CMSC Computer Architecture Lecture 11: More Caches. Prof. Yanjing Li University of Chicago

Size: px
Start display at page:

Download "CMSC Computer Architecture Lecture 11: More Caches. Prof. Yanjing Li University of Chicago"

Transcription

1 CMSC Computer Architecture Lecture 11: More Caches Prof. Yajig Li Uiversity of Chicago

2 Lecture Outlie Caches 2

3 Review Memory hierarchy Cache basics Locality priciples Spatial ad temporal How to access a cache? Fudametal parameters sets, block size, associativity Performace metric: AMAT 3

4 Cache Desig Decisios ad Tradeoffs

5 Cache Desig Cosideratios Orgaizatio: cache size, block size, associatively? Replacemet: what data to remove to make room i cache? Write policy: what do we do about writes? Istructios/data: Do we treat them separately? Performace optimizatio Icrease hit rate, reduce miss rate Reduce hit time Reduce miss pealty 5

6 Cache Size Cache size: total data (ot icludig tag) capacity bigger ca exploit temporal locality better Too large: adversely affects hit ad miss latecy smaller is faster => bigger is slower access time may degrade critical path Too small Does t exploit temporal locality well useful data replaced ofte hit rate workig set size Workig set: the whole set of data the executig applicatio refereces Withi a time iterval cache size 6

7 Block Size Block size is the data that is associated with a address tag Too small do t exploit spatial locality well have larger tag overhead Ca t take advatage of fast burst trasfers from memory Too large Too few total # of blocks à less temporal locality exploitatio Waste cache space, badwidth ad eergy if spatial locality is ot high hit rate block size 7

8 Critical-Word First Large cache blocks ca take a log time to fill ito the cache fill cache lie critical word first restart cache access before complete fill Example Assume 8-byte words ad 8-word cache block Applicatio wats to access the 4 th word ad miss i cache Fetch the 4 th word first, the the rest 8

9 Associativity How may blocks ca map to the same idex (or set)? Higher associativity ++ Higher hit rate (reduce coflict misses) -- Slower cache access time (hit latecy ad data access latecy) -- More expesive hardware (more comparators) -- Dimiishig returs from higher associativity Smaller associativity lower cost hit rate lower hit latecy Especially importat for L1 caches associativity 9

10 Cache Desig Cosideratios Orgaizatio: cache size, block size, associatively? Replacemet: what data to remove to make room i cache? Write policy: what do we do about writes? Istructios/data: Do we treat them separately? Performace optimizatio Icrease hit rate, reduce miss rate Reduce hit time Reduce miss pealty 10

11 Evictio/Replacemet Policy Which block i the set to replace o a cache miss? Ay ivalid block first If all are valid, cosult the replacemet policy 11

12 LRU (Least Recetly Used) Policy Idea: Evict the least recetly accessed block Problem: Need to keep track of access orderig of blocks Questio: 2-way set associative cache: What do you eed to implemet LRU perfectly? Questio: 4-way set associative cache: What do you eed to implemet LRU perfectly? How may differet orderigs possible for the 4 blocks i the set? How may bits eeded to ecode the LRU order of a block? What is the logic eeded to determie the LRU victim? 12

13 Approximatios of LRU Most moder processors do ot implemet true LRU (also called perfect LRU ) i highly-associative caches Why? True LRU is complex LRU is a approximatio to predict locality ayway (i.e., ot the best possible cache maagemet policy) Examples: Not MRU (ot most recetly used) May others 13

14 Radom Replacemet Policy LRU vs. Radom: Which oe is better? Example: 4-way cache, cyclic refereces to A, B, C, D, E 0% hit rate with LRU policy Set thrashig: Whe the program workig set i a set is larger tha set associativity Radom replacemet policy is better whe thrashig occurs I practice: Depeds o workload Average hit rate of LRU ad Radom are similar 14

15 Cache Desig Cosideratios Orgaizatio: cache size, block size, associatively? Replacemet: what data to remove to make room i cache? Write policy: what do we do about writes? Istructios/data: Do we treat them separately? Performace optimizatio Icrease hit rate, reduce miss rate Reduce hit time Reduce miss pealty 15

16 Write-Back vs. Write-Through Caches Whe do we write the modified data i a cache to the ext level? Write through: At the time the write happes Write back: Whe the block is evicted Write-back + Ca cosolidate multiple writes to the same block before evictio Potetially saves badwidth betwee cache levels + saves eergy -- Need a bit idicatig the block is dirty/modified Write-through + Simpler + All levels are up to date -- More badwidth itesive; o coalescig of writes 16

17 Allocate vs. No-Allocate O Write Caches Do we allocate a cache block o a write miss? Allocate o write miss: Yes No-allocate o write miss: No Allocate o write miss + Ca cosolidate writes istead of writig each of them idividually to ext level (assume write-back cache) + Simpler because write misses ca be treated the same way as read misses -- Reuires trasfer of the whole cache block No-allocate + Coserves cache space if locality of writes is low (potetially better cache hit rate) 17

18 Cache Desig Cosideratios Orgaizatio: cache size, block size, associatively? Replacemet: what data to remove to make room i cache? Write policy: what do we do about writes? Istructios/data: Do we treat them separately? Performace optimizatio Icrease hit rate, reduce miss rate Reduce hit time Reduce miss pealty 18

19 Istructio vs. Data Caches Separate or Uified? Uified: + Dyamic sharig of cache space: o overprovisioig that might happe with static partitioig (i.e., split I ad D caches) -- Istructios ad data ca thrash each other (i.e., o guarateed space for either) -- I ad D are accessed i differet places i the pipelie. Where do we place the uified cache for fast access? First level caches are almost always split Maily for the last reaso above Secod ad higher levels are almost always uified 19

20 A Word o Multi-level Cachig First-level (L1) caches (istructio ad data) Decisios very much affected by cycle time Small, lower associativity Secod-level (L2) caches Decisios eed to balace hit rate ad access latecy Usually large ad highly associative; latecy ot as importat Multi-level iclusio If data i L1 is always a subset of data i L2 + Easier cache aalysis + Easier coherece check -- Additioal logic to maitai iclusio -- Wasted space 20

21 Cache Desig Cosideratios Orgaizatio: cache size, block size, associatively? Replacemet: what data to remove to make room i cache? Write policy: what do we do about writes? Istructios/data: Do we treat them separately? Performace optimizatio Icrease hit rate, reduce miss rate Reduce hit time Reduce miss pealty 21

22 How to Improve Cache Performace Remember Average memory access time (AMAT) = ( hit-rate * hit-latecy ) + ( miss-rate * miss-latecy ) Three fudametal goals Reducig miss rate Reducig miss latecy/cost Reducig hit latecy/cost Tradeoffs! E.g., to reduce miss rate, hit/miss latecy ca icrease 22

23 Improvig Cache Performace Reducig miss rate Higher associativity, better replacemet policies, Reducig hit latecy/cost Smaller caches/associativity Reducig miss latecy/cost Multi-level caches Critical word first No-blockig caches (multiple cache misses i parallel) High-badwidth caches (multiple accesses per cycle) Cache-friedly software approaches 23

24 No-Blockig Caches

25 Hadlig Multiple Outstadig Accesses Goal: Eable cache access whe there is a pedig miss Hit uder miss Miss uder miss Idea: No-blockig or lockup-free caches 25

26 Beefits of No-Blockig Caches 1 hit uder miss: 9% ad 12.5% reductio i cache access latecy for SPECit ad SPECfp bechmarks Slide credit: Prof. Christos Kozyrakis, (EE282, Staford Uiversity) 26

27 Hadlig Multiple Outstadig Accesses Idea: Keep track of the status/data of misses that are beig hadled i Miss Status Hadlig Registers (MSHRs) A cache access checks MSHRs to see if a miss to the same block is already pedig. If pedig, a ew reuest is ot geerated If pedig ad the eeded data available, data forwarded to later load Reuires bufferig of outstadig miss reuests 27

28 Miss Status Hadlig Register Also called miss buffer Keeps track of Outstadig cache misses Pedig load/store accesses that refer to the missig cache block Fields of a sigle MSHR etry Valid bit Cache block address (to match icomig accesses) Cotrol/status bits (prefetch, whether it s issued to memory, which subblocks have arrived, etc) Data for each subblock Multiple store/load etries for each pedig load/store that access the cache block Valid, type (load or store), data size (how may bytes), which bytes i block are eeded, destiatio register or store buffer etry address 28

29 Miss Status Hadlig Register Etry 29

30 No-Blockig Cache Operatio O a cache miss: Search MSHRs for a pedig access to the same block Foud: Allocate a load/store etry i the same MSHR etry Not foud: Allocate a ew MSHR No free etry: stall Whe a subblock returs from the ext level i memory Check which loads/stores waitig for it Forward data to the load/store uit Deallocate load/store etry i the MSHR etry (mark as ivalid) Write subblock i cache or MSHR If last subblock, dellaocate MSHR (after writig the block i cache) 30

31 Eablig High Badwidth Caches

32 Multiple Memory Accesses per Cycle Processors ca geerate multiple cache/memory accesses per cycle E.g. superscalar Cache/memory ca receive multiple access reuests per cycle E.g., shared amog multiple processors How do we esure the cache/memory ca hadle multiple accesses i the same clock cycle? Solutios... Multiple baks 32

33 Cache Baks Idea: rather tha treat the cache as a sigle moolithic block, divide it ito idepedet baks that ca support simultaeous accesses Bits i address determies which bak a address maps to Address space partitioed ito separate baks Access to differet baks (e.g., blocks 0, 1, 2, 3) ca be doe i parallel. This mappig is called iterleavig 33

34 Cache Baks Advatages Icrease cache badwidth No icrease i data store area Power beefits Disadvatages Caot satisfy multiple accesses to the same bak This is a key issue, called bak coflicts, i.e., multiple accesses are to the same bak May techiues to avoid bak coflicts Bak utilizatio More complex logic (itercoect etwork) to distribute/collect accesses 34

35 Software Optimizatio Techiues

36 Geeral Approaches Restructurig data access patters Restructurig data layout Focus: improvig hit rate 36

37 Restructurig Data Access Patters (I) Array access example: if colum-major x[i+1,j] follows x[i,j] i memory x[i,j+1] is far away from x[i,j] Poor code for i = 1, rows for j = 1, colums sum = sum + x[i,j] Better code for j = 1, colums for i = 1, rows sum = sum + x[i,j] This is called loop iterchage 37

38 Restructurig Data Access Patters (II) Blockig Divide loops operatig o arrays ito computatio chuks so that each chuk ca hold its data i the cache Avoids cache coflicts betwee differet chuks of computatio Essetially: Divide the workig set so that each piece fits i the cache Blockig limitatios 1. there ca be coflicts amog differet arrays 2. array sizes may be ukow at compile/programmig time 38

39 Blockig Example // 3 N-by-N matrices x, y, z for (i = 0; i < N; i++){ for (j = 0; j < N; j++) } { } r = 0; for(k = 0; k < N; k++ ) r += y[i][k] * z[k][j]; x[i][j] += r; 39

40 Access Patter older accesses ew accesses

41 Blocked Access Patter Uoptimized Blocked

42 Blocked Code for (jj = 0; jj < N; jj += B){ for (kk = 0; kk < N; kk += B){ for (i = 0; I < N; I ++){ for (j = jj; j < mi(jj+b, N); j++){ r = 0; for (k = kk; k< mi(kk+b, N); k++){ r += y[i][k]*z[k][j]; } x[i][j] += r; } } } } 42

43 Restructurig Data Layout (I) struct Node { struct Node* ode; it key; char [256] ame; char [256] school; } while (ode) { if (odeàkey == iput-key) { // access other fields of ode } ode = odeàext; } Poiter based traversal (e.g., of a liked list) Assume a huge liked list (1M odes) ad uiue keys Why does the code o the left have poor cache hit rate? Other fields occupy most of the cache lie eve though rarely accessed! 43

44 Restructurig Data Layout (II) struct Node { struct Node* ode; it key; struct Node-data* ode-data; } struct Node-data { char [256] ame; char [256] school; } while (ode) { if (odeàkey == iput-key) { // access odeàode-data } ode = odeàext; } Idea: separate freuetlyused fields of a data structure ad pack them ito a separate data structure Who should do this? Programmer? Compiler? Profilig vs. dyamic Hardware? Who ca determie what is freuetly used? 44

45 Restructurig Data Layout (III) How about istructio layout? 45

CMSC Computer Architecture Lecture 10: Caches. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 10: Caches. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 10: Caches Prof. Yajig Li Uiversity of Chicago Midterm Recap Overview ad fudametal cocepts ISA Uarch Datapath, cotrol Sigle cycle, multi cycle Pipeliig Basic idea,

More information

Master Informatics Eng. 2017/18. A.J.Proença. Memory Hierarchy. (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1

Master Informatics Eng. 2017/18. A.J.Proença. Memory Hierarchy. (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 2017/18 1 Advaced Architectures Master Iformatics Eg. 2017/18 A.J.Proeça Memory Hierarchy (most slides are borrowed) AJProeça, Advaced Architectures, MiEI, UMiho, 2017/18 1 Itroductio Programmers wat ulimited amouts

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5 Morga Kaufma Publishers 26 February, 28 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Set-Associative Cache Architecture Performace Summary Whe CPU performace icreases:

More information

CMSC Computer Architecture Lecture 12: Virtual Memory. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 12: Virtual Memory. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 12: Virtual Memory Prof. Yajig Li Uiversity of Chicago A System with Physical Memory Oly Examples: most Cray machies early PCs Memory early all embedded systems

More information

Course Site: Copyright 2012, Elsevier Inc. All rights reserved.

Course Site:   Copyright 2012, Elsevier Inc. All rights reserved. Course Site: http://cc.sjtu.edu.c/g2s/site/aca.html 1 Computer Architecture A Quatitative Approach, Fifth Editio Chapter 2 Memory Hierarchy Desig 2 Outlie Memory Hierarchy Cache Desig Basic Cache Optimizatios

More information

The University of Adelaide, School of Computer Science 22 November Computer Architecture. A Quantitative Approach, Sixth Edition.

The University of Adelaide, School of Computer Science 22 November Computer Architecture. A Quantitative Approach, Sixth Edition. Computer Architecture A Quatitative Approach, Sixth Editio Chapter 2 Memory Hierarchy Desig 1 Itroductio Programmers wat ulimited amouts of memory with low latecy Fast memory techology is more expesive

More information

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5.

Morgan Kaufmann Publishers 26 February, COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5. Morga Kaufma Publishers 26 February, 208 COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Virtual Memory Review: The Memory Hierarchy Take advatage of the priciple

More information

Computer Architecture ELEC3441

Computer Architecture ELEC3441 CPU-Memory Bottleeck Computer Architecture ELEC44 CPU Memory Lecture 8 Cache Dr. Hayde Kwok-Hay So Departmet of Electrical ad Electroic Egieerig Performace of high-speed computers is usually limited by

More information

CMSC22200 Computer Architecture Lecture 9: Out-of-Order, SIMD, VLIW. Prof. Yanjing Li University of Chicago

CMSC22200 Computer Architecture Lecture 9: Out-of-Order, SIMD, VLIW. Prof. Yanjing Li University of Chicago CMSC22200 Computer Architecture Lecture 9: Out-of-Order, SIMD, VLIW Prof. Yajig Li Uiversity of Chicago Admiistrative Stuff Lab2 due toight Exam I: covers lectures 1-9 Ope book, ope otes, close device

More information

Page 1. Why Care About the Memory Hierarchy? Memory. DRAMs over Time. Virtual Memory!

Page 1. Why Care About the Memory Hierarchy? Memory. DRAMs over Time. Virtual Memory! Why Care About the Memory Hierarchy? Memory Virtual Memory -DRAM Memory Gap (latecy) Reasos: Multi process systems (abstractio & memory protectio) Solutio: Tables (holdig per process traslatios) Fast traslatio

More information

CS61C : Machine Structures

CS61C : Machine Structures CS 61C L24 VM II (1) ist.eecs.berkele.edu/~cs61c/su5 CS61C : Machie Structures Lecture #24: VM II Address Mappig: Virtual Address: VPN offset 25-8-2 Ad Carle idex ito page table located i phsical memor

More information

Multi-Threading. Hyper-, Multi-, and Simultaneous Thread Execution

Multi-Threading. Hyper-, Multi-, and Simultaneous Thread Execution Multi-Threadig Hyper-, Multi-, ad Simultaeous Thread Executio 1 Performace To Date Icreasig processor performace Pipeliig. Brach predictio. Super-scalar executio. Out-of-order executio. Caches. Hyper-Threadig

More information

UH-MEM: Utility-Based Hybrid Memory Management. Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, Onur Mutlu

UH-MEM: Utility-Based Hybrid Memory Management. Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, Onur Mutlu UH-MEM: Utility-Based Hybrid Memory Maagemet Yag Li, Saugata Ghose, Jogmoo Choi, Ji Su, Hui Wag, Our Mutlu 1 Executive Summary DRAM faces sigificat techology scalig difficulties Emergig memory techologies

More information

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000.

Basic allocator mechanisms The course that gives CMU its Zip! Memory Management II: Dynamic Storage Allocation Mar 6, 2000. 5-23 The course that gives CM its Zip Memory Maagemet II: Dyamic Storage Allocatio Mar 6, 2000 Topics Segregated lists Buddy system Garbage collectio Mark ad Sweep Copyig eferece coutig Basic allocator

More information

Switching Hardware. Spring 2018 CS 438 Staff, University of Illinois 1

Switching Hardware. Spring 2018 CS 438 Staff, University of Illinois 1 Switchig Hardware Sprig 208 CS 438 Staff, Uiversity of Illiois Where are we? Uderstad Differet ways to move through a etwork (forwardig) Read sigs at each switch (datagram) Follow a kow path (virtual circuit)

More information

CMSC Computer Architecture Lecture 15: Multi-Core. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 15: Multi-Core. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 15: Multi-Core Prof. Yajig Li Uiversity of Chicago Course Evaluatio Very importat Please fill out! 2 Lab3 Brach Predictio Competitio 8 teams etered the competitio,

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

CMSC Computer Architecture Lecture 5: Pipelining. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 5: Pipelining. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 5: Pipeliig Prof. Yajig Li Uiversity of Chicago Admiistrative Stuff Lab1 Due toight Lab2: out later today; due 2 weeks from ow Review sessio this Friday Turig award

More information

COMPUTER ORGANIZATION AND DESIGN

COMPUTER ORGANIZATION AND DESIGN COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 5 Large ad Fast: Exploitig Memory Hierarchy Priciple of Locality Programs access a small proportio of their address space

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter The Processor Part A path Desig Itroductio CPU performace factors Istructio cout Determied by ISA ad compiler. CPI ad

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5. Large and Fast: Exploiting Memory Hierarchy

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 5. Large and Fast: Exploiting Memory Hierarchy COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface ARM Editio Chapter 5 Large ad Fast: Exploitig Memory Hierarchy Priciple of Locality Programs access a small proportio of their address space

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 20 Itroductio to Trasactio Processig Cocepts ad Theory Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Trasactio Describes local

More information

FAST BIT-REVERSALS ON UNIPROCESSORS AND SHARED-MEMORY MULTIPROCESSORS

FAST BIT-REVERSALS ON UNIPROCESSORS AND SHARED-MEMORY MULTIPROCESSORS SIAM J. SCI. COMPUT. Vol. 22, No. 6, pp. 2113 2134 c 21 Society for Idustrial ad Applied Mathematics FAST BIT-REVERSALS ON UNIPROCESSORS AND SHARED-MEMORY MULTIPROCESSORS ZHAO ZHANG AND XIAODONG ZHANG

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor Advanced Issues

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor Advanced Issues COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 4 The Processor Advaced Issues Review: Pipelie Hazards Structural hazards Desig pipelie to elimiate structural hazards.

More information

Uniprocessors. HPC Prof. Robert van Engelen

Uniprocessors. HPC Prof. Robert van Engelen Uiprocessors HPC Prof. Robert va Egele Overview PART I: Uiprocessors PART II: Multiprocessors ad ad Compiler Optimizatios Parallel Programmig Models Uiprocessors Multiprocessors Processor architectures

More information

Multiprocessors. HPC Prof. Robert van Engelen

Multiprocessors. HPC Prof. Robert van Engelen Multiprocessors Prof. Robert va Egele Overview The PMS model Shared memory multiprocessors Basic shared memory systems SMP, Multicore, ad COMA Distributed memory multicomputers MPP systems Network topologies

More information

Outline. CSCI 4730 Operating Systems. Questions. What is an Operating System? Computer System Layers. Computer System Layers

Outline. CSCI 4730 Operating Systems. Questions. What is an Operating System? Computer System Layers. Computer System Layers Outlie CSCI 4730 s! What is a s?!! System Compoet Architecture s Overview Questios What is a?! What are the major operatig system compoets?! What are basic computer system orgaizatios?! How do you commuicate

More information

Reliable Transmission. Spring 2018 CS 438 Staff - University of Illinois 1

Reliable Transmission. Spring 2018 CS 438 Staff - University of Illinois 1 Reliable Trasmissio Sprig 2018 CS 438 Staff - Uiversity of Illiois 1 Reliable Trasmissio Hello! My computer s ame is Alice. Alice Bob Hello! Alice. Sprig 2018 CS 438 Staff - Uiversity of Illiois 2 Reliable

More information

Reducing SDRAM Energy Consumption in Embedded Systems Λ

Reducing SDRAM Energy Consumption in Embedded Systems Λ Reducig SDRAM Eergy Cosumptio i Embedded Systems Λ Jelea Trajkovic, Alexader Veidebaum Uiversity of Califoria, Irvie fjeleat,alexvg@ics.uci.edu Abstract DRAM eergy cosumptio i embedded systems ca be very

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Single-Cycle Disadvantages & Advantages

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Single-Cycle Disadvantages & Advantages COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter 4 The Processor Pipeliig Sigle-Cycle Disadvatages & Advatages Clk Uses the clock cycle iefficietly the clock cycle must

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago

CMSC Computer Architecture Lecture 2: ISA. Prof. Yanjing Li Department of Computer Science University of Chicago CMSC 22200 Computer Architecture Lecture 2: ISA Prof. Yajig Li Departmet of Computer Sciece Uiversity of Chicago Admiistrative Stuff Lab1 out toight Due Thursday (10/18) Lab1 review sessio Tomorrow, 10/05,

More information

Chapter 4 Threads. Operating Systems: Internals and Design Principles. Ninth Edition By William Stallings

Chapter 4 Threads. Operating Systems: Internals and Design Principles. Ninth Edition By William Stallings Operatig Systems: Iterals ad Desig Priciples Chapter 4 Threads Nith Editio By William Stalligs Processes ad Threads Resource Owership Process icludes a virtual address space to hold the process image The

More information

Session Initiated Protocol (SIP) and Message-based Load Balancing (MBLB)

Session Initiated Protocol (SIP) and Message-based Load Balancing (MBLB) F5 White Paper Sessio Iitiated Protocol (SIP) ad Message-based Load Balacig (MBLB) The ability to provide ew ad creative methods of commuicatios has esured a SIP presece i almost every orgaizatio. The

More information

UNIVERSITY OF MORATUWA

UNIVERSITY OF MORATUWA UNIVERSITY OF MORATUWA FACULTY OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING B.Sc. Egieerig 2014 Itake Semester 2 Examiatio CS2052 COMPUTER ARCHITECTURE Time allowed: 2 Hours Jauary 2016

More information

Operating System Concepts. Operating System Concepts

Operating System Concepts. Operating System Concepts Chapter 4: Mass-Storage Systems Logical Disk Structure Logical Disk Structure Disk Schedulig Disk Maagemet RAID Structure Disk drives are addressed as large -dimesioal arrays of logical blocks, where the

More information

1. SWITCHING FUNDAMENTALS

1. SWITCHING FUNDAMENTALS . SWITCING FUNDMENTLS Switchig is the provisio of a o-demad coectio betwee two ed poits. Two distict switchig techiques are employed i commuicatio etwors-- circuit switchig ad pacet switchig. Circuit switchig

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 18 Strategies for Query Processig Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio DBMS techiques to process a query Scaer idetifies

More information

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1 COSC 1P03 Ch 7 Recursio Itroductio to Data Structures 8.1 COSC 1P03 Recursio Recursio I Mathematics factorial Fiboacci umbers defie ifiite set with fiite defiitio I Computer Sciece sytax rules fiite defiitio,

More information

Announcements. Reading. Project #4 is on the web. Homework #1. Midterm #2. Chapter 4 ( ) Note policy about project #3 missing components

Announcements. Reading. Project #4 is on the web. Homework #1. Midterm #2. Chapter 4 ( ) Note policy about project #3 missing components Aoucemets Readig Chapter 4 (4.1-4.2) Project #4 is o the web ote policy about project #3 missig compoets Homework #1 Due 11/6/01 Chapter 6: 4, 12, 24, 37 Midterm #2 11/8/01 i class 1 Project #4 otes IPv6Iit,

More information

Lecture 13: Validation

Lecture 13: Validation Lecture 3: Validatio Resampli methods Holdout Cross Validatio Radom Subsampli -Fold Cross-Validatio Leave-oe-out The Bootstrap Bias ad variace estimatio Three-way data partitioi Itroductio to Patter Recoitio

More information

SCI Reflective Memory

SCI Reflective Memory Embedded SCI Solutios SCI Reflective Memory (Experimetal) Atle Vesterkjær Dolphi Itercoect Solutios AS Olaf Helsets vei 6, N-0621 Oslo, Norway Phoe: (47) 23 16 71 42 Fax: (47) 23 16 71 80 Mail: atleve@dolphiics.o

More information

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016 CS 111: Program Desig I Lecture 15: Objects, Padas, Modules Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 13, 2016 OBJECTS AND DOT NOTATION Objects (Implicit i Chapter 2, Variables,

More information

Computer Architecture ELEC2401 & ELEC3441

Computer Architecture ELEC2401 & ELEC3441 Computer Architecture ELEC2401 & ELEC3441 Lecture 15 ultithreadig & ulti-core Processors Dr. Hayde Kwok-Hay So 100,000 10,000 Departmet of Electrical ad Electroic Egieerig 1 Performace (vs. VAX-11/780)

More information

15-740/ Computer Architecture

15-740/ Computer Architecture 15-740/18-740 Computer Architecture Lecture 19: Caching II Prof. Onur Mutlu Carnegie Mellon University Fall 2011, 10/31/2011 Announcements Milestone II Due November 4, Friday Please talk with us if you

More information

Data diverse software fault tolerance techniques

Data diverse software fault tolerance techniques Data diverse software fault tolerace techiques Complemets desig diversity by compesatig for desig diversity s s limitatios Ivolves obtaiig a related set of poits i the program data space, executig the

More information

Lecture 28: Data Link Layer

Lecture 28: Data Link Layer Automatic Repeat Request (ARQ) 2. Go ack N ARQ Although the Stop ad Wait ARQ is very simple, you ca easily show that it has very the low efficiecy. The low efficiecy comes from the fact that the trasmittig

More information

Lower Bounds for Sorting

Lower Bounds for Sorting Liear Sortig Topics Covered: Lower Bouds for Sortig Coutig Sort Radix Sort Bucket Sort Lower Bouds for Sortig Compariso vs. o-compariso sortig Decisio tree model Worst case lower boud Compariso Sortig

More information

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015.

Hash Tables. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015. Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Hash Tables xkcd. http://xkcd.com/221/. Radom Number. Used with permissio uder Creative

More information

Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University

Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University Lecture 4: Advanced Caching Techniques (2) Department of Electrical Engineering Stanford University http://eeclass.stanford.edu/ee282 Lecture 4-1 Announcements HW1 is out (handout and online) Due on 10/15

More information

SPIRAL DSP Transform Compiler:

SPIRAL DSP Transform Compiler: SPIRAL DSP Trasform Compiler: Applicatio Specific Hardware Sythesis Peter A. Milder (peter.milder@stoybroo.edu) Fraz Frachetti, James C. Hoe, ad Marus Pueschel Departmet of ECE Caregie Mello Uiversity

More information

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software

Structuring Redundancy for Fault Tolerance. CSE 598D: Fault Tolerant Software Structurig Redudacy for Fault Tolerace CSE 598D: Fault Tolerat Software What do we wat to achieve? Versios Damage Assessmet Versio 1 Error Detectio Iputs Versio 2 Voter Outputs State Restoratio Cotiued

More information

Lecture-18 (Cache Optimizations) CS422-Spring

Lecture-18 (Cache Optimizations) CS422-Spring Lecture-18 (Cache Optimizations) CS422-Spring 2018 Biswa@CSE-IITK Compiler Optimizations Loop interchange Merging Loop fusion Blocking Refer H&P: You need it for PA3 and PA4 too. CS422: Spring 2018 Biswabandan

More information

Advanced Caching Techniques

Advanced Caching Techniques Advanced Caching Approaches to improving memory system performance eliminate memory accesses/operations decrease the number of misses decrease the miss penalty decrease the cache/memory access times hide

More information

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1

CS200: Hash Tables. Prichard Ch CS200 - Hash Tables 1 CS200: Hash Tables Prichard Ch. 13.2 CS200 - Hash Tables 1 Table Implemetatios: average cases Search Add Remove Sorted array-based Usorted array-based Balaced Search Trees O(log ) O() O() O() O(1) O()

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

Advanced Caching Techniques

Advanced Caching Techniques Advanced Caching Approaches to improving memory system performance eliminate memory operations decrease the number of misses decrease the miss penalty decrease the cache/memory access times hide memory

More information

Cache-Optimal Methods for Bit-Reversals

Cache-Optimal Methods for Bit-Reversals Proceedigs of the ACM/IEEE Supercomputig Coferece, November 1999, Portlad, Orego, U.S.A. Cache-Optimal Methods for Bit-Reversals Zhao Zhag ad Xiaodog Zhag Departmet of Computer Sciece College of William

More information

Design of Digital Circuits Lecture 16: Out-of-Order Execution. Prof. Onur Mutlu ETH Zurich Spring April 2018

Design of Digital Circuits Lecture 16: Out-of-Order Execution. Prof. Onur Mutlu ETH Zurich Spring April 2018 Desig of Digital Circuits Lecture 16: Out-of-Order Executio Prof. Our Mutlu ETH Zurich Sprig 2018 26 April 2018 Ageda for Today & Next Few Lectures Sigle-cycle Microarchitectures Multi-cycle ad Microprogrammed

More information

Switch Construction CS

Switch Construction CS Switch Costructio CS 00 Workstatio-Based Aggregate badwidth /2 of the I/O bus badwidth capacity shared amog all hosts coected to switch example: Gbps bus ca support 5 x 00Mbps ports (i theory) I/O bus

More information

L2 cache provides additional on-chip caching space. L2 cache captures misses from L1 cache. Summary

L2 cache provides additional on-chip caching space. L2 cache captures misses from L1 cache. Summary HY425 Lecture 13: Improving Cache Performance Dimitrios S. Nikolopoulos University of Crete and FORTH-ICS November 25, 2011 Dimitrios S. Nikolopoulos HY425 Lecture 13: Improving Cache Performance 1 / 40

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

Firewall and IDS. TELE3119: Week8

Firewall and IDS. TELE3119: Week8 Firewall ad IDS TELE3119: Week8 Outlie Firewalls Itrusio Detectio Systems (IDSs) Itrusio Prevetio Systems (IPSs) 8-2 Example Attacks Disclosure, modificatio, ad destructio of data Compromise a host ad

More information

Announcements. ! Previous lecture. Caches. Inf3 Computer Architecture

Announcements. ! Previous lecture. Caches. Inf3 Computer Architecture Announcements! Previous lecture Caches Inf3 Computer Architecture - 2016-2017 1 Recap: Memory Hierarchy Issues! Block size: smallest unit that is managed at each level E.g., 64B for cache lines, 4KB for

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 )

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 ) EE26: Digital Desig, Sprig 28 3/6/8 EE 26: Itroductio to Digital Desig Combiatioal Datapath Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Combiatioal Logic Blocks Multiplexer Ecoders/Decoders

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Outline. Applications of FFT in Communications. Fundamental FFT Algorithms. FFT Circuit Design Architectures. Conclusions

Outline. Applications of FFT in Communications. Fundamental FFT Algorithms. FFT Circuit Design Architectures. Conclusions FFT Circuit Desig Outlie Applicatios of FFT i Commuicatios Fudametal FFT Algorithms FFT Circuit Desig Architectures Coclusios DAB Receiver Tuer OFDM Demodulator Chael Decoder Mpeg Audio Decoder 56/5/ 4/48

More information

GPUMP: a Multiple-Precision Integer Library for GPUs

GPUMP: a Multiple-Precision Integer Library for GPUs GPUMP: a Multiple-Precisio Iteger Library for GPUs Kaiyog Zhao ad Xiaowe Chu Departmet of Computer Sciece, Hog Kog Baptist Uiversity Hog Kog, P. R. Chia Email: {kyzhao, chxw}@comp.hkbu.edu.hk Abstract

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Avid Interplay Bundle

Avid Interplay Bundle Avid Iterplay Budle Versio 2.5 Cofigurator ReadMe Overview This documet provides a overview of Iterplay Budle v2.5 ad describes how to ru the Iterplay Budle cofiguratio tool. Iterplay Budle v2.5 refers

More information

Programming with Shared Memory PART II. HPC Spring 2017 Prof. Robert van Engelen

Programming with Shared Memory PART II. HPC Spring 2017 Prof. Robert van Engelen Programmig with Shared Memory PART II HPC Sprig 2017 Prof. Robert va Egele Overview Sequetial cosistecy Parallel programmig costructs Depedece aalysis OpeMP Autoparallelizatio Further readig HPC Sprig

More information

Computer Architecture ELEC3441

Computer Architecture ELEC3441 Computer Architecture ELEC3441 Lecture 13 ulti-core Processors Dr. Hayde Kwok-Hay o 100,000 10,000 Departmet of Electrical ad Electroic Egieerig 1 Performace (vs. VAX-11/780) Ed of a Era 1000 100 10 AX-11/780,

More information

Isn t It Time You Got Faster, Quicker?

Isn t It Time You Got Faster, Quicker? Is t It Time You Got Faster, Quicker? AltiVec Techology At-a-Glace OVERVIEW Motorola s advaced AltiVec techology is desiged to eable host processors compatible with the PowerPC istructio-set architecture

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

ECE4050 Data Structures and Algorithms. Lecture 6: Searching

ECE4050 Data Structures and Algorithms. Lecture 6: Searching ECE4050 Data Structures ad Algorithms Lecture 6: Searchig 1 Search Give: Distict keys k 1, k 2,, k ad collectio L of records of the form (k 1, I 1 ), (k 2, I 2 ),, (k, I ) where I j is the iformatio associated

More information

Lecture 1: Introduction and Fundamental Concepts 1

Lecture 1: Introduction and Fundamental Concepts 1 Uderstadig Performace Lecture : Fudametal Cocepts ad Performace Aalysis CENG 332 Algorithm Determies umber of operatios executed Programmig laguage, compiler, architecture Determie umber of machie istructios

More information

Computers and Scientific Thinking

Computers and Scientific Thinking Computers ad Scietific Thikig David Reed, Creighto Uiversity Chapter 15 JavaScript Strigs 1 Strigs as Objects so far, your iteractive Web pages have maipulated strigs i simple ways use text box to iput

More information

Architectural styles for software systems The client-server style

Architectural styles for software systems The client-server style Architectural styles for software systems The cliet-server style Prof. Paolo Ciacarii Software Architecture CdL M Iformatica Uiversità di Bologa Ageda Cliet server style CS two tiers CS three tiers CS

More information

Ones Assignment Method for Solving Traveling Salesman Problem

Ones Assignment Method for Solving Traveling Salesman Problem Joural of mathematics ad computer sciece 0 (0), 58-65 Oes Assigmet Method for Solvig Travelig Salesma Problem Hadi Basirzadeh Departmet of Mathematics, Shahid Chamra Uiversity, Ahvaz, Ira Article history:

More information

CS553 Lecture Reuse Optimization: Common SubExpr Elim 3

CS553 Lecture Reuse Optimization: Common SubExpr Elim 3 Reuse Optimizatio Last time Value umberig Today Commo subexpressio elimiatio (CSE) CS553 Lecture Reuse Optimizatio: Commo SubExpr Elim 2 Commo Subexpressio Elimiatio Fid commo subexpressios whose rage

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 19 Query Optimizatio Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Query optimizatio Coducted by a query optimizer i a DBMS Goal:

More information

CMSC Computer Architecture Lecture 3: ISA and Introduction to Microarchitecture. Prof. Yanjing Li University of Chicago

CMSC Computer Architecture Lecture 3: ISA and Introduction to Microarchitecture. Prof. Yanjing Li University of Chicago CMSC 22200 Computer Architecture Lecture 3: ISA ad Itroductio to Microarchitecture Prof. Yajig Li Uiversity of Chicago Lecture Outlie ISA uarch (hardware implemetatio of a ISA) Logic desig basics Sigle-cycle

More information

CS252 Spring 2017 Graduate Computer Architecture. Lecture 6: Out-of-Order Processors

CS252 Spring 2017 Graduate Computer Architecture. Lecture 6: Out-of-Order Processors CS252 Sprig 2017 Graduate Computer Architecture Lecture 6: Out-of-Order Processors Lisa Wu, Krste Asaovic http://ist.eecs.berkeley.edu/~cs252/sp17 WU UCB CS252 SP17 2 WU UCB CS252 SP17 Last Time i Lecture

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 22 Database Recovery Techiques Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Recovery algorithms Recovery cocepts Write-ahead

More information

The Value of Peering

The Value of Peering The Value of Peerig ISP/IXP Workshops These materials are licesed uder the Creative Commos Attributio-NoCommercial 4.0 Iteratioal licese (http://creativecommos.org/liceses/by-c/4.0/) Last updated 25 th

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Cocurrecy Threads ad Cocurrecy i Java: Part 1 What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Threads and Concurrency in Java: Part 1

Threads and Concurrency in Java: Part 1 Threads ad Cocurrecy i Java: Part 1 1 Cocurrecy What every computer egieer eeds to kow about cocurrecy: Cocurrecy is to utraied programmers as matches are to small childre. It is all too easy to get bured.

More information

Weston Anniversary Fund

Weston Anniversary Fund Westo Olie Applicatio Guide 2018 1 This guide is desiged to help charities applyig to the Westo to use our olie applicatio form. The Westo is ope to applicatios from 5th Jauary 2018 ad closes o 30th Jue

More information

15-740/ Computer Architecture Lecture 12: Advanced Caching. Prof. Onur Mutlu Carnegie Mellon University

15-740/ Computer Architecture Lecture 12: Advanced Caching. Prof. Onur Mutlu Carnegie Mellon University 15-740/18-740 Computer Architecture Lecture 12: Advanced Caching Prof. Onur Mutlu Carnegie Mellon University Announcements Chuck Thacker (Microsoft Research) Seminar Tomorrow RARE: Rethinking Architectural

More information

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup

Overview. Chapter 18 Vectors and Arrays. Reminder. vector. Bjarne Stroustrup Chapter 18 Vectors ad Arrays Bjare Stroustrup Vector revisited How are they implemeted? Poiters ad free store Destructors Iitializatio Copy ad move Arrays Array ad poiter problems Chagig size Templates

More information

End Semester Examination CSE, III Yr. (I Sem), 30002: Computer Organization

End Semester Examination CSE, III Yr. (I Sem), 30002: Computer Organization Ed Semester Examiatio 2013-14 CSE, III Yr. (I Sem), 30002: Computer Orgaizatio Istructios: GROUP -A 1. Write the questio paper group (A, B, C, D), o frot page top of aswer book, as per what is metioed

More information

Traffic Models and QoS

Traffic Models and QoS Traffic Models ad QoS TELE4642: Week9 Ackowledgemet: Some slides are adapted from Computer Networkig: A Top Dow Approach Featurig the Iteret, 2 d editio, J.F Kurose ad K.W. Ross All Rights Reserved, copyright

More information

K-NET bus. When several turrets are connected to the K-Bus, the structure of the system is as showns

K-NET bus. When several turrets are connected to the K-Bus, the structure of the system is as showns K-NET bus The K-Net bus is based o the SPI bus but it allows to addressig may differet turrets like the I 2 C bus. The K-Net is 6 a wires bus (4 for SPI wires ad 2 additioal wires for request ad ackowledge

More information

n Explore virtualization concepts n Become familiar with cloud concepts

n Explore virtualization concepts n Become familiar with cloud concepts Chapter Objectives Explore virtualizatio cocepts Become familiar with cloud cocepts Chapter #15: Architecture ad Desig 2 Hypervisor Virtualizatio ad cloud services are becomig commo eterprise tools to

More information