CS 315 Data Structures mid-term 2

Size: px
Start display at page:

Download "CS 315 Data Structures mid-term 2"

Transcription

1 CS 315 Data Structures mid-term 2 1) Shown below is an AVL tree T. Nov 14, 2012 Solutions to OPEN BOOK section. (a) Suggest a key whose insertion does not require any rotation. 18 (b) Suggest a key, if it exists, whose insertion requires a single rotation. 45 (c) Suggest a key, if it exists, whose insertion requires a double rotation. 50 (d) Given that the last operation was inserting the key 48 and that this insertion involved a rotation, exhibit the tree prior to inserting 48. One solution is as follows: (e) Exhibit that the AVL tree that results from inserting 39 into T.

2 2) (a) Suggest a data structure that can support the operations INSERT and FINDMIN with worstcase O(1) cost per operation. Your solution should include the description of the data members of the class that supports the operations (illustrated with a diagram), and actual code to implement INSERT and FINDMIN operations. FINDMIN will return the smallest key currently stored, but will not remove it. (Note: there is a simple solution to this problem.) Informal outline: Use an unsorted array KEYS to keep the keys inserted. Insertion can be done in O(1) time by simply adding the new key to the end of the array. A data member LastPtr will point to the last member of the array. In addition, keep a variable MinPtr that holds the index of the min key. This will allow us to perform FINDMIN in O(1) time. But this will require a small change to INSERT. Compare the new key with the current min and update MinPtr if needed. Code for INSERT and FINDMIN: void INSERT(<comparable> x) { KEYS[++LastPtr] = x; if (x < KEYS[MinPtr]) MinPtr = LastPtr; <comparable> FINDMIN() { return KEYS[MinPtr];

3 (b) Suggest a simple modification to a standard data structure studied in class to support the operations SEARCH, INSERT and DELETE in O(log n) time in the worst-case, and FINDMIN in O(1) time in the worst-case. You don t have to write any code for this problem. Describe the changes you would make to a standard data structure informally and explain how this would meet the performance goals. Since the set of operations we want to support includes all the dictionary operations and we require worst-case O(log n) performance, the only choice we have is to use AVL tree. But using AVL tree directly will not give us O(1) bound for FINDMIN. So we need to add an extra data member - a pointer to the node containing the minimum key. (Tree* MinPtr) This will immediately allow us to implement FINDMIN in O(1) time. (Simply return MinPtr->key will do it.) However, this will require us to modify the code for insert and delete. A simple way to do this is as follows: after every INSERT or DELETE operation, start at the root of the tree and follow a chain of left links until you reach a node with no left child. Reset MinPtr to point to this node. Note that this additional cost is within acceptable bound for Insert and Delete operations. 3) When assigned to write a function checkbst to test if a given binary tree is a binary search tree, a student wrote the following program. (The binary tree has the usual fields key, left and right.) bool checkbst(tree* T) { // test if T points to a binary search tree if (T == NULL) return true; if!(checkbst(t->left)) return false; if!(checkbst(t->right)) return false; if (T->left!= NULL) && (T->left->key > T->key)) return false; if (T->right!= NULL) && (T->right->key < T->key) return false;

4 return true; (a) If it exists, exhibit a binary tree that is not a binary search tree for which the above program will produce a correct output. We want a non-bst that is correctly classified by the above function as a non- BST. One such tree is (b) If it exists, exhibit a binary tree that is not a binary search tree for which the above program will produce a wrong output. We want a non-bst that is incorrectly classified by the above function as a BST. One such tree is: (c) If it exists, exhibit a binary tree that is a binary search tree for which the above program will produce a wrong output. We want a BST that is incorrectly classified by the above function as a BST. Such tree does not exist since all the conditions tested by the above function are required to be satisfied by a BST. (d) If it exists, exhibit a binary tree that is a binary search tree for which the above program will produce a correct output. We want a BST that is correctly classified by the above function as a BST. One such tree is

5 4) Consider a binary search tree, in which in addition to the standard fields (key, left and right) each node has an integer field called size, which stores the number of elements in the subtree rooted at this node. In a range query we are given two key values x1 and x2 and wish to return a count of the number of elements in the tree whose key value x satisfies x1 < x <= x2. Write a function to implement this operation, and briefly explain how your algorithm works. Your code should closely resemble c++ and should run in O(h) time, where h is the height of the tree. Informal description of the algorithm: We write a helper function called CountLessThan that takes as input a tree pointer T and a key K, and returns the number of number of nodes in the tree that are < K. The range query can be answered by computing CountLessThan(x2) CountLessThan(x1), then adding 1 if x2 is in the tree. int range(tree* T, int x1, int x2) { return CountLessThan(T, x2) CountLessThan(T, x1)+ find(t, x2); Here we assume that find returns 0 or 1 depending on whether x2 is (is not) in the tree T. The function CountLessThan works as follows: it takes as input a tree pointer T and int K. If the root key x <= K, then we can recursively return CountLessThan(T->left, K). Else, x > K. Thus, all the keys in the left subtree together with the root key should be included in the count. Add to this, the value returned by the recursive call CountLessThan(T->right, K). Note that the number of times the call is made is O(h) and after each call, a constant number of additional operations are performed thus the total cost is O(h):

6 5) int CountLessThan(Tree* T, int K) { if (T== NULL) return 0; if (T->key <= K) return CountLessThn(T->left, K); else { int temp; if (T->left == NULL) temp = 0; else temp = T->left->size; return 1 + temp + CountLessThan(T->right, K); Here h(x) denotes the primary hash function and g(x) denotes the secondary hash function. (a) 2, 3, 4 (b) 2, 3, 6, 1 (c) 2, 9, 6, 3, 0 The last index is the position in which the key is inserted.

CS 315 Data Structures Spring 2012 Final examination Total Points: 80

CS 315 Data Structures Spring 2012 Final examination Total Points: 80 CS 315 Data Structures Spring 2012 Final examination Total Points: 80 Name This is an open-book/open-notes exam. Write the answers in the space provided. Answer for a total of 80 points, including at least

More information

8. Binary Search Tree

8. Binary Search Tree 8 Binary Search Tree Searching Basic Search Sequential Search : Unordered Lists Binary Search : Ordered Lists Tree Search Binary Search Tree Balanced Search Trees (Skipped) Sequential Search int Seq-Search

More information

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam December 13, 2013 Section I A COMPUTER SCIENCE NO books, notes, or calculators may be used, and you must work entirely on your own. SOLUTION Question # Max Pts Category

More information

CSE332 Summer 2010: Midterm Exam Sample Solutions

CSE332 Summer 2010: Midterm Exam Sample Solutions CSE332 Summer 2010: Midterm Exam Sample Solutions Closed notes, closed book; calculator ok. Read the instructions for each problem carefully before answering. Problems vary in point-values, difficulty

More information

Fall, 2015 Prof. Jungkeun Park

Fall, 2015 Prof. Jungkeun Park Data Structures and Algorithms Binary Search Trees Fall, 2015 Prof. Jungkeun Park Copyright Notice: This material is modified version of the lecture slides by Prof. Rada Mihalcea in Univ. of North Texas.

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination University of Illinois at Urbana-Champaign Department of Computer Science Second Examination CS 225 Data Structures and Software Principles Spring 2014 7-10p, Tuesday, April 8 Name: NetID: Lab Section

More information

Exam Data structures DIT960/DAT036

Exam Data structures DIT960/DAT036 Exam Data structures DIT960/DAT036 Time Monday 26th May 2014, 14:00 18:00 Place Hörsalsvägen Course responsible Nick Smallbone, tel. 0707 183062 The exam consists of six questions. Some of the questions

More information

University of Waterloo Department of Electrical and Computer Engineering ECE250 Algorithms and Data Structures Fall 2014

University of Waterloo Department of Electrical and Computer Engineering ECE250 Algorithms and Data Structures Fall 2014 University of Waterloo Department of Electrical and Computer Engineering ECE250 Algorithms and Data Structures Fall 2014 Midterm Examination Instructor: Ladan Tahvildari, PhD, PEng, SMIEEE Date: Tuesday,

More information

Dictionaries. Priority Queues

Dictionaries. Priority Queues Red-Black-Trees.1 Dictionaries Sets and Multisets; Opers: (Ins., Del., Mem.) Sequential sorted or unsorted lists. Linked sorted or unsorted lists. Tries and Hash Tables. Binary Search Trees. Priority Queues

More information

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Autumn 2013: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

CS 350 : Data Structures Binary Search Trees

CS 350 : Data Structures Binary Search Trees CS 350 : Data Structures Binary Search Trees David Babcock (courtesy of James Moscola) Department of Physical Sciences York College of Pennsylvania James Moscola Introduction to Binary Search Trees A binary

More information

CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators) Name: Email address: Quiz Section: CSE 332 Spring 2014: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will

More information

CS102 Binary Search Trees

CS102 Binary Search Trees CS102 Binary Search Trees Prof Tejada 1 To speed up insertion, removal and search, modify the idea of a Binary Tree to create a Binary Search Tree (BST) Binary Search Trees Binary Search Trees have one

More information

Exam Data structures DAT036/DAT037/DIT960

Exam Data structures DAT036/DAT037/DIT960 Exam Data structures DAT036/DAT037/DIT960 Time Thursday 18 th August 2016, 08:30 12:30 Place Maskinhuset / SB Multisal Course responsible Nick Smallbone, tel. 0707 183062 The exam consists of six questions.

More information

CS350: Data Structures Binary Search Trees

CS350: Data Structures Binary Search Trees Binary Search Trees James Moscola Department of Engineering & Computer Science York College of Pennsylvania James Moscola Introduction to Binary Search Trees A binary search tree is a binary tree that

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

CS 261 Data Structures. AVL Trees

CS 261 Data Structures. AVL Trees CS 261 Data Structures AVL Trees 1 Binary Search Tree Complexity of BST operations: proportional to the length of the path from a node to the root Unbalanced tree: operations may be O(n) E.g.: adding elements

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 9: Binary Search Trees. 10/7/015 Daniel Bauer 1 Contents 1. Binary Search Trees. Implementing Maps with BSTs Map ADT A map is collection of (key, value) pairs. Keys are

More information

Section 1: True / False (1 point each, 15 pts total)

Section 1: True / False (1 point each, 15 pts total) Section : True / False ( point each, pts total) Circle the word TRUE or the word FALSE. If neither is circled, both are circled, or it impossible to tell which is circled, your answer will be considered

More information

Week 2. TA Lab Consulting - See schedule (cs400 home pages) Peer Mentoring available - Friday 8am-12pm, 12:15-1:30pm in 1289CS

Week 2. TA Lab Consulting - See schedule (cs400 home pages) Peer Mentoring available - Friday 8am-12pm, 12:15-1:30pm in 1289CS ASSIGNMENTS h0 available and due before 10pm on Monday 1/28 h1 available and due before 10pm on Monday 2/4 p1 available and due before 10pm on Thursday 2/7 Week 2 TA Lab Consulting - See schedule (cs400

More information

Second Examination Solution

Second Examination Solution University of Illinois at Urbana-Champaign Department of Computer Science Second Examination Solution CS 225 Data Structures and Software Principles Fall 2007 7p-9p, Thursday, November 8 Name: NetID: Lab

More information

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Autumn 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Final Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Final Examination University of Illinois at Urbana-Champaign Department of Computer Science Final Examination CS 225 Data Structures and Software Principles Spring 2010 7-10p, Wednesday, May 12 Name: NetID: Lab Section

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

Algorithms. AVL Tree

Algorithms. AVL Tree Algorithms AVL Tree Balanced binary tree The disadvantage of a binary search tree is that its height can be as large as N-1 This means that the time needed to perform insertion and deletion and many other

More information

Lecture 23: Binary Search Trees

Lecture 23: Binary Search Trees Lecture 23: Binary Search Trees CS 62 Fall 2017 Kim Bruce & Alexandra Papoutsaki 1 BST A binary tree is a binary search tree iff it is empty or if the value of every node is both greater than or equal

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

COMP 250 Midterm #2 March 11 th 2013

COMP 250 Midterm #2 March 11 th 2013 NAME: STUDENT ID: COMP 250 Midterm #2 March 11 th 2013 - This exam has 6 pages - This is an open book and open notes exam. No electronic equipment is allowed. 1) Questions with short answers (28 points;

More information

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text)

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text) Lec 17 April 8 Topics: binary Trees expression trees Binary Search Trees (Chapter 5 of text) Trees Linear access time of linked lists is prohibitive Heap can t support search in O(log N) time. (takes O(N)

More information

Computer Science Foundation Exam

Computer Science Foundation Exam Computer Science Foundation Exam December 18, 015 Section I B COMPUTER SCIENCE NO books, notes, or calculators may be used, and you must work entirely on your own. SOLUTION Question # Max Pts Category

More information

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Spring 2010: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

CSCI2100B Data Structures Heaps

CSCI2100B Data Structures Heaps CSCI2100B Data Structures Heaps Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction In some applications,

More information

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed)

CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Name: Email address: CSE 373 Winter 2009: Midterm #1 (closed book, closed notes, NO calculators allowed) Instructions: Read the directions for each question carefully before answering. We may give partial

More information

Binary Heaps. COL 106 Shweta Agrawal and Amit Kumar

Binary Heaps. COL 106 Shweta Agrawal and Amit Kumar Binary Heaps COL Shweta Agrawal and Amit Kumar Revisiting FindMin Application: Find the smallest ( or highest priority) item quickly Operating system needs to schedule jobs according to priority instead

More information

Priority Queues. 04/10/03 Lecture 22 1

Priority Queues. 04/10/03 Lecture 22 1 Priority Queues It is a variant of queues Each item has an associated priority value. When inserting an item in the queue, the priority value is also provided for it. The data structure provides a method

More information

A set of nodes (or vertices) with a single starting point

A set of nodes (or vertices) with a single starting point Binary Search Trees Understand tree terminology Understand and implement tree traversals Define the binary search tree property Implement binary search trees Implement the TreeSort algorithm 2 A set of

More information

Data Structures. Giri Narasimhan Office: ECS 254A Phone: x-3748

Data Structures. Giri Narasimhan Office: ECS 254A Phone: x-3748 Data Structures Giri Narasimhan Office: ECS 254A Phone: x-3748 giri@cs.fiu.edu Search Tree Structures Binary Tree Operations u Tree Traversals u Search O(n) calls to visit() Why? Every recursive has one

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

CSE373 Fall 2013, Midterm Examination October 18, 2013

CSE373 Fall 2013, Midterm Examination October 18, 2013 CSE373 Fall 2013, Midterm Examination October 18, 2013 Please do not turn the page until the bell rings. Rules: The exam is closed-book, closed-note, closed calculator, closed electronics. Please stop

More information

CSCI Trees. Mark Redekopp David Kempe

CSCI Trees. Mark Redekopp David Kempe CSCI 104 2-3 Trees Mark Redekopp David Kempe Trees & Maps/Sets C++ STL "maps" and "sets" use binary search trees internally to store their keys (and values) that can grow or contract as needed This allows

More information

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example.

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example. Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Tree: non-recursive definition Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every node (except

More information

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE BRONX COMMUNITY COLLEGE of the City University of New York DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE CSI Section E01 AVL Trees AVL Property While BST structures have average performance of Θ(log(n))

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators)

CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) _ UWNetID: Lecture Section: A CSE 332 Winter 2015: Midterm Exam (closed book, closed notes, no calculators) Instructions: Read the directions for each question carefully before answering. We will give

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 21, 2018 Outline Outline 1 C++ Supplement 1.3: Balanced Binary Search Trees Balanced Binary Search Trees Outline

More information

EECS 311 Data Structures Midterm Exam Don t Panic!

EECS 311 Data Structures Midterm Exam Don t Panic! April 5, 7 EECS Data Structures Midterm Exam Don t Panic!. ( pts) In each box below, show the AVL trees that result from the successive addition of the given elements. Show the nodes, links and balance

More information

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree Chapter 4 Trees 2 Introduction for large input, even access time may be prohibitive we need data structures that exhibit running times closer to O(log N) binary search tree 3 Terminology recursive definition

More information

Lecture 15 Binary Search Trees

Lecture 15 Binary Search Trees Lecture 15 Binary Search Trees 15-122: Principles of Imperative Computation (Fall 2017) Frank Pfenning, André Platzer, Rob Simmons, Iliano Cervesato In this lecture, we will continue considering ways to

More information

CS 2150 Final Exam, Spring 2018 Page 1 of 10 UVa userid:

CS 2150 Final Exam, Spring 2018 Page 1 of 10 UVa userid: CS 2150 Final Exam, Spring 2018 Page 1 of 10 UVa userid: CS 2150 Final Exam Name You MUST write your e-mail ID on EACH page and put your name on the top of this page, too. If you are still writing when

More information

Sample Solutions CSC 263H. June 9, 2016

Sample Solutions CSC 263H. June 9, 2016 Sample Solutions CSC 263H June 9, 2016 This document is a guide for what I would consider a good solution to problems in this course. You may also use the TeX file to build your solutions. 1. Consider

More information

CS 223: Data Structures and Programming Techniques. Exam 2

CS 223: Data Structures and Programming Techniques. Exam 2 CS 223: Data Structures and Programming Techniques. Exam 2 Instructor: Jim Aspnes Work alone. Do not use any notes or books. You have approximately 75 minutes to complete this exam. Please write your answers

More information

B-Trees. Version of October 2, B-Trees Version of October 2, / 22

B-Trees. Version of October 2, B-Trees Version of October 2, / 22 B-Trees Version of October 2, 2014 B-Trees Version of October 2, 2014 1 / 22 Motivation An AVL tree can be an excellent data structure for implementing dictionary search, insertion and deletion Each operation

More information

Exam Datastrukturer. DIT960 / DIT961, VT-18 Göteborgs Universitet, CSE

Exam Datastrukturer. DIT960 / DIT961, VT-18 Göteborgs Universitet, CSE Exam Datastrukturer DIT960 / DIT961, VT-18 Göteborgs Universitet, CSE Day: 2017-05-31, Time: 8:30-12.30, Place: SB-MU Course responsible Alex Gerdes, tel. 031-772 6154. Will visit at around 9:30 and 11:00.

More information

BINARY SEARCH TREES cs2420 Introduction to Algorithms and Data Structures Spring 2015

BINARY SEARCH TREES cs2420 Introduction to Algorithms and Data Structures Spring 2015 BINARY SEARCH TREES cs2420 Introduction to Algorithms and Data Structures Spring 2015 1 administrivia 2 -assignment 7 due tonight at midnight -asking for regrades through assignment 5 and midterm must

More information

CS211, LECTURE 20 SEARCH TREES ANNOUNCEMENTS:

CS211, LECTURE 20 SEARCH TREES ANNOUNCEMENTS: CS211, LECTURE 20 SEARCH TREES ANNOUNCEMENTS: OVERVIEW: motivation naive tree search sorting for trees and binary trees new tree classes search insert delete 1. Motivation 1.1 Search Structure continuing

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 9 - Jan. 22, 2018 CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba COMP 3170 - Analysis of Algorithms & Data Structures

More information

Lecture Notes on Binary Search Trees

Lecture Notes on Binary Search Trees Lecture Notes on Binary Search Trees 15-122: Principles of Imperative Computation Frank Pfenning André Platzer Lecture 16 March 17, 2015 1 Introduction In this lecture, we will continue considering ways

More information

Test #2. Login: 2 PROBLEM 1 : (Balance (6points)) Insert the following elements into an AVL tree. Make sure you show the tree before and after each ro

Test #2. Login: 2 PROBLEM 1 : (Balance (6points)) Insert the following elements into an AVL tree. Make sure you show the tree before and after each ro DUKE UNIVERSITY Department of Computer Science CPS 100 Fall 2003 J. Forbes Test #2 Name: Login: Honor code acknowledgment (signature) Name Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 6 Problem

More information

Course goals. exposure to another language. knowledge of specific data structures. impact of DS design & implementation on program performance

Course goals. exposure to another language. knowledge of specific data structures. impact of DS design & implementation on program performance Course goals exposure to another language C++ Object-oriented principles knowledge of specific data structures lists, stacks & queues, priority queues, dynamic dictionaries, graphs impact of DS design

More information

CS-301 Data Structure. Tariq Hanif

CS-301 Data Structure. Tariq Hanif 1. The tree data structure is a Linear data structure Non-linear data structure Graphical data structure Data structure like queue FINALTERM EXAMINATION Spring 2012 CS301- Data Structure 25-07-2012 2.

More information

ECE242 Data Structures and Algorithms Fall 2008

ECE242 Data Structures and Algorithms Fall 2008 ECE242 Data Structures and Algorithms Fall 2008 2 nd Midterm Examination (120 Minutes, closed book) Name: Student ID: Question 1 (10) 2 (20) 3 (25) 4 (10) 5 (15) 6 (20) Score NOTE: Any questions on writing

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 9 - Jan. 22, 2018 CLRS 12.2, 12.3, 13.2, read problem 13-3 University of Manitoba 1 / 12 Binary Search Trees (review) Structure

More information

Lecture 15 Notes Binary Search Trees

Lecture 15 Notes Binary Search Trees Lecture 15 Notes Binary Search Trees 15-122: Principles of Imperative Computation (Spring 2016) Frank Pfenning, André Platzer, Rob Simmons 1 Introduction In this lecture, we will continue considering ways

More information

CS 361, Lecture 21. Outline. Things you can do. Things I will do. Evaluation Results

CS 361, Lecture 21. Outline. Things you can do. Things I will do. Evaluation Results HW Difficulty CS 361, Lecture 21 Jared Saia University of New Mexico The HW in this class is inherently difficult, this is a difficult class. You need to be able to solve problems as hard as the problems

More information

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology Introduction Chapter 4 Trees for large input, even linear access time may be prohibitive we need data structures that exhibit average running times closer to O(log N) binary search tree 2 Terminology recursive

More information

Some Search Structures. Balanced Search Trees. Binary Search Trees. A Binary Search Tree. Review Binary Search Trees

Some Search Structures. Balanced Search Trees. Binary Search Trees. A Binary Search Tree. Review Binary Search Trees Some Search Structures Balanced Search Trees Lecture 8 CS Fall Sorted Arrays Advantages Search in O(log n) time (binary search) Disadvantages Need to know size in advance Insertion, deletion O(n) need

More information

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min

Sorted Arrays. Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min Binary Search Trees FRIDAY ALGORITHMS Sorted Arrays Operation Access Search Selection Predecessor Successor Output (print) Insert Delete Extract-Min 6 10 11 17 2 0 6 Running Time O(1) O(lg n) O(1) O(1)

More information

Section 1: True / False (2 points each, 30 pts total)

Section 1: True / False (2 points each, 30 pts total) Section 1: True / False (2 points each, 30 pts total) Circle the word TRUE or the word FALSE. If neither is circled, both are circled, or it impossible to tell which is circled, your answer will be considered

More information

CSE 332, Spring 2010, Midterm Examination 30 April 2010

CSE 332, Spring 2010, Midterm Examination 30 April 2010 CSE 332, Spring 2010, Midterm Examination 30 April 2010 Please do not turn the page until the bell rings. Rules: The exam is closed-book, closed-note. You may use a calculator for basic arithmetic only.

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination University of Illinois at Urbana-Champaign Department of Computer Science Second Examination CS 225 Data Structures and Software Principles Fall 2011 9a-11a, Wednesday, November 2 Name: NetID: Lab Section

More information

CS 251, LE 2 Fall MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY

CS 251, LE 2 Fall MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY CS 251, LE 2 Fall 2016 MIDTERM 2 Tuesday, November 1, 2016 Version 00 - KEY W1.) (i) Show one possible valid 2-3 tree containing the nine elements: 1 3 4 5 6 8 9 10 12. (ii) Draw the final binary search

More information

Computer Science 302 Spring 2007 Practice Final Examination: Part I

Computer Science 302 Spring 2007 Practice Final Examination: Part I Computer Science 302 Spring 2007 Practice Final Examination: Part I Name: This practice examination is much longer than the real final examination will be. If you can work all the problems here, you will

More information

CS 310: Priority Queues and Binary Heaps

CS 310: Priority Queues and Binary Heaps CS 310: Priority Queues and Binary Heaps Chris Kauffman Week 14-2 Priority Queues Queue What operations does a queue support? Priority: Number representing importance Convention lower is better priority

More information

Augmenting Data Structures

Augmenting Data Structures Augmenting Data Structures [Not in G &T Text. In CLRS chapter 14.] An AVL tree by itself is not very useful. To support more useful queries we need more structure. General Definition: An augmented data

More information

Trees 2: Linked Representation, Tree Traversal, and Binary Search Trees

Trees 2: Linked Representation, Tree Traversal, and Binary Search Trees Trees 2: Linked Representation, Tree Traversal, and Binary Search Trees Linked representation of binary tree Again, as with linked list, entire tree can be represented with a single pointer -- in this

More information

Balanced Search Trees. CS 3110 Fall 2010

Balanced Search Trees. CS 3110 Fall 2010 Balanced Search Trees CS 3110 Fall 2010 Some Search Structures Sorted Arrays Advantages Search in O(log n) time (binary search) Disadvantages Need to know size in advance Insertion, deletion O(n) need

More information

CSE Data Structures and Introduction to Algorithms... In Java! Instructor: Fei Wang. Mid-Term Exam. CSE2100 DS & Algorithms 1

CSE Data Structures and Introduction to Algorithms... In Java! Instructor: Fei Wang. Mid-Term Exam. CSE2100 DS & Algorithms 1 CSE 2100 Data Structures and Introduction to Algorithms...! In Java!! Instructor: Fei Wang! Mid-Term Exam CSE2100 DS & Algorithms 1 1. True or False (20%=2%x10)! (1) O(n) is O(n^2) (2) The height h of

More information

Midterm solutions. n f 3 (n) = 3

Midterm solutions. n f 3 (n) = 3 Introduction to Computer Science 1, SE361 DGIST April 20, 2016 Professors Min-Soo Kim and Taesup Moon Midterm solutions Midterm solutions The midterm is a 1.5 hour exam (4:30pm 6:00pm). This is a closed

More information

Trees 2: Linked Representation, Tree Traversal, and Binary Search Trees

Trees 2: Linked Representation, Tree Traversal, and Binary Search Trees Trees 2: Linked Representation, Tree Traversal, and Binary Search Trees Linked representation of binary tree Again, as with linked list, entire tree can be represented with a single pointer -- in this

More information

COT 5407: Introduction. to Algorithms. Giri NARASIMHAN. 1/29/19 CAP 5510 / CGS 5166

COT 5407: Introduction. to Algorithms. Giri NARASIMHAN.   1/29/19 CAP 5510 / CGS 5166 COT 5407: Introduction!1 to Algorithms Giri NARASIMHAN www.cs.fiu.edu/~giri/teach/5407s19.html CAP 5510 / CGS 5166 1/29/19 !2 Computation Tree for A on n inputs! Assume A is a comparison-based sorting

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 04 / 26 / 2017 Instructor: Michael Eckmann Today s Topics Questions? Comments? Balanced Binary Search trees AVL trees Michael Eckmann - Skidmore College - CS

More information

Priority Queues Heaps Heapsort

Priority Queues Heaps Heapsort Priority Queues Heaps Heapsort After this lesson, you should be able to apply the binary heap insertion and deletion algorithms by hand implement the binary heap insertion and deletion algorithms explain

More information

(D) There is a constant value n 0 1 such that B is faster than A for every input of size. n n 0.

(D) There is a constant value n 0 1 such that B is faster than A for every input of size. n n 0. Part : Multiple Choice Enter your answers on the Scantron sheet. We will not mark answers that have been entered on this sheet. Each multiple choice question is worth. marks. Note. when you are asked to

More information

CSE 326: Data Structures Lecture #8 Binary Search Trees

CSE 326: Data Structures Lecture #8 Binary Search Trees CSE 6: Data Structures Lecture #8 Binary Search Trees Alon Halevy Spring Quarter Binary Trees Many algorithms are efficient and easy to program for the special case of binary trees B A C Binary tree is

More information

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL MINUTIAE Feedback for P1p1 should have gone out before class Grades on canvas tonight Emails went to the student who submitted the assignment If you did not receive

More information

Practice Midterm Exam Solutions

Practice Midterm Exam Solutions CSE 332: Data Abstractions Autumn 2015 Practice Midterm Exam Solutions Name: Sample Solutions ID #: 1234567 TA: The Best Section: A9 INSTRUCTIONS: You have 50 minutes to complete the exam. The exam is

More information

Dynamic Access Binary Search Trees

Dynamic Access Binary Search Trees Dynamic Access Binary Search Trees 1 * are self-adjusting binary search trees in which the shape of the tree is changed based upon the accesses performed upon the elements. When an element of a splay tree

More information

CS 216 Exam 1 Fall SOLUTION

CS 216 Exam 1 Fall SOLUTION CS 216 Exam 1 Fall 2004 - SOLUTION Name: Lab Section: Email Address: Student ID # This exam is closed note, closed book. You will have an hour and fifty minutes total to complete the exam. You may NOT

More information

Section 05: Solutions

Section 05: Solutions Section 05: Solutions 1. Asymptotic Analysis (a) Applying definitions For each of the following, choose a c and n 0 which show f(n) O(g(n)). Explain why your values of c and n 0 work. (i) f(n) = 5000n

More information

CS 310 B-trees, Page 1. Motives. Large-scale databases are stored in disks/hard drives.

CS 310 B-trees, Page 1. Motives. Large-scale databases are stored in disks/hard drives. CS 310 B-trees, Page 1 Motives Large-scale databases are stored in disks/hard drives. Disks are quite different from main memory. Data in a disk are accessed through a read-write head. To read a piece

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins.

You must print this PDF and write your answers neatly by hand. You should hand in the assignment before recitation begins. 15-122 Homework 5 Page 1 of 15 15-122 : Principles of Imperative Computation, Summer 1 2014 Written Homework 5 Due: Thursday, June 19 before recitation Name: Andrew ID: Recitation: Binary search trees,

More information

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination

University of Illinois at Urbana-Champaign Department of Computer Science. Second Examination University of Illinois at Urbana-Champaign Department of Computer Science Second Examination CS 225 Data Structures and Software Principles Spring 2012 7p-9p, Tuesday, April 3 Name: NetID: Lab Section

More information

Self-Balancing Search Trees. Chapter 11

Self-Balancing Search Trees. Chapter 11 Self-Balancing Search Trees Chapter 11 Chapter Objectives To understand the impact that balance has on the performance of binary search trees To learn about the AVL tree for storing and maintaining a binary

More information

AVL Trees. See Section 19.4of the text, p

AVL Trees. See Section 19.4of the text, p AVL Trees See Section 19.4of the text, p. 706-714. AVL trees are self-balancing Binary Search Trees. When you either insert or remove a node the tree adjusts its structure so that the remains a logarithm

More information

CMPSCI 187: Programming With Data Structures. Lecture #28: Binary Search Trees 21 November 2011

CMPSCI 187: Programming With Data Structures. Lecture #28: Binary Search Trees 21 November 2011 CMPSCI 187: Programming With Data Structures Lecture #28: Binary Search Trees 21 November 2011 Binary Search Trees The Idea of a Binary Search Tree The BinarySearchTreeADT Interface The LinkedBinarySearchTree

More information

Section 4 SOLUTION: AVL Trees & B-Trees

Section 4 SOLUTION: AVL Trees & B-Trees Section 4 SOLUTION: AVL Trees & B-Trees 1. What 3 properties must an AVL tree have? a. Be a binary tree b. Have Binary Search Tree ordering property (left children < parent, right children > parent) c.

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information