FloatingPoint Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3


 Sharyl Jordan
 8 months ago
 Views:
Transcription
1 FloatingPoint Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes 1
2 Fixed Point Numbers Fixed point number: integer part + fractional part Fixed number of digits to left and right of the radix point In decimal: integer fraction = Similarly in binary: = = = What about base b? 2
3 Converting Decimal Fraction to Binary Fraction Algorithm illustration: =? 2 int part frac part = = = = Read off int parts in order Therefore, = Stop when frac part = 0 3
4 Decimal Fraction to Binary Fraction Converting from decimal to binary may result in a nonterminating fraction. Example: repeating sequence May need to round to desired number of fractional places. Example: =? 2 int part frac part = = = = = = = = = r e p e a t s 4
5 Rounding Because computers represent numbers using a fixed number of bits, both the range and precision of numbers that can be represented are limited. Precision is usually associated with the number of fractional bits allowed by the computer representation. If the number has more fractional bits than is allowed by the computer representation, the number must be rounded to the required precision. Example: How should to 2 fractional bits? ? Or ? 5
6 Rounding Rounding modes Let a be the number and ā be its rounded value 1. Roundtowardzero Round a to nearest number ā of desired precision such that ā a Also called truncation because it simply drops excess fractional bits 2. Rounddown Round a to nearest number ā of desired precision such that ā a Also called roundtowardnegativeinfinity 3. Roundup Round a to nearest number ā of desired precision such that ā a Also called roundtowardpositiveinfinity 4. Roundtoeven Round a to the number ā of desired precision such that a ā is minimized If there is a tie, choose the ā whose least significant digit/bit is even Also called roundtonearest Default mode used in IEEE Floating Point Format, which we ll discuss next 6
7 Rounding Rounding examples Assume precision is 2 fractional bits Number Rounded Value Roundtoward0 Rounddown Roundup Roundtoeven
8 Fixed Point Arithmetic Adapt integer arithmetic algorithms Will illustrate for unsigned fixed point only Addition and Subtraction Similar to integer addition/subtraction Just align radix points Example: = = = align binary points 8
9 Multiplication Fixed Point Arithmetic 1. Ignore radix points; multiply as integers 2. Insert radix point of product: no. of fractional places = sum of no. of fractional places of two operands Example: = = =
10 Fixed Point Arithmetic Division 1. Shift right radix point of divisor until it is a whole integer 2. Shift right radix point of dividend the same number of positions 3. Divide as in integer division 4. Radix point of quotient is in same position as that of dividend Example: ( ) ( ) = May result in a quotient with nonterminating fractional part round to desired number of fractional places 10
11 Floating Point Numbers Fixed point numbers can also be written in scientific notation also referred to as floating point format: significand Decimal: = = exponent Binary: = = significand exponent Significand (a.k.a. mantissa) is normalized: exactly one digit/bit to left of decimal/binary point. Allows for more compact representation of real numbers than fixed point format. 11
12 Floating Point Representation Most computers support the IEEE 754 standard for encoding floating point numbers: Single precision (32 bits): C type float Double precision (64 bits): C type double Intel x86 processors also support extended precision format (80 bits) 12
13 IEEE Single Precision FP Format Normalized binary FP number Single precision FP format significand ±1.fraction 2 exponent s b_exp frac 32 bits Field # Bits Value Remarks s 1 0 if number is positive; 1 if negative b_exp 8 exponent + bias, where bias = = = 127 called the biased exponent frac 23 fractional part of significand 1 to left of binary point is not stored (hidden bit) 13
14 IEEE Single Precision FP Format Problem: Find the single precision FP representation of Solution: 1. Convert to binary FP: = Normalize binary FP: = Map to single precision FP format: s = 1 frac = (pad with zeros to make 23 bits) b_exp = = 132 = Answer:
15 IEEE Single Precision FP Format FP numbers that can be represented in IEEE single precision format: 1. Normalized values Numbers of the form ±1.fraction 2 exponent 126 exponent b_exp 254 Most positive/negative number = ± Least positive/negative number = ± Observations on b_exp:  always positive (all zeros) and (all 1 s) not used: these bit patterns are used to represent special values s 0 & 255 frac 15
16 IEEE Single Precision FP Format 2. Denormalized values a. b_exp = 0 and frac = 0 represents the value ±0.0 Note: two representations of zero. s b. b_exp = 0 and frac 0 represents the binary number of the form ±0.fraction s frac Notes:  significand < 1 (bit to left of binary point is 0)  exponent of binary number must be 126 (= 1 bias)  allows representation of numbers smaller than least positive/negative normalized number, ±
17 IEEE Single Precision FP Format 3. Special values a. b_exp = all 1 s and frac = 0 represents the value ±. Typically used to represent results that overflow. s b. b_exp = all 1 s and frac 0 represents NaN ( Not a Number ). Typically used to represent results that can t be represented as a real number (e.g., 1 ). s frac 0 17
18 Why Use a Biased Representation? The IEEE single precision FP format can be generalized to any number of exponent and fractional bits: ±1.fraction 2 exponent s b_exp frac 1 k n For a kbit biased exponent field:  bias = 2 k b_exp = exponent + bias  Exponent of normalized FP number is limited to [ (2 k1 2), (2 k1 1)]  As a result, 1 b_exp (2 k 2)  As before, b_exp = all 0 s and all 1 s are used to represent denormalized values and special values 18
19 Why Use a Biased Representation? By biasing the exponent, i.e. adding (2 k1 1) to the true exponent, the resulting biased exponent is always nonnegative and hence can be treated as an unsigned integer. Comparing unsigned integers is easy: Treated as unsigned integers, which is larger: or ? Compare bitwise starting from left (msb). Stop at bit position where the numbers differ. The number with a 1 bit is larger larger Can compare two numbers in IEEE FP format with the same sign using same algorithm: < 19
20 IEEE Double Precision FP Format Normalized binary FP number Double precision FP format significand ±1.fraction 2 exponent s b_exp frac 64 bits Field # Bits Value Remarks s 1 0 if number is positive; 1 if negative b_exp 11 exponent + bias, where bias = = = 1023 called the biased exponent frac 52 fractional part of significand 1 to left of binary point is not stored (hidden bit) 20
21 x86 Extended Precision Normalized binary FP number Extended precision FP format significand ±1.fraction 2 exponent s b_exp 1 frac 80 bits Field # Bits Value Remarks s 1 0 if number is positive; 1 if negative b_exp 15 exponent + bias, where bias = = = 16,383 called the biased exponent frac 64 entire significand 1.fraction no hidden bit! 21
22 Floating Point Arithmetic Addition and Subtraction 1. Make exponents equal 2. Add/subtract significands 3. Normalize result Why? Let A = a 2 e1 and B = b 2 e2 and suppose e1 < e2 Then A can be rewritten as A = a 2 e2 2 (e2e1) Therefore, A + B = ( (a 2 (e2e1) ) + b ) 2 e2 Shift a right of the binary point (e2e1) places; then add to b 22
23 Floating Point Arithmetic Addition Example: IEEE single precision format + s b_exp frac = = Don t forget the hidden bit! To simplify illustration, let s show the hidden bit hidden bit significand 23
24 Floating Point Arithmetic Addition Example, Cont Make exponents equal To leave value unchanged: Shift significand left by 1 bit must decrease exponent by 1 Shift significand right by 1 bit must increase exponent by 1 Increase smaller exponent to equal larger exponent. Why? Will shift significand right, losing only least significant bits Therefore, increase exponent of , shifting significand right by = = 8 10 places 24
25 Floating Point Arithmetic Addition Example, Cont. Note that hidden bit is shifted into msb Shift significand of right by 8 places original value shift right 1 place shift right 2 places shift right 3 places shift right 4 places shift right 5 places shift right 6 places shift right 7 places shift right 8 places 25
26 Floating Point Arithmetic Addition Example. Cont. 2. Add significands Normalize result (already normalized; hide hidden bit)
27 Floating Point Arithmetic Multiplication 1. Add exponents 2. Multiply significands 3. Normalize result Why? Let A = a 2 e1 and B = b 2 e2 Then, A B = ( a b ) 2 e1+e2 27
28 Floating Point Arithmetic Multiplication Example: IEEE single precision format s b_exp frac = = As before, let s show the hidden bit hidden bit significand 28
29 Floating Point Arithmetic Multiplication Example. Cont. 1. Add true exponents b_exp b_exp Note that these are biased exponents: b_exp 1 = true_exponent true_exponent 1 = b_exp b_exp 2 = true_exponent true_exponent 2 = b_exp Now, true_exponent result = true_exponent 1 + true_exponent 2. Therefore, b_exp result = true_exponent result = (b_exp 1 + b_exp 2 ) = ( ) =
30 Floating Point Arithmetic Multiplication Example. Cont. 2. Multiply significands significand significand result = = sign result = 1 Why? b_exp result = (from previous slide) 3. Normalize result shift significand result right by 1 bit (hide hidden bit in IEEE format!) increase b_exp result by
31 Floating Point Arithmetic Division 1. Subtract exponents 2. Divide significands 3. Normalize result Why? Let A = a 2 e1 and B = b 2 e2 Then, A / B = ( a / b ) 2 e1e2 31
32 Floating Point Arithmetic Division Example: IEEE single precision format s b_exp frac = = As before, let s show the hidden bit hidden bit significand 32
33 Floating Point Arithmetic Division Example. Cont. 1. Subtract true exponents b_exp b_exp Note that these are biased exponents: b_exp 1 = true_exponent true_exponent 1 = b_exp b_exp 2 = true_exponent true_exponent 2 = b_exp Now, true_exponent result = true_exponent 1  true_exponent 2. Therefore, b_exp result = true_exponent result = (b_exp 1  b_exp 2 ) = ( ) =
34 Floating Point Arithmetic Division Example. Cont. 2. Divide significands significand significand result = = sign result = 0 b_exp result = (from previous slide) 3. Normalize result shift significand result left by 1 bit 1.01 (hide hidden bit in IEEE format!) decrease b_exp result by
Floatingpoint Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.
Floatingpoint Arithmetic Reading: pp. 312328 FloatingPoint Representation Nonscientific floating point numbers: A noninteger can be represented as: 2 4 2 3 2 2 2 1 2 0.21 22 23 24 where you sum
More informationChapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers
Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers
More informationData Representation Floating Point
Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:
More informationChapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation
Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation
More informationFloating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !
Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating
More informationFloating Point. The World is Not Just Integers. Programming languages support numbers with fraction
1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floatingpoint numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in
More informationFloating Point Numbers
Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides
More informationComputer Arithmetic Ch 8
Computer Arithmetic Ch 8 ALU Integer Representation Integer Arithmetic FloatingPoint Representation FloatingPoint Arithmetic 1 Arithmetic Logical Unit (ALU) (2) Does all work in CPU (aritmeettislooginen
More informationModule 2: Computer Arithmetic
Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N
More informationNumber Systems and Computer Arithmetic
Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction Rformat Iformat... integer data number text
More informationFloating Point Arithmetic
Floating Point Arithmetic CS 365 FloatingPoint What can be represented in N bits? Unsigned 0 to 2 N 2s Complement 2 N1 to 2 N11 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678
More informationSystems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties
Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for
More information15213 Recitation 2: Floating Point
15213 Recitation 2: Floating Point 1 Introduction This handout will introduce and test your knowledge of the floating point representation of real numbers, as defined by the IEEE standard. This information
More informationFloating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.
Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010 IEEE Floating point Floating point
More informationFloating Point Puzzles The course that gives CMU its Zip! Floating Point Jan 22, IEEE Floating Point. Fractional Binary Numbers.
class04.ppt 15213 The course that gives CMU its Zip! Topics Floating Point Jan 22, 2004 IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Floating Point Puzzles For
More informationInf2C  Computer Systems Lecture 2 Data Representation
Inf2C  Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack
More informationSystem Programming CISC 360. Floating Point September 16, 2008
System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:
More informationGiving credit where credit is due
CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based
More informationCS429: Computer Organization and Architecture
CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: September 18, 2017 at 12:48 CS429 Slideset 4: 1 Topics of this Slideset
More informationIT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1
IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose
More informationThe Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive.
IEEE 754 Standard  Overview Frozen Content Modified by on 13Sep2017 Before discussing the actual WB_FPU  Wishbone Floating Point Unit peripheral in detail, it is worth spending some time to look at
More informationRepresenting and Manipulating Floating Points
Representing and Manipulating Floating Points JinSoo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with
More informationFloating Point. EE 109 Unit 20. Floating Point Representation. Fixed Point
2.1 Floating Point 2.2 EE 19 Unit 2 IEEE 754 Floating Point Representation Floating Point Arithmetic Used to represent very numbers (fractions) and very numbers Avogadro s Number: +6.247 * 1 23 Planck
More information3.5 Floating Point: Overview
3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer
More informationFloating Point Representation. CS Summer 2008 Jonathan Kaldor
Floating Point Representation CS3220  Summer 2008 Jonathan Kaldor Floating Point Numbers Infinite supply of real numbers Requires infinite space to represent certain numbers We need to be able to represent
More informationIntegers and Floating Point
CMPE12 More about Numbers Integers and Floating Point (Rest of Textbook Chapter 2 plus more)" Review: Unsigned Integer A string of 0s and 1s that represent a positive integer." String is X n1, X n2,
More informationChapter 10  Computer Arithmetic
Chapter 10  Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFETRJ L. Tarrataca Chapter 10  Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation
More information1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM
1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number
More informationC NUMERIC FORMATS. Overview. IEEE SinglePrecision Floatingpoint Data Format. Figure C0. Table C0. Listing C0.
C NUMERIC FORMATS Figure C. Table C. Listing C. Overview The DSP supports the 32bit singleprecision floatingpoint data format defined in the IEEE Standard 754/854. In addition, the DSP supports an
More informationIEEE Standard for FloatingPoint Arithmetic: 754
IEEE Standard for FloatingPoint Arithmetic: 754 G.E. Antoniou G.E. Antoniou () IEEE Standard for FloatingPoint Arithmetic: 754 1 / 34 Floating Point Standard: IEEE 754 1985/2008 Established in 1985 (2008)
More informationCS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.
CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and reestablish fundamental of mathematics for the computer architecture course Overview: what are bits
More informationFloating Point Numbers
Floating Point Floating Point Numbers Mathematical background: tional binary numbers Representation on computers: IEEE floating point standard Rounding, addition, multiplication Kai Shen 1 2 Fractional
More informationFloating Point Arithmetic
Floating Point Arithmetic Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu EEE3050: Theory on Computer Architectures, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)
More informationHomework 1 graded and returned in class today. Solutions posted online. Request regrades by next class period. Question 10 treated as extra credit
Announcements Homework 1 graded and returned in class today. Solutions posted online. Request regrades by next class period. Question 10 treated as extra credit Quiz 2 Monday on Number System Conversions
More information10.1. Unit 10. Signed Representation Systems Binary Arithmetic
0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system
More informationIEEE Floating Point Numbers Overview
COMP 40: Machine Structure and Assembly Language Programming (Fall 2015) IEEE Floating Point Numbers Overview Noah Mendelsohn Tufts University Email: noah@cs.tufts.edu Web: http://www.cs.tufts.edu/~noah
More informationCS101 Introduction to computing Floating Point Numbers
CS101 Introduction to computing Floating Point Numbers A. Sahu and S. V.Rao Dept of Comp. Sc. & Engg. Indian Institute of Technology Guwahati 1 Outline Need to floating point number Number representation
More informationIEEE754 floatingpoint
IEEE754 floatingpoint Real and floatingpoint numbers Real numbers R form a continuum  Rational numbers are a subset of the reals  Some numbers are irrational, e.g. π Floatingpoint numbers are an
More informationFloating Point Numbers. Lecture 9 CAP
Floating Point Numbers Lecture 9 CAP 3103 06162014 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? 2 N things, and no more! They could be Unsigned integers:
More informationLecture 5. Computer Arithmetic. Ch 9 [Stal10] Integer arithmetic Floatingpoint arithmetic
Lecture 5 Computer Arithmetic Ch 9 [Stal10] Integer arithmetic Floatingpoint arithmetic ALU ALU = Arithmetic Logic Unit (aritmeettislooginen yksikkö) Actually performs operations on data Integer and
More informationNumber Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example
Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,
More informationCS321. Introduction to Numerical Methods
CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number
More informationFloatingPoint Arithmetic
FloatingPoint Arithmetic if ((A + A)  A == A) { SelfDestruct() } Reading: Study Chapter 3. L12 Multiplication 1 Approximating Real Numbers on Computers Thus far, we ve entirely ignored one of the most
More informationChapter 3 Arithmetic for Computers (Part 2)
Department of Electr rical Eng ineering, Chapter 3 Arithmetic for Computers (Part 2) 王振傑 (ChenChieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Depar rtment of Electr rical Eng ineering, FengChia Unive
More information4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning
4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.
More informationSigned umbers. Sign/Magnitude otation
Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,
More informationComputer Architecture and Organization
31 Chapter 3  Arithmetic Computer Architecture and Organization Miles Murdocca and Vincent Heuring Chapter 3 Arithmetic 32 Chapter 3  Arithmetic Chapter Contents 3.1 Fixed Point Addition and Subtraction
More informationCharacters, Strings, and Floats
Characters, Strings, and Floats CS 350: Computer Organization & Assembler Language Programming 9/6: pp.8,9; 9/28: Activity Q.6 A. Why? We need to represent textual characters in addition to numbers. Floatingpoint
More informationFloating Point Representation in Computers
Floating Point Representation in Computers Floating Point Numbers  What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any
More informationOn a 64bit CPU. Size/Range vary by CPU model and Word size.
On a 64bit CPU. Size/Range vary by CPU model and Word size. unsigned short x; //range 0 to 65553 signed short x; //range ± 32767 short x; //assumed signed There are (usually) no unsigned floats or doubles.
More informationCMSC 313 Lecture 03 Multiplebyte data bigendian vs littleendian sign extension Multiplication and division Floating point formats Character Codes
Multiplebyte data CMSC 313 Lecture 03 bigendian vs littleendian sign extension Multiplication and division Floating point formats Character Codes UMBC, CMSC313, Richard Chang 45 Chapter
More informationNumber Systems and Conversions UNIT 1 NUMBER SYSTEMS & CONVERSIONS. Number Systems (2/2) Number Systems (1/2) Iris HuiRu Jiang Spring 2010
Contents Number systems and conversion Binary arithmetic Representation of negative numbers Addition of two s complement numbers Addition of one s complement numbers Binary s Readings Unit.~. UNIT NUMBER
More information8/30/2016. In Binary, We Have A Binary Point. ECE 120: Introduction to Computing. FixedPoint Representations Support Fractions
University of Illinois at UrbanaChampaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Fixed and FloatingPoint Representations In Binary, We Have A Binary Point Let
More informationl l l l l l l Base 2; each digit is 0 or 1 l Each bit in place i has value 2 i l Binary representation is used in computers
198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book Computer Architecture What do computers do? Manipulate stored information
More informationArchitecture and Design of Generic IEEE754 Based Floating Point Adder, Subtractor and Multiplier
Architecture and Design of Generic IEEE754 Based Floating Point Adder, Subtractor and Multiplier Sahdev D. Kanjariya VLSI & Embedded Systems Design Gujarat Technological University PG School Ahmedabad,
More informationClasses of Real Numbers 1/2. The Real Line
Classes of Real Numbers All real numbers can be represented by a line: 1/2 π 1 0 1 2 3 4 real numbers The Real Line { integers rational numbers nonintegral fractions irrational numbers Rational numbers
More informationBinary Addition & Subtraction. Unsigned and Sign & Magnitude numbers
Binary Addition & Subtraction Unsigned and Sign & Magnitude numbers Addition and subtraction of unsigned or sign & magnitude binary numbers by hand proceeds exactly as with decimal numbers. (In fact this
More informationecture 25 Floating Point Friedland and Weaver Computer Science 61C Spring 2017 March 17th, 2017
ecture 25 Computer Science 61C Spring 2017 March 17th, 2017 Floating Point 1 NewSchool Machine Structures (It s a bit more complicated!) Software Hardware Parallel Requests Assigned to computer e.g.,
More informationFloatingPoint Arithmetic
FloatingPoint Arithmetic if ((A + A)  A == A) { SelfDestruct() } L11 Floating Point 1 What is the problem? Many numeric applications require numbers over a VERY large range. (e.g. nanoseconds to centuries)
More informationCSCI 402: Computer Architectures. Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI.
CSCI 402: Computer Architectures Arithmetic for Computers (4) Fengguang Song Department of Computer & Information Science IUPUI Homework 4 Assigned on Feb 22, Thursday Due Time: 11:59pm, March 5 on Monday
More informationThe type of all data used in a C (or C++) program must be specified
The type of all data used in a C (or C++) program must be specified A data type is a description of the data being represented That is, a set of possible values and a set of operations on those values
More informationCHAPTER 2 Data Representation in Computer Systems
CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting
More informationCHAPTER 2 Data Representation in Computer Systems
CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting
More informationTable : IEEE Single Format ± a a 2 a 3 :::a 8 b b 2 b 3 :::b 23 If exponent bitstring a :::a 8 is Then numerical value represented is ( ) 2 = (
Floating Point Numbers in Java by Michael L. Overton Virtually all modern computers follow the IEEE 2 floating point standard in their representation of floating point numbers. The Java programming language
More informationChapter 4: Data Representations
Chapter 4: Data Representations Integer Representations o unsigned o signmagnitude o one's complement o two's complement o bias o comparison o sign extension o overflow Character Representations Floating
More informationNumber Systems & Encoding
Number Systems & Encoding Lecturer: Sri Parameswaran Author: Hui Annie Guo Modified: Sri Parameswaran Week2 1 Lecture overview Basics of computing with digital systems Binary numbers Floating point numbers
More informationComputer Architecture. Chapter 3: Arithmetic for Computers
182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin
More informationUNIT  I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS
UNIT  I: COMPUTER ARITHMETIC, REGISTER TRANSFER LANGUAGE & MICROOPERATIONS (09 periods) Computer Arithmetic: Data Representation, Fixed Point Representation, Floating Point Representation, Addition and
More informationDouble Precision FloatingPoint Arithmetic on FPGAs
MITSUBISHI ELECTRIC ITE VILab Title: Double Precision FloatingPoint Arithmetic on FPGAs Internal Reference: Publication Date: VIL04D098 Author: S. Paschalakis, P. Lee Rev. A Dec. 2003 Reference: Paschalakis,
More information4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning
4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.
More informationCS101 Lecture 04: Binary Arithmetic
CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary
More informationUNIT IV: DATA PATH DESIGN
UNIT IV: DATA PATH DESIGN Agenda Introduc/on Fixed Point Arithme/c Addi/on Subtrac/on Mul/plica/on & Serial mul/plier Division & Serial Divider Two s Complement (Addi/on, Subtrac/on) Booth s algorithm
More informationCoprocessor Math Processor. Richa Upadhyay Prabhu. NMIMS s MPSTME February 9, 2016
8087 Math Processor Richa Upadhyay Prabhu NMIMS s MPSTME richa.upadhyay@nmims.edu February 9, 2016 Introduction Need of Math Processor: In application where fast calculation is required Also where there
More informationFloatingPoint Arithmetic
FloatingPoint Arithmetic if ((A + A)  A == A) { SelfDestruct() } Reading: Study Chapter 4. L12 Multiplication 1 Why Floating Point? Aren t Integers enough? Many applications require numbers with a VERY
More information1.2 Roundoff Errors and Computer Arithmetic
1.2 Roundoff Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set
More informationFloating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals
Floating Point COE 38 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline FloatingPoint Numbers IEEE 754 FloatingPoint
More informationICS Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2
ICS 2008 Instructor: Aleksandar Kuzmanovic TA: Ionut Trestian Recitation 2 Data Representations Sizes of C Objects (in Bytes) C Data Type Compaq Alpha Typical 32bit Intel IA32 int 4 4 4 long int 8 4 4
More informationBits, Bytes, and Integers Part 2
Bits, Bytes, and Integers Part 2 15213: Introduction to Computer Systems 3 rd Lecture, Jan. 23, 2018 Instructors: Franz Franchetti, Seth Copen Goldstein, Brian Railing 1 First Assignment: Data Lab Due:
More informationPrinciples of Computer Architecture. Chapter 3: Arithmetic
31 Chapter 3  Arithmetic Principles of Computer Architecture Miles Murdocca and Vincent Heuring Chapter 3: Arithmetic 32 Chapter 3  Arithmetic 3.1 Overview Chapter Contents 3.2 Fixed Point Addition
More informationHardware Modules for Safe Integer and FloatingPoint Arithmetic
Hardware Modules for Safe Integer and FloatingPoint Arithmetic A Thesis submitted to the Graduate School Of The University of Cincinnati In partial fulfillment of the requirements for the degree of Master
More informationFloatingPoint Numbers in Digital Computers
POLYTECHNIC UNIVERSITY Department of Computer and Information Science FloatingPoint Numbers in Digital Computers K. Ming Leung Abstract: We explain how floatingpoint numbers are represented and stored
More informationD I G I T A L C I R C U I T S E E
D I G I T A L C I R C U I T S E E Digital Circuits Basic Scope and Introduction This book covers theory solved examples and previous year gate question for following topics: Number system, Boolean algebra,
More informationCSC201, SECTION 002, Fall 2000: Homework Assignment #2
1 of 7 11/8/2003 7:34 PM CSC201, SECTION 002, Fall 2000: Homework Assignment #2 DUE DATE Monday, October 2, at the start of class. INSTRUCTIONS FOR PREPARATION Neat, in order, answers easy to find. Staple
More informationScientific Computing. Error Analysis
ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations RoundOff Errors Introduction Error is the difference between the exact solution
More informationLogiCORE IP FloatingPoint Operator v6.2
LogiCORE IP FloatingPoint Operator v6.2 Product Guide Table of Contents SECTION I: SUMMARY IP Facts Chapter 1: Overview Unsupported Features..............................................................
More informationComputer Systems C S Cynthia Lee
Computer Systems C S 1 0 7 Cynthia Lee 2 Today s Topics LECTURE: Floating point! Real Numbers and Approximation MATH TIME! Some preliminary observations on approximation We know that some noninteger numbers
More informationDescription Hex M E V smallest value > largest denormalized negative infinity number with hex representation 3BB0 
CSE2421 HOMEWORK #2 DUE DATE: MONDAY 11/5 11:59pm PROBLEM 2.84 Given a floatingpoint format with a kbit exponent and an nbit fraction, write formulas for the exponent E, significand M, the fraction
More informationIEEE Standard 754 Floating Point Numbers
IEEE Standard 754 Floating Point Numbers Steve Hollasch / Last update 2005Feb24 IEEE Standard 754 floating point is the most common representation today for real numbers on computers, including Intelbased
More informationNumeric Variable Storage Pattern
Numeric Variable Storage Pattern Sreekanth Middela Srinivas Vanam Rahul Baddula Percept Pharma Services, Bridgewater, NJ ABSTRACT This paper presents the Storage pattern of Numeric Variables within the
More informationCS367 Test 1 Review Guide
CS367 Test 1 Review Guide This guide tries to revisit what topics we've covered, and also to briefly suggest/hint at types of questions that might show up on the test. Anything on slides, assigned reading,
More informationAdministrivia. CMSC 216 Introduction to Computer Systems Lecture 24 Data Representation and Libraries. Representing characters DATA REPRESENTATION
Administrivia CMSC 216 Introduction to Computer Systems Lecture 24 Data Representation and Libraries Jan Plane & Alan Sussman {jplane, als}@cs.umd.edu Project 6 due next Friday, 12/10 public tests posted
More informationArithmetic. Chapter 3 Computer Organization and Design
Arithmetic Chapter 3 Computer Organization and Design Addition Addition is similar to decimals 0000 0111 + 0000 0101 = 0000 1100 Subtraction (negate) 0000 0111 + 1111 1011 = 0000 0010 Over(under)flow For
More informationCourse Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation
Course Schedule CS 221 Computer Architecture Week 3: Information Representation (2) Fall 2001 W1 Sep 11 Sep 14 Introduction W2 Sep 18 Sep 21 Information Representation (1) (Chapter 3) W3 Sep 25 Sep
More informationChapter 5: Computer Arithmetic
Slide 1/29 Learning Objectives Computer Fundamentals: Pradeep K. Sinha & Priti Sinha In this chapter you will learn about: Reasons for using binary instead of decimal numbers Basic arithmetic operations
More informationDeclaring Floating Point Data
Declaring Floating Point Data There are three ways to declare floating point storage. These are E D L Single precision floating point, Double precision floating point, and Extended precision floating point.
More informationArithmetic Logic Unit
Arithmetic Logic Unit A.R. Hurson Department of Computer Science Missouri University of Science & Technology A.R. Hurson 1 Arithmetic Logic Unit It is a functional bo designed to perform "basic" arithmetic,
More informationQUIZ ch.1. 1 st generation 2 nd generation 3 rd generation 4 th generation 5 th generation Rock s Law Moore s Law
QUIZ ch.1 1 st generation 2 nd generation 3 rd generation 4 th generation 5 th generation Rock s Law Moore s Law Integrated circuits Density of silicon chips doubles every 1.5 yrs. Multicore CPU Transistors
More information9 Multiplication and Division
9 Multiplication and Division Multiplication is done by doing shifts and additions. Multiplying two (unsigned) numbers of n bits each results in a product of 2n bits. Example: 0110 x 0011 (6x3) At start,
More informationName: CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1. Question Points I. /34 II. /30 III.
CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1 Name: Question Points I. /34 II. /30 III. /36 TOTAL: /100 Instructions: 1. This is a closedbook, closednotes exam. 2. You
More information