# Floating-point representation

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers are not well-suited for general purpose computation, because ther numeric representation as a string of digits expressed in, say, base 10 can be very long or even infinitely long. Examples include π,, e, and 1/3. In practice, computers store numbers with finite precision. Numbers and arithmetic used in scientific computation should meet a few general criteria: Numbers should have modest storage requirements Arithmetic operations should be efficient to carry out A level of standardization, or portability, is desirable results obtained on one computer should closely match the results of the same computation on other computers Internationally-standardized methods for representing numbers on computers have been established by the IEEE to satisfy these basic goals. These notes are concerned with double-precision floating-point numbers, available on most modern computing systems. 1 A precise definition appears below. The term floatingpoint number always means a number that can be exactly represented by a double-precision floating-point number in these notes. Unlike real numbers, there are only finitely many floating-point numbers. In particular, there is a smallest (and largest) floating-point number. In between there are also necessarily many gaps of numbers that can t be represented exactly. In hand computations, we usually represent numbers in terms of decimal digits. For instance, x = (1) is one way to write the number 19. This way of writing numbers is sometimes called scientific notation. The 1.9 part is called the mantissa, 10 the base, and the exponent. Another way to write x is If, like in equation (1), the mantissa always has 3 decimal digits and the exponent has one decimal digit, then the distance between the number 1, which can be represented exactly, and a closest different representable number, , is The largest representable number in this scheme is and the closest distinct positive number is Their distance is = , which is large. Thus, the distance between distinct representable numbers grows with their magnitude; it can be large for numbers of large magnitude. Similarly to (1), in base, the number y = 1.01 may be a suitable representation of 101 = , which is a binary representation of the number 5 in base 10. A binary digit is referred to as a bit. Computers represent floating-point numbers using base. Floating-point numbers are generally stored in the form x = ±(1 + f) e, () 1 Notable exceptions include graphics processors 1

2 where f is referred to as the fractional part and e as the exponent. The fractional part f satisfies 0 f < 1 and is stored in 5 bits. That means that 5 f is an integer in the interval [0, 5 ). The exponent is restricted to be an integer in the interval 10 e 103. Instead of storing e computers store e using 11 bits. (This obviates the need to store the sign of e.) The sign of x is stored in a separate bit. Thus, the floating-point number x is stored in = 64 bits. Note that the number 1 in the (1 + f) part does not have to be stored explicitly. The binary representation () of x is said to be normalized, because of the leading 1 in 1 = f. Also note that 11 bits can store more integer values than the exponent e is allowed to take on as defined above. The extra values are reserved for some special cases discussed below. The representable floating-point numbers are equidistant in each interval e x e+1, with distance e 11. The constant eps, or machine epsilon is defined to be the distance between 1 and the next largest floating point number. In a relative sense, eps is as large as the gaps between floating-point numbers get. Let the function fl(x) return the closest floating-point number to the real number x. Then x fl(x) eps x (3) In IEEE arithmetic, we have eps = 5, i.e., eps The symbol stands for approximately equal to. You can find out the acutal value of eps by first typing format long and then eps in Octave or Matlab. The property (3) also can be stated in the form that for every real number x, there is an ǫ with ǫ eps/, such that fl(x) = x(1 + ǫ). (4) Example: Neither the decimal numbers 0.7 nor 0.1 can be stored exactly as floating-point numbers, and therefore fl(0.7)/fl(0.1) 7. Example: The largest representable normalized floating point number, realmax, corresponds to f = 1 eps and e = 103 in (1), i.e., realmax = ( eps) 103. Thus, realmax Real numbers larger than realmax can t be represented by floating-point numbers. The special floatingpoint number defined by f = 0 and e = 104 is called Inf. If in the course of arithmetic operations, a variable, say y, becomes larger than realmax, then y is set to Inf. Replacing a large real number by Inf is referred to as overflow. The expression 1/Inf is defined to be 0 and Inf + Inf = Inf. Computations that yield undefined numbers, such as 1/0, 0/0, and Inf/Inf are represented by yet another special case, NaN. NaN is defined by f 0 and e = 104. Arithmetic operations with NaN always give back NaN. For example, NaN + 1 = NaN. The smallest representable positive normalized floating-point number, 10, is denoted by realmin and represented by f = 0 and e = 10. Thus, realmin If during arithmetic operations an intermediate result, say y, is smaller than realmin, then y is set to zero unless unnormalized floating-point number are used. Replacing a tiny real number by zero is referred to as underflow. Example: Let y = First divide y by 10 and then multiply by On a computer that does not use unnormalized floating-point numbers, we obtain the answer zero due to underflow. This illustrates that underflow may lead to large errors if the intermediate underflown quantity subsequently is multiplied by a large number. Some computers allow a representation of numbers between eps realmin and realmin by denormalized floating-point numbers. Then numbers as small as can be represented. Generally, this feature is not important, but it leads to more accurate answers in certain computations.

3 Exercises Exercise 3.1: Determine the decimal representation of the binary numbers (a) 10, (b) Exercise 3.: Determine the binary representation of the decimal number (a) 3, (b) 17. Exercise 3.3: Determine whether your computer uses unnormalized floating-point numbers. Exercise 3.4: If you own a hand-held calculator or have access to one (for example, those graphing calculators popular these days), determine its machine epsilon. Floating-point arithmetic Arithmetic operations on floating-point numbers do not often result in another floating-point number. For example, 1 and 10 are floating-point numbers, but 1/10 is not. The result of an arithmetic computation will be stored by the computer as a floating-point number. If the exact result is not a floating-point number, an error is introduced. Let the symbol represent one of the four basic mathematical arithmetic operations: addition, subtraction, multiplication, or division. Let denote its floating-point analogue. Computers use these operations to carry out most computations. We would like that for any floating-point numbers x and y, x y = fl(x y). Combining this property and (4) shows that for all floating-point numbers x and y, there is an ǫ with ǫ eps/, such that x y = (x y)(1 + ǫ), (5) The properties (4) and (5) are satisfied by arithmetic carried out on computer systems that satisfy the IEEE standard, except when overflow occurs. Example: Computers do not know the functions cos(x), sin(x), and e x for general values of x. Approximations of their values are computed by evaluating rational functions r(x) = p(x)/q(x), where p and q are suitable polynomials. Note that the evaluation of r(x) only requires the four basic arithmetic operations. Often the use of floating-point numbers and floating-point arithmetic does not affect the outcome significantly, when compared with applying exact arithmetic on the corresponding real numbers. However, some care should be taken in the design of numerical methods to maintain high accuracy. We conclude with definitions of the absolute and relative errors in an available approximation x of an error-free real quantity x: absolute error in x = x x (6) and Exercises relative error in x = x x x. (7) Exercise 3.5: Give an example when the properties (3) and (4) are violated. Exercise 3.6: What can we say about the property (5) when (4) is violated? 3

4 Exercise 3.7: Discuss the computation of f 1 (x) = 1 x for values of x > 0 close to zero. Assume that the computed value of the square-root function satisfies fl( x) = x(1 + ǫ). Compare the results with those obtained by evaluating f (x) = (1 x)(1 + x) and f 3 (x) = (1 x) (1 + x). Exercise 3.8: The solutions of the quadratic equation are given by x + ax + b = 0 x 1, = a ± a 4b. Use this formula to determine the solutions when a = and b = 1 in Octave or Matlab. Which root is determined accurately and which one is not? Here we measure the accuracy in the number of correct significant digits in the computed solution. Why is one of the roots determined to low accuracy? Let x 1 denote the computed zero with high accuracy. In this example, one can achieve higher accuracy in x by using the relation x 1 x = b. Explain how this can be done. What is the computed root determined in this manner? Exercise 3.9: Consider a computer with 4 digits of precision on which floating-point numbers x = d 1.d d 3 d e are represented by fl(x) = d 1.d d 3 d 4 10 e. Here each d j and e represent one decimal digit. (a) Determine the computed value of on this computer. (b) The exact solution of the linear system of equations [ ] [ x = 0 is close to x = [ 1, 1] T. Solve this system by Gaussian elimination (without pivoting) on this computer. What is the answer? What is the error in the Euclidean norm? Exercise 3.10: We would like to determine the value of the sum 1 S = j and therefore write an Octave or Matlab program to sum the first terms. Specifically, sum the first n terms in order to compute the partial sum j=1 S n = n, where n is chosen so that fl(s n + 1 n+1 ) = fl(s n). What is n? To determine whether the computed value S n is an accurate approximation of S, compute the sum Ŝ n = 1 n + 1 n where summation is carried out in the order indicated. Are Ŝn and S n the same? What can we conclude about S? ] 4

5 Exercise 3.11: Generate 100 normally distributed random numbers with the Octave/Matlab function randn. Sum them in the order generated to yield s 1. Also sum the positive numbers and the negative numbers separately and then add these sums to give s. Are s 1 and s the same? If not, explain why this is the case. Which ordering is better? Are there other, better, orderings of the numbers? Run numerical experiments with several sets of 100 normally distributed random numbers. Justify your answers. 5

### 2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

### Most nonzero floating-point numbers are normalized. This means they can be expressed as. x = ±(1 + f) 2 e. 0 f < 1

Floating-Point Arithmetic Numerical Analysis uses floating-point arithmetic, but it is just one tool in numerical computation. There is an impression that floating point arithmetic is unpredictable and

### Floating-Point Numbers in Digital Computers

POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

### Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

### 1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

### Computational Mathematics: Models, Methods and Analysis. Zhilin Li

Computational Mathematics: Models, Methods and Analysis Zhilin Li Chapter 1 Introduction Why is this course important (motivations)? What is the role of this class in the problem solving process using

### Section 1.4 Mathematics on the Computer: Floating Point Arithmetic

Section 1.4 Mathematics on the Computer: Floating Point Arithmetic Key terms Floating point arithmetic IEE Standard Mantissa Exponent Roundoff error Pitfalls of floating point arithmetic Structuring computations

### Computational Methods CMSC/AMSC/MAPL 460. Representing numbers in floating point Error Analysis. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460 Representing numbers in floating point Error Analysis Ramani Duraiswami, Dept. of Computer Science Class Outline Recap of floating point representation Matlab demos

### Floating Point Representation. CS Summer 2008 Jonathan Kaldor

Floating Point Representation CS3220 - Summer 2008 Jonathan Kaldor Floating Point Numbers Infinite supply of real numbers Requires infinite space to represent certain numbers We need to be able to represent

### Floating Point Numbers

Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

### Floating Point Arithmetic

Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

### Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

### System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

### Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

### Floating-Point Arithmetic

Floating-Point Arithmetic ECS30 Winter 207 January 27, 207 Floating point numbers Floating-point representation of numbers (scientific notation) has four components, for example, 3.46 0 sign significand

### Floating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.

class04.ppt 15-213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For

### Data Representation Floating Point

Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

### Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

### Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.

Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010 IEEE Floating point Floating point

### Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

### CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: September 18, 2017 at 12:48 CS429 Slideset 4: 1 Topics of this Slideset

### Giving credit where credit is due

CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

### CS321. Introduction to Numerical Methods

CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

### Classes of Real Numbers 1/2. The Real Line

Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers non-integral fractions irrational numbers Rational numbers

### Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

### Floating Point Considerations

Chapter 6 Floating Point Considerations In the early days of computing, floating point arithmetic capability was found only in mainframes and supercomputers. Although many microprocessors designed in the

### Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

### Table : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (

Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language

### IEEE Standard 754 Floating Point Numbers

IEEE Standard 754 Floating Point Numbers Steve Hollasch / Last update 2005-Feb-24 IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intel-based

### Computer Systems C S Cynthia Lee

Computer Systems C S 1 0 7 Cynthia Lee 2 Today s Topics LECTURE: Floating point! Real Numbers and Approximation MATH TIME! Some preliminary observations on approximation We know that some non-integer numbers

### Computational Methods. Sources of Errors

Computational Methods Sources of Errors Manfred Huber 2011 1 Numerical Analysis / Scientific Computing Many problems in Science and Engineering can not be solved analytically on a computer Numeric solutions

### Scientific Computing. Error Analysis

ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

### Module 2: Computer Arithmetic

Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

### CS101 Lecture 04: Binary Arithmetic

CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary

### Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example

Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,

### Lecture Notes: Floating-Point Numbers

Lecture Notes: Floating-Point Numbers CS227-Scientific Computing September 8, 2010 What this Lecture is About How computers represent numbers How this affects the accuracy of computation Positional Number

### Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

### VHDL IMPLEMENTATION OF IEEE 754 FLOATING POINT UNIT

VHDL IMPLEMENTATION OF IEEE 754 FLOATING POINT UNIT Ms. Anjana Sasidharan Student, Vivekanandha College of Engineering for Women, Namakkal, Tamilnadu, India. Abstract IEEE-754 specifies interchange and

### Characters, Strings, and Floats

Characters, Strings, and Floats CS 350: Computer Organization & Assembler Language Programming 9/6: pp.8,9; 9/28: Activity Q.6 A. Why? We need to represent textual characters in addition to numbers. Floating-point

### AMTH142 Lecture 10. Scilab Graphs Floating Point Arithmetic

AMTH142 Lecture 1 Scilab Graphs Floating Point Arithmetic April 2, 27 Contents 1.1 Graphs in Scilab......................... 2 1.1.1 Simple Graphs...................... 2 1.1.2 Line Styles........................

### What Every Programmer Should Know About Floating-Point Arithmetic

What Every Programmer Should Know About Floating-Point Arithmetic Last updated: October 15, 2015 Contents 1 Why don t my numbers add up? 3 2 Basic Answers 3 2.1 Why don t my numbers, like 0.1 + 0.2 add

### Floating Point Numbers

Floating Point Floating Point Numbers Mathematical background: tional binary numbers Representation on computers: IEEE floating point standard Rounding, addition, multiplication Kai Shen 1 2 Fractional

### Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

### 4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

### Course of study- Algebra Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by

Course of study- Algebra 1-2 1. Introduction: Algebra 1-2 is a course offered in the Mathematics Department. The course will be primarily taken by students in Grades 9 and 10, but since all students must

### Floating Point Numbers. Lecture 9 CAP

Floating Point Numbers Lecture 9 CAP 3103 06-16-2014 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? 2 N things, and no more! They could be Unsigned integers:

### The Perils of Floating Point

The Perils of Floating Point by Bruce M. Bush Copyright (c) 1996 Lahey Computer Systems, Inc. Permission to copy is granted with acknowledgement of the source. Many great engineering and scientific advances

### CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits

### 15213 Recitation 2: Floating Point

15213 Recitation 2: Floating Point 1 Introduction This handout will introduce and test your knowledge of the floating point representation of real numbers, as defined by the IEEE standard. This information

### Digital Computers and Machine Representation of Data

Digital Computers and Machine Representation of Data K. Cooper 1 1 Department of Mathematics Washington State University 2013 Computers Machine computation requires a few ingredients: 1 A means of representing

### 4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

### 8/30/2016. In Binary, We Have A Binary Point. ECE 120: Introduction to Computing. Fixed-Point Representations Support Fractions

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Fixed- and Floating-Point Representations In Binary, We Have A Binary Point Let

### Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

### Floating Point Arithmetic

Floating Point Arithmetic Floating point numbers are frequently used in many applications. Implementation of arithmetic units such as adder, multiplier, etc for Floating point numbers are more complex

### Data Representation and Introduction to Visualization

Data Representation and Introduction to Visualization Massimo Ricotti ricotti@astro.umd.edu University of Maryland Data Representation and Introduction to Visualization p.1/18 VISUALIZATION Visualization

### Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

### Floating-Point Arithmetic

Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 3. L12 Multiplication 1 Approximating Real Numbers on Computers Thus far, we ve entirely ignored one of the most

### Computer Representation of Numbers and Computer Arithmetic

Computer Representation of Numbers and Computer Arithmetic January 17, 2017 Contents 1 Binary numbers 6 2 Memory 9 3 Characters 12 1 c A. Sandu, 1998-2015. Distribution outside classroom not permitted.

### Repeat or Not? That Is the Question!

Repeat or Not? That Is the Question! Exact Decimal Representations of Fractions Learning Goals In this lesson, you will: Use decimals and fractions to evaluate arithmetic expressions. Convert fractions

### Voluntary State Curriculum Algebra II

Algebra II Goal 1: Integration into Broader Knowledge The student will develop, analyze, communicate, and apply models to real-world situations using the language of mathematics and appropriate technology.

### 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

### Floating Point Arithmetic

Floating Point Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

### Signed umbers. Sign/Magnitude otation

Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

### CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

### Lecture 10. Floating point arithmetic GPUs in perspective

Lecture 10 Floating point arithmetic GPUs in perspective Announcements Interactive use on Forge Trestles accounts? A4 2012 Scott B. Baden /CSE 260/ Winter 2012 2 Today s lecture Floating point arithmetic

### The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive.

IEEE 754 Standard - Overview Frozen Content Modified by on 13-Sep-2017 Before discussing the actual WB_FPU - Wishbone Floating Point Unit peripheral in detail, it is worth spending some time to look at

### CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

### Integers and Floating Point

CMPE12 More about Numbers Integers and Floating Point (Rest of Textbook Chapter 2 plus more)" Review: Unsigned Integer A string of 0s and 1s that represent a positive integer." String is X n-1, X n-2,

### FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Robert P. Webber, Longwood University We have seen how decimal fractions can be converted to binary. For instance, we can write 6.25 10 as 4 + 2 + ¼ = 2 2 + 2 1 + 2-2 = 1*2 2 + 1*2

### IEEE-754 floating-point

IEEE-754 floating-point Real and floating-point numbers Real numbers R form a continuum - Rational numbers are a subset of the reals - Some numbers are irrational, e.g. π Floating-point numbers are an

### ecture 25 Floating Point Friedland and Weaver Computer Science 61C Spring 2017 March 17th, 2017

ecture 25 Computer Science 61C Spring 2017 March 17th, 2017 Floating Point 1 New-School Machine Structures (It s a bit more complicated!) Software Hardware Parallel Requests Assigned to computer e.g.,

### Algebraic Expressions

P.1 Algebraic Expressions, Mathematical Models, and Real Numbers P.2 Exponents and Scientific Notation Objectives: Evaluate algebraic expressions, find intersection and unions of sets, simplify algebraic

### Chapter 4: Data Representations

Chapter 4: Data Representations Integer Representations o unsigned o sign-magnitude o one's complement o two's complement o bias o comparison o sign extension o overflow Character Representations Floating

### 1620 DATA PRQCESSING SYSTEM BULLETlli. AUTOMATIC FLOATING-POINT OPERATIONS (Special Feature)

1620 DATA PRQCESSING SYSTEM BULLETlli AUTOMATIC FLOATINGPOINT OPERATIONS (Special Feature) The Automatic FloatingPoint Operations special feature provides the IBM 1620 Data Processing System (Figure 1)

### Course Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation

Course Schedule CS 221 Computer Architecture Week 3: Information Representation (2) Fall 2001 W1 Sep 11- Sep 14 Introduction W2 Sep 18- Sep 21 Information Representation (1) (Chapter 3) W3 Sep 25- Sep

### IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1

IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose

### UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS

UNIT - I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS (09 periods) Computer Arithmetic: Data Representation, Fixed Point Representation, Floating Point Representation, Addition and

### Computer arithmetics: integers, binary floating-point, and decimal floating-point

n!= 0 && -n == n z+1 == z Computer arithmetics: integers, binary floating-point, and decimal floating-point v+w-w!= v x+1 < x Peter Sestoft 2010-02-16 y!= y p == n && 1/p!= 1/n 1 Computer arithmetics Computer

### Floating-Point Arithmetic

Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 4. L12 Multiplication 1 Why Floating Point? Aren t Integers enough? Many applications require numbers with a VERY

### Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower

Florida Math 0018 Correlation of the ALEKS course Florida Math 0018 to the Florida Mathematics Competencies - Lower Whole Numbers MDECL1: Perform operations on whole numbers (with applications, including

### Description Hex M E V smallest value > largest denormalized negative infinity number with hex representation 3BB0 ---

CSE2421 HOMEWORK #2 DUE DATE: MONDAY 11/5 11:59pm PROBLEM 2.84 Given a floating-point format with a k-bit exponent and an n-bit fraction, write formulas for the exponent E, significand M, the fraction

### Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

### CHAPTER 5 Computer Arithmetic and Round-Off Errors

CHAPTER 5 Computer Arithmetic and Round-Off Errors In the two previous chapters we have seen how numbers can be represented in the binary numeral system and how this is the basis for representing numbers

### Numerical Analysis I

Numerical Analysis I M.R. O Donohoe References: S.D. Conte & C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach, Third edition, 1981. McGraw-Hill. L.F. Shampine, R.C. Allen, Jr & S. Pruess,

### IEEE Standard for Floating-Point Arithmetic: 754

IEEE Standard for Floating-Point Arithmetic: 754 G.E. Antoniou G.E. Antoniou () IEEE Standard for Floating-Point Arithmetic: 754 1 / 34 Floating Point Standard: IEEE 754 1985/2008 Established in 1985 (2008)

### Calculations with Sig Figs

Calculations with Sig Figs When you make calculations using data with a specific level of uncertainty, it is important that you also report your answer with the appropriate level of uncertainty (i.e.,

### Chapter 10 - Computer Arithmetic

Chapter 10 - Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 10 - Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation

### Chapter 5. Radicals. Lesson 1: More Exponent Practice. Lesson 2: Square Root Functions. Lesson 3: Solving Radical Equations

Chapter 5 Radicals Lesson 1: More Exponent Practice Lesson 2: Square Root Functions Lesson 3: Solving Radical Equations Lesson 4: Simplifying Radicals Lesson 5: Simplifying Cube Roots This assignment is

### Logic, Words, and Integers

Computer Science 52 Logic, Words, and Integers 1 Words and Data The basic unit of information in a computer is the bit; it is simply a quantity that takes one of two values, 0 or 1. A sequence of k bits

### Independent Representation

Independent Representation 1 Integer magnitude + 1 2 3 4 5 6 7 8 9 0 Float sign sign of exponent mantissa On standard 32 bit machines: INT_MAX = 2147483647 which gives 10 digits of precision, (i.e. the

### Honors Precalculus: Solving equations and inequalities graphically and algebraically. Page 1

Solving equations and inequalities graphically and algebraically 1. Plot points on the Cartesian coordinate plane. P.1 2. Represent data graphically using scatter plots, bar graphs, & line graphs. P.1

### Basic Arithmetic Operations

Basic Arithmetic Operations Learning Outcome When you complete this module you will be able to: Perform basic arithmetic operations without the use of a calculator. Learning Objectives Here is what you

### GPU Floating Point Features

CSE 591: GPU Programming Floating Point Considerations Klaus Mueller Computer Science Department Stony Brook University Objective To understand the fundamentals of floating-point representation To know

### Math 10- Chapter 2 Review

Math 10- Chapter 2 Review [By Christy Chan, Irene Xu, and Henry Luan] Knowledge required for understanding this chapter: 1. Simple calculation skills: addition, subtraction, multiplication, and division

### 3.5 Floating Point: Overview

3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer

### Floating-Point Arithmetic

Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } L11 Floating Point 1 What is the problem? Many numeric applications require numbers over a VERY large range. (e.g. nanoseconds to centuries)

### ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two 26 February 2014

Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate