System Programming and Computer Architecture (Fall 2009)

Size: px
Start display at page:

Download "System Programming and Computer Architecture (Fall 2009)"

Transcription

1 System Programming and Computer Architecture (Fall 2009) Recitation 2 October 8 th, 2009 Zaheer Chothia zchothia@student.ethz.ch Web:

2 Topics for Today Classroom Exercise 1 Review: Data Lab (Homework 2) Classroom Exercise & Homework 3 Parameter passing Control structures in assembly - If statements - Switch statements - For loops Reading condition codes with C Due in one week: October 15 2

3 Assignment 1

4 Review: Assignment 1 Question 3: Unsigned Two s complement x -x Hex Decimal Decimal Hex E D A F

5 Review: Assignment 1 Question 5: float sum = 255.0; E2 = e = = 7 10 M2 = 1.f = float delta = 1.0e-5; E1 = e = = M1 = 1.f =

6 Review: Assignment 1 Question 5: E = max{e1, E2} = 710 M: sum': rounding What happens after adding delta times? 6

7 Classroom Exercise 1

8 Question 5: Conditional branches What is the value of %eax, when the last label (.L3 and.l17 respectively) is reached? 5.1 %eax := a, %edx := d 1 cmpl %eax, %edx 2 jle.l2 3 subl %eax, %edx 4 movl %edx, %eax 5 jmp.l3 6.L2: 7 subl %edx, %eax 8.L3: %eax := 1, %edx := N 1 testl %ecx, %ecx 2 jle.l17 3 xorl %edx, %edx 4.L18: 5 incl %edx 6 addl %eax, %eax 7 cmpl %edx, %ecx 8 jne.l18 9.L17:

9 Question 5: Conditional branches Solution 5.1 %eax := (a - d) if (d > a) { t = d - a; } else { t = a - d; } 5.2 %eax := 2 N t = 1; for (i = 0; i < N; i++) { t = t * 2; } 9

10 Review: Data Lab (Homework 2)

11 Surprising Results Almost half of the students beat the professor Really? Actually, there was a bug in the data lab Written in good old 32 bit times Use of LONG_MIN from limits.h to get T min But: int and long have different size on 64 bit machines Overflow in test code Accepted incorrect solutions To check if your solution is really correct: Pass -m32 to gcc in the Makefile 11

12 Example: islessorequal int islessorequal(int x, int y) { int x_neg = x>>31; int y_neg = y>>31; return!((!x_neg & y_neg) (!(x_neg ^ y_neg) & (y+~x+1)>>31)); } 12

13 Example: islessorequal int islessorequal(int x, int y) { int x_neg = x>>31; int y_neg = y>>31; return!((!x_neg & y_neg) (!(x_neg ^ y_neg) & (y+~x+1)>>31)); } Are x and y negative? 13

14 Example: islessorequal int islessorequal(int x, int y) { int x_neg = x>>31; int y_neg = y>>31; return!((!x_neg & y_neg) (!(x_neg ^ y_neg) & (y+~x+1)>>31)); } Are x and y negative? one is negative and the other is positive 14

15 Example: islessorequal int islessorequal(int x, int y) { int x_neg = x>>31; int y_neg = y>>31; return!((!x_neg & y_neg) (!(x_neg ^ y_neg) & (y+~x+1)>>31)); } Are x and y negative? both have the same sign recall: invert + increment = negate 15

16 Homework 3

17 Assembler: Warm-up exercise 1 movl $0x40, %eax 2 movl (,%eax,4), %ebx 3 leal 0x88(,%eax,2), %ecx 4 movl (%ecx), %ecx 5 cmpl %ecx, %ebx 6 jg L1 7 <Fragment A> 8 jmp L2 9 L1: 10 <Fragment B> 11 L2: Memory Address Value 0x100 0xff 0x104 0xab 0x108 0x01 Which code fragment would be executed? 17

18 Assembler: Warm-up exercise 1 movl $0x40, %eax 2 movl (,%eax,4), %ebx 3 leal 0x88(,%eax,2), %ecx 4 movl (%ecx), %ecx 5 cmpl %ecx, %ebx 6 jg L1 7 <Fragment A> 8 jmp L2 9 L1: 10 <Fragment B> 11 L2: Memory Address Value 0x100 0xff 0x104 0xab 0x108 0x01 Jump Condition %ebx - %ecx > 0 %ebx > %ecx Which code fragment would be executed? 18

19 IA32 Assembler Cheat Sheet Condition Codes Jump Instruction 1 (unconditional) jmp label ZF je label ~ZF jne label SF js label ~SF jns label ~(SF^OF) & ~ZF jg label ~(SF^OF) jge label SF^OF jl label (SF^OF) ZF jle label ~CF & ~ZF ja label CF jb label 19

20 IA32 Assembler Cheat Sheet Condition Codes CF addl Src,Dest cmpl Src2,Src1 testl Src2,Src1 addl a, b t = a + b cmpl a, b Set CCs based on b a Carry or borrow generated out of MSB (unsigned equivalent of overflow flag) testl a, b Set CCs based on a & b ZF t == 0 a == b a & b == 0 SF t < 0 (b-a) < 0 a & b < 0 OF 0 = b (a > 0 && b > 0 && t < 0) (a < 0 && b < 0 && t > 0) 0 20

21 Stack Layout Revisited 21

22 Stack vs. Heap Stack is the place for function parameters and local variables Recursion possible No need for memory management Heap is the place for global variables and dynamically managed memory Explicit memory management Globally accessible 22

23 IA32 Stack Frame Structure Caller Stack Frame Arguments for callee -Pushed from right-to-left ( instruction Return address (call Caller's Frame Arguments Return Addr 23

24 IA32 Stack Frame Structure Caller Stack Frame Arguments for callee -Pushed from right-to-left ( instruction Return address (call Current Stack Frame Caller's Frame Pointer Frame Arguments Return Addr Old %ebp Old frame pointer Saved register context -Callee safe registers ( spilling ) Local variables Current Stack Frame Saved Registers + Local Variables Parameters for next function call Stack Pointer Arguments 24

25 Parameter passing Parameters and return value in assembly int sub(int arg1, int arg2) { return arg1-arg2; } sub: pushl %ebp movl %esp, %ebp movl 12(%ebp), %edx movl 8(%ebp), %eax subl %edx, %eax leave ret 25

26 Control Structures in Assembly - Revisited 26

27 For loops int forloop(int x) { int a, s = x; (++ a for (a=0; a<=8; s += s; return s; } 27

28 For loops int forloop(int x) { int a, s = x; (++ a for (a=0; a<=8; s += s; return s; } int forloop(int x) { int a = 0, s = x; ( 8 > (a if goto done; do { s += s; a++; } while (a <= 8); done: return s; } 28

29 For loops int forloop(int x) { int a, s = x; (++ a for (a=0; a<=8; s += s; return s; } int forloop(int x) { int a = 0, s = x; ( 8 > (a if goto done; do { s += s; a++; } while (a <= 8); done: return s; } forloop: pushl movl subl movl movl movl.test: cmpl jle jmp.body: movl addl leal incl jmp.done: movl leave ret %ebp %esp, %ebp $8, %esp ( 8(%ebp -,$0 8(%ebp), %eax ( 4(%ebp - %eax, ( 8(%ebp -,$8.body.done -4(%ebp), %eax ( 4(%ebp - %eax, -8(%ebp), %eax ( eax %).test -4(%ebp), %eax 29

30 Switch statements Two implementation possibilities: Jump tables vs. nested if-else Question: Advantages and disadvantages? 30

31 Switch statements Two implementation possibilities: Jump tables vs. nested if-else Question: Advantages and disadvantages? Jump tables: constant time If-else: time complexity depends on nb. of cases GCC: Use jump tables when > 4 cases and reasonable range of values 31

32 Example switch (a) { case 100: a+=1; break; case 102: a+=2; case 103: a+=3; break; case 104: case 106: a+=6; default: a+=7; } Jump table: Fall through! Array with addresses of code segments Index = switch index (here: a) Normalize switch index (here: instead of ) 32

33 Example switch (a) { case 100: a+=1; break; case 102: a+=2; case 103: a+=3; break; case 104: case 106: a+=6; default: a+=7; }.L0: leal -100(%eax), %edx cmpl $6, %edx ja.l8 jmp ( L9(,%edx,4.* normalize and jump to right case jump table.section.rodata.align 4.L9:.long.L3 # a==100.long.l8 # a==101.long.l4 # a==102.long.l5 # a==103.long.l7 # a==104.long.l8 # a==105.text.l3:.l4:.l5:.l7:.l8:.l2:.long incl %eax jmp.l2.l7 # a==106 addl $2, %eax # fall through addl $3, %eax jmp.l2 addl $6, %eax # fall through addl $7, %eax 33

34 setx instructions int lessthan(x, y) { return x < y; } movl 12(%ebp), %eax cmpl ( 8(%ebp %eax, setl %al # %al = x < y movzbl %al, %eax # fill rest with 0 ret Integer registers: %eax %ah %ax %al Other setx instructions: sete (ZF), setne (~ZF), sets (SF), setns (~SF), 34

35 Reading condition codes with C EFLAGS register (32 bits): ??? See Intel Architecture Software Developer's Manual (link on course website) 35

36 Quiz 1. Which of the following C expressions has a result value of 0x01? (a)!0x2a (b)!!0x00 (c)!(~0) (d) 0x0102 & (0xff << 8) (e) 0x0102 && (0xff << 8) 36

37 Quiz 1. Which of the following C expressions has a result value of 0x01? (a)!0x2a (b)!!0x00 (c)!(~0) (d) 0x0102 & (0xff << 8) (e) 0x0102 && (0xff << 8) 37

38 Quiz 2. Assuming: 16-bit two s complement integers, Which has the greatest absolute value? (a) 0xffff (b) 0x00ff (c) 0xc000 (d) 0xe000 38

39 Quiz 2. Assuming: 16-bit two s complement integers, Which has the greatest absolute value? (a) 0xffff (b) 0x00ff (c) 0xc000 (d) 0xe000 39

40 Quiz 3. Tiny floating-point: sign bit, 2 bit exponent, 2 bit fraction Which bit pattern corresponds to +1 10? (a) (b) (c) (d) (e)

41 Quiz 3. Tiny floating-point: sign bit, 2 bit exponent, 2 bit fraction Which bit pattern corresponds to +1 10? (a) (b) (c) (d) (e)

42 Quiz 4. Single-precision floating-point: sign bit, 8 bit exponent, 23 bit fraction Which has the greatest value? (a) 0x (b) 0x (c) 0x (d) 0x (e) 0xc

43 Quiz 4. Single-precision floating-point: sign bit, 8 bit exponent, 23 bit fraction Which has the greatest value? (a) 0x (b) 0x (c) 0x (d) 0x (e) 0xc

44 Quiz 5. In assembly code corresponding to a C function, a reference to an operand at memory location -8(%ebp) most likely corresponds to: (a) a local variable declared within that function (b) a global variable declared within that function (c) an incoming parameter value for that function (d) a dynamically allocated variable from the heap 44

45 Quiz 5. In assembly code corresponding to a C function, a reference to an operand at memory location -8(%ebp) most likely corresponds to: (a) a local variable declared within that function (b) a global variable declared within that function (c) an incoming parameter value for that function (d) a dynamically allocated variable from the heap 45

46 That's all for today! Questions? 46

Machine-Level Programming II: Control and Arithmetic

Machine-Level Programming II: Control and Arithmetic Machine-Level Programming II: Control and Arithmetic CSCI 2400: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides 1 Today Complete addressing mode, address

More information

The Hardware/Software Interface CSE351 Spring 2013

The Hardware/Software Interface CSE351 Spring 2013 The Hardware/Software Interface CSE351 Spring 2013 x86 Programming II 2 Today s Topics: control flow Condition codes Conditional and unconditional branches Loops 3 Conditionals and Control Flow A conditional

More information

Machine Level Programming II: Arithmetic &Control

Machine Level Programming II: Arithmetic &Control Machine Level Programming II: Arithmetic &Control Arithmetic operations Control: Condition codes Conditional branches Loops Switch Kai Shen 1 2 Some Arithmetic Operations Two Operand Instructions: Format

More information

Machine-Level Programming II: Control Flow

Machine-Level Programming II: Control Flow Machine-Level Programming II: Control Flow Today Condition codes Control flow structures Next time Procedures Fabián E. Bustamante, Spring 2010 Processor state (ia32, partial) Information about currently

More information

Sungkyunkwan University

Sungkyunkwan University - 2 - Complete addressing mode, address computation (leal) Arithmetic operations Control: Condition codes Conditional branches While loops - 3 - Most General Form D(Rb,Ri,S) Mem[ Reg[ R b ] + S Reg[ R

More information

Machine-Level Programming II: Arithmetic & Control /18-243: Introduction to Computer Systems 6th Lecture, 5 June 2012

Machine-Level Programming II: Arithmetic & Control /18-243: Introduction to Computer Systems 6th Lecture, 5 June 2012 n Mello Machine-Level Programming II: Arithmetic & Control 15-213/18-243: Introduction to Computer Systems 6th Lecture, 5 June 2012 Instructors: Gregory Kesden The course that gives CMU its Zip! Last Time:

More information

Process Layout and Function Calls

Process Layout and Function Calls Process Layout and Function Calls CS 6 Spring 07 / 8 Process Layout in Memory Stack grows towards decreasing addresses. is initialized at run-time. Heap grow towards increasing addresses. is initialized

More information

Chapter 3 Machine-Level Programming II Control Flow

Chapter 3 Machine-Level Programming II Control Flow Chapter 3 Machine-Level Programming II Control Flow Topics Condition Codes Setting Testing Control Flow If-then-else Varieties of Loops Switch Statements Condition Codes Single Bit Registers CF Carry Flag

More information

Machine-Level Programming II: Arithmetic & Control. Complete Memory Addressing Modes

Machine-Level Programming II: Arithmetic & Control. Complete Memory Addressing Modes Machine-Level Programming II: Arithmetic & Control CS-281: Introduction to Computer Systems Instructor: Thomas C. Bressoud 1 Complete Memory Addressing Modes Most General Form D(Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]+

More information

Credits to Randy Bryant & Dave O Hallaron

Credits to Randy Bryant & Dave O Hallaron Mellon Machine Level Programming II: Arithmetic & Control Lecture 4, March 10, 2011 Alexandre David Credits to Randy Bryant & Dave O Hallaron from Carnegie Mellon 1 Today Complete addressing mode, address

More information

CS61 Section Solutions 3

CS61 Section Solutions 3 CS61 Section Solutions 3 (Week of 10/1-10/5) 1. Assembly Operand Specifiers 2. Condition Codes 3. Jumps 4. Control Flow Loops 5. Procedure Calls 1. Assembly Operand Specifiers Q1 Operand Value %eax 0x104

More information

CS241 Computer Organization Spring Addresses & Pointers

CS241 Computer Organization Spring Addresses & Pointers CS241 Computer Organization Spring 2015 Addresses & Pointers 2-24 2015 Outline! Addresses & Pointers! leal - load effective address! Condition Codes & Jumps! conditional statements: if-then-else! conditional

More information

ASSEMBLY II: CONTROL FLOW. Jo, Heeseung

ASSEMBLY II: CONTROL FLOW. Jo, Heeseung ASSEMBLY II: CONTROL FLOW Jo, Heeseung IA-32 PROCESSOR STATE Temporary data Location of runtime stack %eax %edx %ecx %ebx %esi %edi %esp %ebp General purpose registers Current stack top Current stack frame

More information

Assembly II: Control Flow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly II: Control Flow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly II: Control Flow Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32 Processor State %eax %edx Temporary data Location of runtime stack

More information

You may work with a partner on this quiz; both of you must submit your answers.

You may work with a partner on this quiz; both of you must submit your answers. Instructions: Choose the best answer for each of the following questions. It is possible that several answers are partially correct, but one answer is best. It is also possible that several answers are

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 2 nd Edition by Bryant and O'Hallaron

More information

CISC 360. Machine-Level Programming II: Control Flow Sep 23, 2008

CISC 360. Machine-Level Programming II: Control Flow Sep 23, 2008 CISC 360 Machine-Level Programming II: Control Flow Sep 23, 2008 class06 Topics Condition Codes Setting Testing Control Flow If-then-else Varieties of Loops Switch Statements Condition Codes Single Bit

More information

CS 33. Machine Programming (2) CS33 Intro to Computer Systems XII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved.

CS 33. Machine Programming (2) CS33 Intro to Computer Systems XII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. CS 33 Machine Programming (2) CS33 Intro to Computer Systems XII 1 Copyright 2017 Thomas W. Doeppner. All rights reserved. Processor State (x86-64, Partial) %rax %eax %r8 %r8d %rbx %ebx %r9 %r9d %rcx %ecx

More information

Page # CISC 360. Machine-Level Programming II: Control Flow Sep 23, Condition Codes. Setting Condition Codes (cont.)

Page # CISC 360. Machine-Level Programming II: Control Flow Sep 23, Condition Codes. Setting Condition Codes (cont.) CISC 360 Machine-Level Programming II: Control Flow Sep 23, 2008 class06 Topics Condition Codes Setting Testing Control Flow If-then-else Varieties of Loops Switch Statements Condition Codes Single Bit

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College February 9, 2016 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College February 9, 2016 Reading Quiz Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between

More information

Control flow. Condition codes Conditional and unconditional jumps Loops Switch statements

Control flow. Condition codes Conditional and unconditional jumps Loops Switch statements Control flow Condition codes Conditional and unconditional jumps Loops Switch statements 1 Conditionals and Control Flow Familiar C constructs l l l l l l if else while do while for break continue Two

More information

Process Layout, Function Calls, and the Heap

Process Layout, Function Calls, and the Heap Process Layout, Function Calls, and the Heap CS 6 Spring 20 Prof. Vern Paxson TAs: Devdatta Akhawe, Mobin Javed, Matthias Vallentin January 9, 20 / 5 2 / 5 Outline Process Layout Function Calls The Heap

More information

Condition Codes The course that gives CMU its Zip! Machine-Level Programming II Control Flow Sept. 13, 2001 Topics

Condition Codes The course that gives CMU its Zip! Machine-Level Programming II Control Flow Sept. 13, 2001 Topics 15-213 The course that gives CMU its Zip! Machine-Level Programming II Control Flow Sept. 13, 2001 Topics Condition Codes Setting Testing Control Flow If-then-else Varieties of Loops Switch Statements

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 2 nd Edition by Bryant and O'Hallaron

More information

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018

CS 31: Intro to Systems ISAs and Assembly. Kevin Webb Swarthmore College September 25, 2018 CS 31: Intro to Systems ISAs and Assembly Kevin Webb Swarthmore College September 25, 2018 Overview How to directly interact with hardware Instruction set architecture (ISA) Interface between programmer

More information

Machine Programming 2: Control flow

Machine Programming 2: Control flow Machine Programming 2: Control flow CS61, Lecture 4 Prof. Stephen Chong September 13, 2011 Announcements Assignment 1 due today, 11:59pm Hand in at front during break or email it to cs61- staff@seas.harvard.edu

More information

CS 3843 Final Exam Fall 2012

CS 3843 Final Exam Fall 2012 CS 3843 Final Exam Fall 2012 Name (Last), (First) ID Please indicate your session: Morning Afternoon You may use a calculator and two sheets of notes on this exam, but no other materials and no computer.

More information

Condition Codes. Lecture 4B Machine-Level Programming II: Control Flow. Setting Condition Codes (cont.) Setting Condition Codes (cont.

Condition Codes. Lecture 4B Machine-Level Programming II: Control Flow. Setting Condition Codes (cont.) Setting Condition Codes (cont. Lecture 4B Machine-Level Programming II: Control Flow Topics Condition Codes Setting Testing Control Flow If-then-else Varieties of Loops Switch Statements Condition Codes Single Bit Registers CF Carry

More information

CS 33. Machine Programming (2) CS33 Intro to Computer Systems XI 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

CS 33. Machine Programming (2) CS33 Intro to Computer Systems XI 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. CS 33 Machine Programming (2) CS33 Intro to Computer Systems XI 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Observations about arith int arith(int x, int y, int z) { int t1 = x+y; int t2

More information

Machine- Level Programming II: Arithme6c & Control

Machine- Level Programming II: Arithme6c & Control Machine- Level Programming II: Arithme6c & Control 15-213: Introduc0on to Computer Systems 5 th Lecture, Sep. 7, 2010 Instructors: Randy Bryant and Dave O Hallaron Modified by Karen L. Karavanic 2015 1

More information

Homework 0: Given: k-bit exponent, n-bit fraction Find: Exponent E, Significand M, Fraction f, Value V, Bit representation

Homework 0: Given: k-bit exponent, n-bit fraction Find: Exponent E, Significand M, Fraction f, Value V, Bit representation Homework 0: 2.84 Given: k-bit exponent, n-bit fraction Find: Exponent E, Significand M, Fraction f, Value V, Bit representation Homework 0: 2.84 Given: k-bit exponent, n-bit fraction 7.0: 0111 = 1.11 2

More information

CF Carry Flag SF Sign Flag ZF Zero Flag OF Overflow Flag. ! CF set if carry out from most significant bit. "Used to detect unsigned overflow

CF Carry Flag SF Sign Flag ZF Zero Flag OF Overflow Flag. ! CF set if carry out from most significant bit. Used to detect unsigned overflow Lecture 4B Machine-Level Programming II: Control Flow Topics! Condition Codes " Setting " Testing! Control Flow " If-then-else " Varieties of Loops " Switch Statements Condition Codes Single Bit Registers

More information

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions?

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? exam on Wednesday today s material not on the exam 1 Assembly Assembly is programming

More information

Machine- Level Programming II: Arithme c & Control

Machine- Level Programming II: Arithme c & Control Machine- Level Programming II: Arithme c & Control 15-213 / 18-213: Introduc on to Computer Systems 6 th Lecture, Sep. 12, 2013 Instructors: Randy Bryant, David O Hallaron, and Greg Kesden 1 Today Complete

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Machine-Level Programming II: Control Flow Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created

More information

Introduction to Computer Systems. Exam 1. February 22, Model Solution fp

Introduction to Computer Systems. Exam 1. February 22, Model Solution fp 15-213 Introduction to Computer Systems Exam 1 February 22, 2005 Name: Andrew User ID: Recitation Section: Model Solution fp This is an open-book exam. Notes are permitted, but not computers. Write your

More information

Machine- Level Programming II: Arithme6c & Control

Machine- Level Programming II: Arithme6c & Control Machine- Level Programming II: Arithme6c & Control Computer Architecture Instructor: Norbert Lu*enberger based on the book by Randy Bryant and Dave O Hallaron 1 Today Complete addressing mode, address

More information

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

Machine-Level Programming II: Control

Machine-Level Programming II: Control Machine-Level Programming II: Control CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides 1 Today Control: Condition codes Conditional

More information

Machine-Level Programming II: Control

Machine-Level Programming II: Control Mellon Machine-Level Programming II: Control CS140 Computer Organization and Assembly Slides Courtesy of: Randal E. Bryant and David R. O Hallaron 1 First https://www.youtube.com/watch?v=ivuu8jobb1q 2

More information

Second Part of the Course

Second Part of the Course CSC 2400: Computer Systems Towards the Hardware 1 Second Part of the Course Toward the hardware High-level language (C) assembly language machine language (IA-32) 2 High-Level Language g Make programming

More information

Machine- level Programming II: Control Flow

Machine- level Programming II: Control Flow Machine- level Programming II: Control Flow Topics Condi;on Codes Se=ng Tes;ng Control Flow If- then- else Varie;es of Loops Switch Statements 1! Condi;on Codes Single Bit Registers CF Carry Flag SF Sign

More information

Assembly Language: IA-32 Instructions

Assembly Language: IA-32 Instructions Assembly Language: IA-32 Instructions 1 Goals of this Lecture Help you learn how to: Manipulate data of various sizes Leverage more sophisticated addressing modes Use condition codes and jumps to change

More information

CISC 360. Machine-Level Programming II: Control Flow Sep 17, class06

CISC 360. Machine-Level Programming II: Control Flow Sep 17, class06 CISC 360 Machine-Level Programming II: Control Flow Sep 17, 2009 class06 Condition Codes 2 Setting Condition Codes (cont.) 3 Setting Condition Codes (cont.) 4 Reading Condition Codes SetX Condition Description

More information

Machine Level Programming: Control

Machine Level Programming: Control Machine Level Programming: Control Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed

More information

Questions about last homework? (Would more feedback be useful?) New reading assignment up: due next Monday

Questions about last homework? (Would more feedback be useful?) New reading assignment up: due next Monday Questions about last homework? (Would more feedback be useful?) New reading assignment up: due next Monday addl: bitwise for signed (& unsigned) 4 bits: 1000 = -8, 0111 = 7-8 + -8 = -16 = 0 1000 + 1000

More information

CPSC W Term 2 Problem Set #3 - Solution

CPSC W Term 2 Problem Set #3 - Solution 1. (a) int gcd(int a, int b) { if (a == b) urn a; else if (a > b) urn gcd(a - b, b); else urn gcd(a, b - a); CPSC 313 06W Term 2 Problem Set #3 - Solution.file "gcdrec.c".globl gcd.type gcd, @function

More information

This is a medical robot, guided by a skilled surgeon and designed to get to places doctors are unable to reach without opening a pacent up.

This is a medical robot, guided by a skilled surgeon and designed to get to places doctors are unable to reach without opening a pacent up. BBC Headline: Slashdot Headline: Robots join the fight against cancer Robot Snakes To Fight Cancer Via Natural Orifice Surgery This is a medical robot, guided by a skilled surgeon and designed to get to

More information

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G CS 33: Week 3 Discussion x86 Assembly (v1.0) Section 1G Announcements - HW2 due Sunday - MT1 this Thursday! - Lab2 out Info Name: Eric Kim (Section 1G, 2-4 PM, BH 5419) Office Hours (Boelter 2432) - Wed

More information

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs CSC 2400: Computer Systems Towards the Hardware: Machine-Level Representation of Programs Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32)

More information

Credits and Disclaimers

Credits and Disclaimers Credits and Disclaimers 1 The examples and discussion in the following slides have been adapted from a variety of sources, including: Chapter 3 of Computer Systems 3 nd Edition by Bryant and O'Hallaron

More information

CS241 Computer Organization Spring 2015 IA

CS241 Computer Organization Spring 2015 IA CS241 Computer Organization Spring 2015 IA-32 2-10 2015 Outline! Review HW#3 and Quiz#1! More on Assembly (IA32) move instruction (mov) memory address computation arithmetic & logic instructions (add,

More information

Introduction to Computer Systems. Exam 1. February 22, This is an open-book exam. Notes are permitted, but not computers.

Introduction to Computer Systems. Exam 1. February 22, This is an open-book exam. Notes are permitted, but not computers. 15-213 Introduction to Computer Systems Exam 1 February 22, 2005 Name: Andrew User ID: Recitation Section: This is an open-book exam. Notes are permitted, but not computers. Write your answer legibly in

More information

Page 1. Condition Codes CISC 360. Machine-Level Programming II: Control Flow Sep 17, Setting Condition Codes (cont.)

Page 1. Condition Codes CISC 360. Machine-Level Programming II: Control Flow Sep 17, Setting Condition Codes (cont.) CISC 360 Condition Codes Machine-Level Programming II: Control Flow Sep 17, 2009 class06 2 Setting Condition Codes (cont.) Setting Condition Codes (cont.) 3 4 Page 1 Reading Condition Codes Reading Condition

More information

CSC 8400: Computer Systems. Machine-Level Representation of Programs

CSC 8400: Computer Systems. Machine-Level Representation of Programs CSC 8400: Computer Systems Machine-Level Representation of Programs Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32) 1 Compilation Stages

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View! Processor

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View Processor

More information

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only

4) C = 96 * B 5) 1 and 3 only 6) 2 and 4 only Instructions: The following questions use the AT&T (GNU) syntax for x86-32 assembly code, as in the course notes. Submit your answers to these questions to the Curator as OQ05 by the posted due date and

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant adapted by Jason Fritts http://csapp.cs.cmu.edu CS:APP2e Hardware Architecture - using Y86 ISA For learning aspects

More information

x86-64 Programming II

x86-64 Programming II x86-64 Programming II CSE 351 Winter 2018 Instructor: Mark Wyse Teaching Assistants: Kevin Bi Parker DeWilde Emily Furst Sarah House Waylon Huang Vinny Palaniappan http://xkcd.com/409/ Administrative Homework

More information

Assembly II: Control Flow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly II: Control Flow. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly II: Control Flow Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Processor State (x86-64) RAX 63 31 EAX 0 RBX EBX RCX RDX ECX EDX General-purpose

More information

Instruction Set Architecture

Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

CISC 360 Instruction Set Architecture

CISC 360 Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

CS367. Program Control

CS367. Program Control CS367 Program Control outline program control condition codes branching looping conditional moves switches (special case of branching) Condition Codes Processor State (x86-64, Partial) Info about currently

More information

CPS104 Recitation: Assembly Programming

CPS104 Recitation: Assembly Programming CPS104 Recitation: Assembly Programming Alexandru Duțu 1 Facts OS kernel and embedded software engineers use assembly for some parts of their code some OSes had their entire GUIs written in assembly in

More information

Control. Young W. Lim Mon. Young W. Lim Control Mon 1 / 16

Control. Young W. Lim Mon. Young W. Lim Control Mon 1 / 16 Control Young W. Lim 2016-11-21 Mon Young W. Lim Control 2016-11-21 Mon 1 / 16 Outline 1 Introduction References Condition Code Accessing the Conditon Codes Jump Instructions Translating Conditional Branches

More information

Sungkyunkwan University

Sungkyunkwan University Switch statements IA 32 Procedures Stack Structure Calling Conventions Illustrations of Recursion & Pointers long switch_eg (long x, long y, long z) { long w = 1; switch(x) { case 1: w = y*z; break; case

More information

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View Computer Architecture I Instruction Set Architecture Assembly Language View Processor state Registers, memory, Instructions addl, movl, andl, How instructions are encoded as bytes Layer of Abstraction

More information

Assembly II: Control Flow

Assembly II: Control Flow Assembly II: Control Flow Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE2030: Introduction to Computer Systems, Spring 2018, Jinkyu Jeong (jinkyu@skku.edu)

More information

Machine-Level Programming (2)

Machine-Level Programming (2) Machine-Level Programming (2) Yanqiao ZHU Introduction to Computer Systems Project Future (Fall 2017) Google Camp, Tongji University Outline Control Condition Codes Conditional Branches and Conditional

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and returning Passing parameters Storing local variables Handling registers without interference

More information

Assembly Programming III

Assembly Programming III Assembly Programming III CSE 410 Winter 2017 Instructor: Justin Hsia Teaching Assistants: Kathryn Chan, Kevin Bi, Ryan Wong, Waylon Huang, Xinyu Sui Facebook Stories puts a Snapchat clone above the News

More information

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature

CSE2421 FINAL EXAM SPRING Name KEY. Instructions: Signature CSE2421 FINAL EXAM SPRING 2013 Name KEY Instructions: This is a closed-book, closed-notes, closed-neighbor exam. Only a writing utensil is needed for this exam. No calculators allowed. If you need to go

More information

X86 Addressing Modes Chapter 3" Review: Instructions to Recognize"

X86 Addressing Modes Chapter 3 Review: Instructions to Recognize X86 Addressing Modes Chapter 3" Review: Instructions to Recognize" 1 Arithmetic Instructions (1)! Two Operand Instructions" ADD Dest, Src Dest = Dest + Src SUB Dest, Src Dest = Dest - Src MUL Dest, Src

More information

CS 261 Fall Mike Lam, Professor. x86-64 Control Flow

CS 261 Fall Mike Lam, Professor. x86-64 Control Flow CS 261 Fall 2018 Mike Lam, Professor x86-64 Control Flow Topics Condition codes Jumps Conditional moves Jump tables Motivation We cannot translate the following C function to assembly, using only data

More information

Do not turn the page until 5:10.

Do not turn the page until 5:10. University of Washington Computer Science & Engineering Autumn 2018 Instructor: Justin Hsia 2018-10-29 Last Name: First Name: Student ID Number: Name of person to your Left Right All work is my own. I

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and returning" Passing parameters" Storing local variables" Handling registers without interference"

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and urning" Passing parameters" Storing local variables" Handling registers without interference"

More information

2/12/2016. Today. Machine-Level Programming II: Control. Condition Codes (Implicit Setting) Processor State (x86-64, Partial)

2/12/2016. Today. Machine-Level Programming II: Control. Condition Codes (Implicit Setting) Processor State (x86-64, Partial) Today Machine-Level Programming II: Control CSci 2021: Machine Architecture and Organization Lectures #9-11, February 8th-12th, 2016 Control: Condition codes Conditional branches Loops Switch Statements

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

Chapter 4 Processor Architecture: Y86 (Sections 4.1 & 4.3) with material from Dr. Bin Ren, College of William & Mary

Chapter 4 Processor Architecture: Y86 (Sections 4.1 & 4.3) with material from Dr. Bin Ren, College of William & Mary Chapter 4 Processor Architecture: Y86 (Sections 4.1 & 4.3) with material from Dr. Bin Ren, College of William & Mary 1 Outline Introduction to assembly programing Introduction to Y86 Y86 instructions,

More information

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and urning Passing parameters Storing local variables Handling registers without interference Returning

More information

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110 Questions 1 Question 4.1 1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a program. Your definition should describe the primary purpose of each phase. Question

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: February 26, 2018 at 12:02 CS429 Slideset 8: 1 Controlling Program

More information

x86 Programming II CSE 351 Winter

x86 Programming II CSE 351 Winter x86 Programming II CSE 351 Winter 2017 http://xkcd.com/1652/ Administrivia 2 Address Computation Instruction v leaq src, dst lea stands for load effective address src is address expression (any of the

More information

Assembly Language: Part 2

Assembly Language: Part 2 Assembly Language: Part 2 1 Goals of this Lecture Help you learn: Intermediate aspects of IA-32 assembly language Control flow with signed integers Control flow with unsigned integers Arrays Structures

More information

Instructor: Alvin R. Lebeck

Instructor: Alvin R. Lebeck X86 Assembly Programming with GNU assembler Lecture 7 Instructor: Alvin R. Lebeck Some Slides based on those from Randy Bryant and Dave O Hallaron Admin Reading: Chapter 3 Note about pointers: You must

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Warren Hunt, Jr. and Bill Young Department of Computer Sciences University of Texas at Austin Last updated: October 1, 2014 at 12:03 CS429 Slideset 6: 1 Topics

More information

CS213. Machine-Level Programming III: Procedures

CS213. Machine-Level Programming III: Procedures CS213 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows toward

More information

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly III: Procedures Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32 (1) Characteristics Region of memory managed with stack discipline

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition 1 Machine-Level Programming II: Control 15-213: Introduction to Computer Systems 6 th Lecture, Sept. 13, 2018 2 Today Control: Condition codes Conditional branches Loops Switch Statements 3 Recall: ISA

More information

Machine Language CS 3330 Samira Khan

Machine Language CS 3330 Samira Khan Machine Language CS 3330 Samira Khan University of Virginia Feb 2, 2017 AGENDA Logistics Review of Abstractions Machine Language 2 Logistics Feedback Not clear Hard to hear Use microphone Good feedback

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2016 Lecture 12

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2016 Lecture 12 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2016 Lecture 12 CS24 MIDTERM Midterm format: 6 hour overall time limit, multiple sittings (If you are focused on midterm, clock should be running.) Open book

More information

Machine-level Programming (3)

Machine-level Programming (3) Machine-level Programming (3) Procedures A: call A call A return Two issues How to return to the correct position? How to pass arguments and return values between callee to caller? 2 Procedure Control

More information

CSE351 Autumn 2014 Midterm Exam (29 October 2014)

CSE351 Autumn 2014 Midterm Exam (29 October 2014) CSE351 Autumn 2014 Midterm Exam (29 October 2014) (Version A) Please read through the entire examination first! We designed this exam so that it can be completed in 50 minutes and, hopefully, this estimate

More information

The Hardware/Software Interface CSE351 Spring 2015

The Hardware/Software Interface CSE351 Spring 2015 The Hardware/Software Interface CSE351 Spring 2015 Lecture 8 Instructor: Katelin Bailey Teaching Assistants: Kaleo Brandt, Dylan Johnson, Luke Nelson, Alfian Rizqi, Kritin Vij, David Wong, and Shan Yang

More information

CS , Fall 2004 Exam 1

CS , Fall 2004 Exam 1 Andrew login ID: Full Name: CS 15-213, Fall 2004 Exam 1 Tuesday October 12, 2004 Instructions: Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID on the front.

More information