcontrollers, which means that

More information

ELCT708 MicroLab Session #1 Introduction to Embedded Systems and Microcontrollers. Eng. Salma Hesham

ELCT708 MicroLab Session #1 Introduction to Embedded Systems and Microcontrollers. Eng. Salma Hesham ELCT708 MicroLab Session #1 Introduction to Embedded Systems and Microcontrollers What is common between these systems? What is common between these systems? Each consists of an internal smart computer

More information

NSF Projects for Joey Toce: Ohio University:

NSF Projects for Joey Toce: Ohio University: NSF Projects for Joey Toce: Adapted Hungry, Hungry Hippos Game, Adapted Snow Sled, Device Control Panel Ohio University: Software Memory Recall Game Team Members: Robert Blake Craig Goliber Alanna Ocampo

More information

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors

Introduction. Embedded system functionality aspects. Processing. Storage. Communication. Transformation of data Implemented using processors Input/Output 1 Introduction Embedded system functionality aspects Processing Transformation of data Implemented using processors Storage Retention of data Implemented using memory Communication Transfer

More information

ALFRED MAZHINDU

ALFRED MAZHINDU SENSORS AND ACTUATORS LAB_2 ALFRED MAZHINDU 09022270 DATA ACQUISITION FROM AN OPTICAL SENSOR LABORATORY STAGE 2_10/11 Contents Table of Figures... 2 Lab: Data acquisition from an optical sensor... 3 Introduction...

More information

Embedded System Design

Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design : Microcontroller 1. Introduction to PIC microcontroller 2. PIC16F84 3. PIC16F877

More information

Human Response Timer

Human Response Timer Human Response Timer Matthew Beckler beck0778@umn.edu EE2361 Lab Section 007 March 29, 2006 Abstract In this lab, we create a very useful application, a human response timer. The user s reaction time is

More information

Timer1 Capture Mode:

Timer1 Capture Mode: Timer1 Capture Mode: Interrupt Description Input Conditions Enable Flag Timer 1 Trigger after N events N = 1.. 2 19 100ns to 0.52 sec RC0 TMR1CS = 1 TMR1IF Timer 1 Capture Mode 1 Timer 1 Capture Mode 2

More information

EE 361L Digital Systems and Computer Design Laboratory

EE 361L Digital Systems and Computer Design Laboratory EE 361L Digital Systems and Computer Design Laboratory University of Hawaii Department of Electrical Engineering by Galen Sasaki and Ashok Balusubramaniam Quick Overview of PIC16F8X Version 1.0 Date: 9/4/01

More information

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University

Outlines. PIC Programming in C and Assembly. Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University PIC ming in C and Assembly Outlines Microprocessor vs. MicroController PIC in depth PIC ming Assembly ming Krerk Piromsopa, Ph.D. Department of Computer Engineering Chulalongkorn University Embedded C

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2010 Lecture Outline Class # 04 September 28, 2010 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Programming/Software Lab Homework

More information

Laboratory: Introduction to Mechatronics

Laboratory: Introduction to Mechatronics Laboratory: Introduction to Mechatronics Instructor TA: Edgar Martinez Soberanes (eem370@mail.usask.ca) 2017-02-9 Lab 3. LED Control and Interruptions. Lab Sessions Lab 1. Introduction to the equipment

More information

Binary Outputs and Timing

Binary Outputs and Timing Binary Outputs and Timing Each of the I/O pins on a PIC can be inputs or ourputs As an input, the pin is high impedance (meaning it is passive and draws very little current). If you apply 0V to that pin,

More information

Flow Charts and Assembler Programs

Flow Charts and Assembler Programs Flow Charts and Assembler Programs Flow Charts: A flow chart is a graphical way to display how a program works (i.e. the algorithm). The purpose of a flow chart is to make the program easier to understand.

More information

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine MPLAB SIM MPLAB IDE Software Simulation Engine 2004 Microchip Technology Incorporated MPLAB SIM Software Simulation Engine Slide 1 Welcome to this web seminar on MPLAB SIM, the software simulator that

More information

Elecraft W1 SWR/Wattmeter Enclosure by W8FGU

Elecraft W1 SWR/Wattmeter Enclosure by W8FGU Elecraft W1 SWR/Wattmeter Enclosure by W8FGU The W1 enclosure is made of Lexan, a polycarbonate, which is very strong. It also has a UV blocking coating on one side and was assembled carefully with this

More information

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 1.

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 1. Laboratory: Introduction to Mechatronics Instructor TA: Edgar Martinez Soberanes (eem370@mail.usask.ca) 2017-01-12 Lab 1. Introduction Lab Sessions Lab 1. Introduction to the equipment and tools to be

More information

Microcontroller Overview

Microcontroller Overview Microcontroller Overview Microprocessors/Microcontrollers/DSP Microcontroller components Bus Memory CPU Peripherals Programming Microcontrollers vs. µproc. and DSP Microprocessors High-speed information

More information

C and Embedded Systems. So Why Learn Assembly Language? C Compilation. PICC Lite C Compiler. PICC Lite C Optimization Results (Lab #13)

C and Embedded Systems. So Why Learn Assembly Language? C Compilation. PICC Lite C Compiler. PICC Lite C Optimization Results (Lab #13) C and Embedded Systems A µp-based system used in a device (i.e, a car engine) performing control and monitoring functions is referred to as an embedded system. The embedded system is invisible to the user

More information

Chapter 13. PIC Family Microcontroller

Chapter 13. PIC Family Microcontroller Chapter 13 PIC Family Microcontroller Lesson 06 Special Function Registers for Control and status registers for the peripherals, input/output and Interrupt SFRs SFRs at the addresses of internal RAM/register

More information

Delivering the right equipment. for your unique laboratory

Delivering the right equipment. for your unique laboratory Delivering the right equipment for your unique laboratory Table of Contents The right piece of equipment is an investment both of your lab s budget and your valuable time. When it s time to purchase equipment,

More information

Laboratory Exercise 5 - Analog to Digital Conversion

Laboratory Exercise 5 - Analog to Digital Conversion Laboratory Exercise 5 - Analog to Digital Conversion The purpose of this lab is to control the blinking speed of an LED through the Analog to Digital Conversion (ADC) module on PIC16 by varying the input

More information

Q1 Q2 Q3 Q4 Q5 Q6 Total /7.5 /5 /10 /5 /7.5 /5 /40

Q1 Q2 Q3 Q4 Q5 Q6 Total /7.5 /5 /10 /5 /7.5 /5 /40 Course name: Practical App. CS II Exam number: Final model answer Course Code: CSC20X Exam Date: 03/06/2014 Lecturer: Dr. Ahmed ElShafee Time Allowed: 120 minutes Q1 Q2 Q3 Q4 Q5 Q6 Total /7.5 /5 /10 /5

More information

Final Design Report 19 April Project Title: Pneumatic Exercise Machine

Final Design Report 19 April Project Title: Pneumatic Exercise Machine EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 19 April 2011 Project Title: Pneumatic Exercise Machine Team Members: Gino Tozzi Seok Hyun John Yun Project Abstract The goal

More information

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL

NH-67, TRICHY MAIN ROAD, PULIYUR, C.F , KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL NH-67, TRICHY MAIN ROAD, PULIYUR, C.F. 639 114, KARUR DT. DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE MATERIAL Subject Name : Embedded System Class/Sem : BE (ECE) / VII Subject Code

More information

EECE.3170: Microprocessor Systems Design I Spring 2016

EECE.3170: Microprocessor Systems Design I Spring 2016 EECE.3170: Microprocessor Systems Design I Spring 2016 Lecture 31: Key Questions April 20, 2016 1. (Review) Explain how interrupts can be set up and managed in the PIC microcontrollers. 1 EECE.3170: Microprocessor

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng(Hons) Electrical and Electronics Engineering SEMESTER 1 EXAMINATION 2016/2017

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng(Hons) Electrical and Electronics Engineering SEMESTER 1 EXAMINATION 2016/2017 TW34 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BEng(Hons) Electrical and Electronics Engineering SEMESTER 1 EXAMINATION 2016/2017 INTERMEDIATE EMBEDDED SYSTEMS MODULE NO: EEE5004 Date: Thursday 12 January

More information

Z-Truck (Vertical Moving) Z-truck Flag. Y-Truck (Horizontal Moving) FIGURE 1: VIEW OF THE Z-TRUCK. Flexshaft Assembly

Z-Truck (Vertical Moving) Z-truck Flag. Y-Truck (Horizontal Moving) FIGURE 1: VIEW OF THE Z-TRUCK. Flexshaft Assembly Replacing the LCD Cable To remove and replace the LCD Cable you will need the following tools: #2 Phillips screwdriver (magnetic tip preferred) Socket wrench with 10mm socket Removing the Side Panel 1.

More information

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory

University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 6 Experiment 6:Timers Objectives To become familiar with hardware timing

More information

unsigned char ReadADC() { /************* start A/D, read from an A/D channel *****************/ unsigned char ADC_VALUE;

unsigned char ReadADC() { /************* start A/D, read from an A/D channel *****************/ unsigned char ADC_VALUE; /*********************************************************************************************/ /* BME 361 Biomeasurement Lab - PIC18F4525BT Demo */ /* Laboratories 1-8: A/D, D/A, LCD display, ECG simulation,

More information

Electronics Assembly and Test Plan Rev 3

Electronics Assembly and Test Plan Rev 3 Overview This test plan will describe the process for testing and assembling the electronics system. It will discuss the required equipment, applicable engineering requirements, desired outcomes of each

More information

CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK

CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK 134 CHAPTER 6 CONCLUSION AND SCOPE FOR FUTURE WORK 6.1 CONCLUSION Many industrial processes such as assembly lines have to operate at different speeds for different products. Process control may demand

More information

Lab Report for Sensor Calibration using a PIC16F84 GROUP MEMBERS ALFRED MAZHINDU SIMBARASHE CHIWESHE

Lab Report for Sensor Calibration using a PIC16F84 GROUP MEMBERS ALFRED MAZHINDU SIMBARASHE CHIWESHE CY-0205M Sensor and Actuators Lab Report for Sensor Calibration using a PIC16F84 GROUP MEMBERS ALFRED MAZHINDU - 09022270 SIMBARASHE CHIWESHE - 09016352 Alfred Mazhindu & Simbarashe Chiweshe Page 1 CONTENTS

More information

Hong Kong Institute of Vocational Education Digital Electronics & Microcontroller. 8. Microcontroller

Hong Kong Institute of Vocational Education Digital Electronics & Microcontroller. 8. Microcontroller 8. Microcontroller Textbook Programming Robot Controllers, Myke Predko, McGraw Hill. Reference PIC Robotics: A Beginner's Guide to Robotics Projects Using the PIC Micro, John Iovine, McGraw Hill. Embedded

More information

Interrupts on PIC18F252 Part 2. Interrupts Programming in C Language

Interrupts on PIC18F252 Part 2. Interrupts Programming in C Language Interrupts on PIC18F252 Part 2 Interrupts Programming in C Language Programming interrupts in C language using XC8 compiler is significantly simplified compared to C18 compiler. This note explains the

More information

Real Time Operating Systems Application Board Details

Real Time Operating Systems Application Board Details Real Time Operating Systems Application Board Details Hardware Interface All labs involve writing a C program to generate an interface between a PC and an external Multi-Applications board. A 40-way ribbon

More information

Accurate Time and Interrupts

Accurate Time and Interrupts Accurate Time and Interrupts Matthew Beckler beck0778@umn.edu EE2361 Lab Section 007 March 7, 2006 Abstract In this lab, we create a very accurate digital clock using one of the microcontroller s timers.

More information

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING B.ENG (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATION SEMESTER /2016

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING B.ENG (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATION SEMESTER /2016 UNIVERSITY OF BOLTON TW59 SCHOOL OF ENGINEERING B.ENG (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATION SEMESTER 1-2015/2016 INTERMEDIATE EMBEDDED SYSTEMS MODULE NO: EEE5004 Date: Thursday 14 January

More information

CHAPTER 1 - World of microcontrollers

CHAPTER 1 - World of microcontrollers CHAPTER 1 - World of microcontrollers One Time Programmable ROM (OTP ROM) One time programmable ROM enables you to download a program into it, but, as its name states, one time only. If an error is detected

More information

Digital and Analogue Project Report

Digital and Analogue Project Report EITF 040 Digital and Analogue Project Report Group 6 Fida Saidani Qinghua Liu March, 2013 1 Abstract The aim of this project is to build an electronic device that makes use of the law of light reflection,

More information

Laboratory 10. Programming a PIC Microcontroller - Part II

Laboratory 10. Programming a PIC Microcontroller - Part II Laboratory 10 Programming a PIC Microcontroller - Part II Required Components: 1 PIC16F88 18P-DIP microcontroller 1 0.1 F capacitor 3 SPST microswitches or NO buttons 4 1k resistors 1 MAN 6910 or LTD-482EC

More information

Mini Vortex Mixers Heavy-Duty Vortex Mixers Microplate Vortex Mixers Multi-Tube Vortex Mixers. Vortex Mixers

Mini Vortex Mixers Heavy-Duty Vortex Mixers Microplate Vortex Mixers Multi-Tube Vortex Mixers. Vortex Mixers Mini Vortex Mixers Heavy-Duty Vortex Mixers Microplate Vortex Mixers Multi-Tube Vortex Mixers Vortex Mixers Mini Vortex Mixers Four Mini Vortex Mixer models for gentle to high-speed mixing are available.

More information

Lecture (09) PIC16F84A LCD interface LCD. Dr. Ahmed M. ElShafee

Lecture (09) PIC16F84A LCD interface LCD. Dr. Ahmed M. ElShafee Lecture (09) PIC16F84A LCD interface PIC16F84A LCD interface Assignment 01, 4 Zones fire controller board Assignment 02, automatic water tank controller Dr. Ahmed M. ElShafee ١ ٢ LCD LCD (Liquid Crystal

More information

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS

AN587. Interfacing to an LCD Module. Interfacing to an LCD Module INTRODUCTION OPERATION CONTROL SIGNAL FUNCTIONS TABLE 2: CONDITIONAL ASSEMBLY FLAGS Interfacing to an LCD Module AN587 INTRODUCTION TABLE 1: CONTROL SIGNAL FUNCTIONS This application note interfaces a PIC16CXX device to the Hitachi LM02L LCD character display module. This module is a

More information

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware:

Outline. Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: HCMIU - DEE Subject: ERTS RISC MCU Architecture PIC16F877 Hardware 1 Outline Micriprocessor vs Microcontroller Introduction to PIC MCU PIC16F877 Hardware: Program Memory Data memory organization: banks,

More information

Experiment 9: Using HI-TECH C Compiler in MPLAB

Experiment 9: Using HI-TECH C Compiler in MPLAB University of Jordan Faculty of Engineering and Technology Department of Computer Engineering Embedded Systems Laboratory 0907334 9 Experiment 9: Using HI-TECH C Compiler in MPLAB Objectives The main objectives

More information

SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR. ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1

SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR. ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1 SANKALCHAND PATEL COLLEGE OF ENGINEERING, VISNAGAR ELECTRONICS & COMMUNICATION DEPARTMENT Question Bank- 1 Subject: Microcontroller and Interfacing (151001) Class: B.E.Sem V (EC-I & II) Q-1 Explain RISC

More information

SPECS: Case: HDPLEX H1.S Additional HDPLEX Case Components:

SPECS: Case: HDPLEX H1.S Additional HDPLEX Case Components: I decided to build a new HTPC. I have been using the Zotac Zbox ID41-U for years as my HTPC which was working great except for the tiny CPU fan that had a high pitch whine that I couldn't get rid of. I

More information

Analog Output with a Digital to Analog Converter

Analog Output with a Digital to Analog Converter Analog Output with a Digital to Analog Converter Matthew Beckler beck0778@umn.edu EE2361 Lab 007 April 5, 2006 Abstract Without help, microcontrollers can have great trouble creating analog signals. Approximations

More information

Chapter 9. Input/Output (I/O) Ports and Interfacing. Updated: 3/13/12

Chapter 9. Input/Output (I/O) Ports and Interfacing. Updated: 3/13/12 Chapter 9 Input/Output (I/O) Ports and Interfacing Updated: 3/13/12 Basic Concepts in I/O Interfacing and PIC18 I/O Ports (1 of 2) I/O devices (or peripherals) such as LEDs and keyboards are essential

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application...

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application... Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 19, 2011 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F684A processor,

More information

Data Sheet: LDS 1367 Date:

Data Sheet: LDS 1367 Date: Product: Electronic Digital Measuring Set Page 1 of 5 Digital Caliper and Electronic Micrometer Set Set contains: 1 x Electronic Caliper: 150mm/6 1 x Electronic Micrometer: 0-25/0-1 mm Housed in a fitted

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4 Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 1, 2016 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F648A processor,

More information

The University of Texas at Arlington Lecture 5

The University of Texas at Arlington Lecture 5 The University of Texas at Arlington Lecture 5 CSE 3442/5442 LCD Discussed in Chapter 12 RS, R/W, E Signals Are Used to Send/Receive Data on D0-D7 2 PIC PROGRAMMING IN C CHAPTER 7 Chapter 7 discusses the

More information

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh

Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Work Completed: Weekly Report: Interactive Wheel of Fortune Week 4 02/014/07-02/22/07 Written by: Yadverinder Singh Last week started with the goal to complete writing the overall program for the game.

More information

ML200 Fanless Mini-ITX Enclosure

ML200 Fanless Mini-ITX Enclosure ML200 Fanless Mini-ITX Enclosure Assembly Guide Version 1.1 PN: ML200 1 Table of Contents I. Product Description... 3 II. Included Parts... 3 III. Basic Chassis Assembly... 5 IV. Installation... 12...

More information

Final Design Report. Project Title: Automatic Storm Shutters. Team Name: Make It Rain

Final Design Report. Project Title: Automatic Storm Shutters. Team Name: Make It Rain EEL 4924 Electrical Engineering Design (Senior Design) Final Design Report 4 August 2009 Project Title: Automatic Storm Shutters Team Name: Make It Rain Team Members: Name: Kyle Weber Name: Zachary Wernlund

More information

imac Intel 21.5" Retina 4K Display (2017) RAM

imac Intel 21.5 Retina 4K Display (2017) RAM imac Intel 21.5" Retina 4K Display (2017) RAM Replacement Learn how to replace or upgrade the RAM in your 2017 Retina 4K imac. Written By: Evan Noronha ifixit CC BY-NC-SA www.ifixit.com Page 1 of 38 INTRODUCTION

More information

VPC-64/ VPX-64 VIDEO POLE CAMERA OPERATION MANUAL

VPC-64/ VPX-64 VIDEO POLE CAMERA OPERATION MANUAL VPC-64/ VPX-64 VIDEO POLE CAMERA OPERATION MANUAL RESEARCH ELECTRONICS INTERNATIONAL 455 Security Drive Algood, TN 38506 U.S.A. +1 931-537-6032 http://www.reiusa.net/ COPYRIGHT RESEARCH ELECTRONICS INTERNATIONAL

More information

Shack Clock kit. U3S Rev 2 PCB 1. Introduction

Shack Clock kit. U3S Rev 2 PCB 1. Introduction Shack Clock kit U3S Rev 2 PCB 1. Introduction Thank you for purchasing the QRP Labs Shack Clock kit. This clock uses the Ultimate3S QRSS/WSPR kit hardware, but a different firmware version. It can be used

More information

Reprinted by permission of T&L Publications Inc. Copyright 2001 USB MICROCONTROLLERS FOR THE MASSES

Reprinted by permission of T&L Publications Inc. Copyright 2001 USB MICROCONTROLLERS FOR THE MASSES Reprinted by permission of T&L Publications Inc. Copyright 2001 USB MICROCONTROLLERS FOR THE MASSES By Don L. Powrie Microcontroller, Flash programmer, and high speed USB-to-PC interface all in one tidy

More information

HP Pavilion dv7-6c90us Cooling fan Replacement

HP Pavilion dv7-6c90us Cooling fan Replacement HP Pavilion dv7-6c90us Cooling fan Replacement This guide will walk you through the process of replacing the cooling fan in an HP Pavilion dv7 laptop. Written By: Angelina Clayton ifixit CC BY-NC-SA www.ifixit.com

More information

Fuel Injection Control for a 12 Cylinder Formula 1 Engine

Fuel Injection Control for a 12 Cylinder Formula 1 Engine Microcontrollers ApNote AP1635 o additional file APXXXX01.EXE available Consequently, the C166 finds many applications in areas such as motor control and automotive engine management where the production

More information

0 P age. The Robographer: Progress Review #2

0 P age. The Robographer: Progress Review #2 0 P age The Robographer: Progress Review #2 Name: Rohit Dashrathi Team: G (Robographers) Teammates: Jimit Gandhi Gauri Gandhi Rohit Dashrathi Sida Wang Tiffany May ILR No.: # 3 Submission Date: Oct 30,

More information

Advance Robotics with Embedded System Design (ARESD)

Advance Robotics with Embedded System Design (ARESD) Advance Robotics with Embedded System Design (ARESD) LEARN HOW TO: Use Arduino hardware &Arduino programming for microcontroller based hobby project development Use WinAVRcross compiler formicrocontroller

More information

Interrupts, timers and counters

Interrupts, timers and counters Interrupts, timers and counters Posted on May 10, 2008, by Ibrahim KAMAL, in Micro-controllers, tagged Most microcontrollers come with a set of ADD-ONs called peripherals, to enhance the functioning of

More information

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27)

Lesson 14. Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Lesson 14 Title of the Experiment: Introduction to Microcontroller (Activity number of the GCE Advanced Level practical Guide 27) Name and affiliation of the author: N W K Jayatissa Department of Physics,

More information

MICROPROCESSORS A (17.383) Fall Lecture Outline

MICROPROCESSORS A (17.383) Fall Lecture Outline MICROPROCESSORS A (17.383) Fall 2011 Lecture Outline Class # 02 September 13, 2011 Dohn Bowden 1 Today s Lecture Syllabus review Microcontroller Hardware and/or Interface Programming/Software Understanding

More information

EECE.3170: Microprocessor Systems Design I Summer 2017

EECE.3170: Microprocessor Systems Design I Summer 2017 EECE.3170: Microprocessor Systems Design I Summer 2017 1. What is an interrupt? What is an exception? Lecture 13: Key Questions June 19, 2017 2. For what purposes are interrupts useful? 3. Describe the

More information

Using Timers of Microchip PIC18F Microcontrollers

Using Timers of Microchip PIC18F Microcontrollers Using Timers of Microchip PIC18F Microcontrollers ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it L.A.P.

More information

MT2 Introduction Embedded Systems. MT2.1 Mechatronic systems

MT2 Introduction Embedded Systems. MT2.1 Mechatronic systems MT2 Introduction Embedded Systems MT2.1 Mechatronic systems Mechatronics is the synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing

More information

Setup Information Panosaurus May 3, 2011

Setup Information Panosaurus May 3, 2011 Setup Information Panosaurus 2.0 www.gregwired.com May 3, 2011 Please take the time to read all of the setup information to ensure success and ease of use of this tripod head. Much of the setup is a one

More information

Laboratory Exercise 7 - Extended I/O & Parallel Processing

Laboratory Exercise 7 - Extended I/O & Parallel Processing Laboratory Exercise 7 - Extended I/O & Parallel Processing The purpose of this lab is to make an LED blink first by using the extended I/O function of the Microcontroller, and then by parallel processing

More information

Microprocessors/Microcontrollers

Microprocessors/Microcontrollers Microprocessors/Microcontrollers A central processing unit (CPU) fabricated on one or more chips, containing the basic arithmetic, logic, and control elements of a computer that are required for processing

More information

Supplementary Materials: Fabrication of a Lab on Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria Ab ELISA

Supplementary Materials: Fabrication of a Lab on Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria Ab ELISA S1 of S10 Supplementary Materials: Fabrication of a Lab on Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria Ab ELISA Maria Bauer and Lawrence Kulinsky * 1. Program Code

More information

Table of Content. Part I Introduction

Table of Content. Part I Introduction 3.5 External HDD Enclosure Transform any 3.5 internal hard drive into a high-speed and mobile storage device. User s Manual P/N: ST0008U & ST0010U Table of Content Part I Introduction 1.1 Overview--------------------------------------

More information

Reflowing Xbox 360 Motherboard

Reflowing Xbox 360 Motherboard Reflowing Xbox 360 Motherboard Reflow the solder on your Xbox 360's motherboard. Written By: Andrew Bookholt ifixit CC BY-NC-SA www.ifixit.com Page 1 of 31 INTRODUCTION Use this guide to reflow the solder

More information

Treadmill Integrated LCD Screen Option. Cardio Theater Integrated Bracket Assembly Instructions

Treadmill Integrated LCD Screen Option. Cardio Theater Integrated Bracket Assembly Instructions Treadmill Integrated LCD Screen Option Cardio Theater Integrated Bracket Assembly Instructions Table of Contents 1 2 3 4 5 6 Before You Begin... 4 Obtaining Service... 4 Unpacking the Equipment... 4 Important

More information

Easy Note Alpha Disassembly. Required Tools Disassembly Instructions Reassembly Instructions

Easy Note Alpha Disassembly. Required Tools Disassembly Instructions Reassembly Instructions Easy Note Alpha Disassembly Required Tools Disassembly Instructions Reassembly Instructions Required Tools All Easy Note Alpha maintenance procedures can be performed using the following tools: Tweezers

More information

QRPGuys Single Lever Keyer/Paddle

QRPGuys Single Lever Keyer/Paddle QRPGuys Single Lever Keyer/Paddle First, familiarize yourself with the parts and check for all the components. If a part is missing, please contact us and we will send one. You must use qrpguys.parts@gmail.com

More information

revolution GETTING STARTED Appendix H - Frequently Asked Questions (FAQ). Section 1 92

revolution GETTING STARTED Appendix H - Frequently Asked Questions (FAQ).  Section 1 92 Section 1 92 Appendix H - Frequently Asked Questions (FAQ). Where can I purchase PICAXE microcontrollers? All microcontrollers can be purchased from within the PICAXE section of the online store at www.tech-supplies.co.uk

More information

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab

By the end of Class. Outline. Homework 5. C8051F020 Block Diagram (pg 18) Pseudo-code for Lab 1-2 due as part of prelab By the end of Class Pseudo-code for Lab 1-2 due as part of prelab Homework #5 on website due before next class Outline Introduce Lab 1-2 Counting Timers on C8051 Interrupts Laboratory Worksheet #05 Copy

More information

MTRX3700 Mechatronics

MTRX3700 Mechatronics MTRX3700 Mechatronics 3 2015 PIC18F452 Software Exercises David Rye You are to work in a group of two students to write, debug and demonstrate a series of small assembly language and C programs that meet

More information

An Introduction to Designing Ham Radio Projects with PIC Microcontrollers. George Zafiropoulos KJ6VU

An Introduction to Designing Ham Radio Projects with PIC Microcontrollers. George Zafiropoulos KJ6VU An Introduction to Designing Ham Radio Projects with PIC Microcontrollers George Zafiropoulos KJ6VU Topics Ham radio applications Microcontroller basics Hardware design examples Implementing your design

More information