Size: px
Start display at page:

Download ""

Transcription

1 PCOMP IDL API Reference Guides > IDL Reference Guide > Part I: IDL Command Reference > Routines: P PCOMP Syntax Return Value Arguments Keywords Examples Version History See Also The PCOMP function computes the principal components of an m-column, n-row array, where m is the number of variables and n is the number of observations or samples. The principal components of a multivariate data set may be used to restate the data in terms of derived variables or may be used to reduce the dimensionality of the data by reducing the number of variables (columns). This routine is written in the IDL language. Its source code can be found in the file pcomp.pro in the lib subdirectory of the IDL distribution. Syntax Result = PCOMP( A [, COEFFICIENTS=variable] [, /COVARIANCE] [, /DOUBLE] [, EIGENVALUES=variable] [, NVARIABLES=value] [, /STANDARDIZE] [, VARIANCES=variable] ) Return Value The result is an nvariables-column (nvariables! m), n-row array of derived variables. Arguments A An m-column, n-row, single- or double-precision floating-point array. Keywords COEFFICIENTS Use this keyword to specify a named variable that will contain the principal components used to compute the derived variables. The principal components are the coefficients of the derived variables and are returned in an m-column, m-row array. The rows of this array correspond to the coefficients of the derived variables. The coefficients are scaled so that the sums of their squares are equal to the eigenvalue from which they are computed. COVARIANCE Set this keyword to compute the principal components using the covariances of the original data. The default is to use the correlations of the original data to compute the principal components. DOUBLE Set this keyword to use double-precision for computations and to return a double-precision result. Set DOUBLE=0 to use single-precision for computations and to return a single-precision result. The default is /DOUBLE if Array is double precision, otherwise the default is DOUBLE=0. 1 of 4 3/14/11 2:33 PM

2 PCOMP EIGENVALUES Use this keyword to specify a named variable that will contain a one-column, m-row array of eigenvalues that correspond to the principal components. The eigenvalues are listed in descending order. NVARIABLES Use this keyword to specify the number of derived variables. A value of zero, negative values, and values in excess of the input array's column dimension result in a complete set (m-columns and n-rows) of derived variables. STANDARDIZE Set this keyword to convert the variables (the columns) of the input array to standardized variables (variables with a mean of zero and variance of one). VARIANCES Use this keyword to specify a named variable that will contain a one-column, m-row array of variances. The variances correspond to the percentage of the total variance for each derived variable. Examples PRO ex_pcomp ;Define an array with 4 variables and 20 observations. array = [[19.5, 43.1, 29.1, 11.9], $ [24.7, 49.8, 28.2, 22.8], $ [30.7, 51.9, 37.0, 18.7], $ [29.8, 54.3, 31.1, 20.1], $ [19.1, 42.2, 30.9, 12.9], $ [25.6, 53.9, 23.7, 21.7], $ [31.4, 58.5, 27.6, 27.1], $ [27.9, 52.1, 30.6, 25.4], $ [22.1, 49.9, 23.2, 21.3], $ [25.5, 53.5, 24.8, 19.3], $ [31.1, 56.6, 30.0, 25.4], $ [30.4, 56.7, 28.3, 27.2], $ [18.7, 46.5, 23.0, 11.7], $ [19.7, 44.2, 28.6, 17.8], $ [14.6, 42.7, 21.3, 12.8], $ [29.5, 54.4, 30.1, 23.9], $ [27.7, 55.3, 25.7, 22.6], $ [30.2, 58.6, 24.6, 25.4], $ [22.7, 48.2, 27.1, 14.8], $ [25.2, 51.0, 27.5, 21.1]] ;Remove the mean from each variable. m = 4 ; number of variables n = 20 ; number of observations means = TOTAL(array, 2)/n array = array - REBIN(means, m, n) ;Compute derived variables based upon the principal components. result = PCOMP(array, COEFFICIENTS = coefficients, $ EIGENVALUES=eigenvalues, VARIANCES=variances, /COVARIANCE) 2 of 4 3/14/11 2:33 PM

3 PCOMP END, 'Result: ', result, FORMAT = '(4(F8.2))', 'Coefficients: ' FOR mode=0,3 DO, $ mode+1, coefficients[*,mode], $ FORMAT='("Mode#",I1,4(F10.4))' eigenvectors = coefficients/rebin(eigenvalues, m, m), 'Eigenvectors: ' FOR mode=0,3 DO, $ mode+1, eigenvectors[*,mode],$ FORMAT='("Mode#",I1,4(F10.4))' array_reconstruct = result ## eigenvectors, 'Reconstruction error: ', $ TOTAL((array_reconstruct - array)^2), 'Energy conservation: ', TOTAL(array^2), $ TOTAL(eigenvalues)*(n-1), ' Mode Eigenvalue PercentVariance' FOR mode=0,3 DO, $ mode+1, eigenvalues[mode], variances[mode]*100 When the above program is compiled and executed, the following output is produced: Result: Coefficients: Mode# Mode# Mode# Mode# Eigenvectors: Mode# Mode# of 4 3/14/11 2:33 PM

4 PCOMP Mode# Mode# Reconstruction error: e-010 Energy conservation: Mode Eigenvalue PercentVariance The first two derived variables account for 96% of the total variance of the original data. Version History 5.0 Introduced See Also CORRELATE, EIGENQL 4 of 4 3/14/11 2:33 PM

5 Multivariate Analysis Samples 0 and 7 contain identical data and are assigned to cluster #1. Samples 1, 2, 5, and 8 contain identical data and are assigned to cluster #3. Samples 3 and 6 contain identical data and are assigned to cluster #0. Sample 4 is unique and is assigned to cluster #2. If this example is run several times, each time computing new cluster weights, it is possible that the cluster number assigned to each grouping of samples may change. Principal Components Analysis Principal components analysis is a mathematical technique which describes a multivariate set of data using derived variables. The derived variables are formulated using specific linear combinations of the original variables. The derived variables are uncorrelated and are computed in decreasing order of importance; the first variable accounts for as much as possible of the variation in the original data, the second variable accounts for the second largest portion of the variation in the original data, and so on. Principal components analysis attempts to construct a small set of derived variables which summarize the original data, thereby reducing the dimensionality of the original data. The principal components of a multivariate set of data are computed from the eigenvalues and eigenvectors of either the sample correlation or sample covariance matrix. If the variables of the multivariate data are measured in widely differing units (large variations in magnitude), it is usually best to use the sample correlation matrix in computing the principal components; this is the default method used in IDL's PCOMP function. Another alternative is to standardize the variables of the multivariate data prior to computing principal components. Standardizing the variables essentially makes them all equally important by creating new variables that each have a mean of zero and a variance of one. Proceeding in this way allows the principal components to be computed from the sample covariance matrix. IDL's PCOMP function includes COVARIANCE and STANDARDIZE keywords to provide this functionality. For example, suppose that we wish to restate the following data using its principal components. There are three variables, each consisting of five samples. Table 7-1: Data for Principal Component Analysis Var 1 Var 2 Var 3 Sample Sample Sample of 5 3/14/11 2:32 PM

6 Multivariate Analysis Sample Sample We compute the principal components (the coefficients of the derived variables) to 2 decimal accuracy and store them by row in the following array. The derived variables {z 1, z 2, z 3 } are then computed as follows: 3 of 5 3/14/11 2:32 PM

7 Multivariate Analysis In this example, analysis shows that the derived variable z 1 accounts for 57.3% of the total variance of the original data, the derived variable z 2 accounts for 28.2% of the total variance of the original data, and the derived variable z 3 accounts for 14.5% of the total variance of the original data. Example of Derived Variables from Principal Components The following example constructs an appropriate set of derived variables, based upon the principal components of the original data, which may be used to reduce the dimensionality of the data. The data consist of four variables, each containing of twenty samples. ; Define an array with 4 variables and 20 samples: data = [[19.5, 43.1, 29.1, 11.9], $ [24.7, 49.8, 28.2, 22.8], $ [30.7, 51.9, 37.0, 18.7], $ [29.8, 54.3, 31.1, 20.1], $ [19.1, 42.2, 30.9, 12.9], $ [25.6, 53.9, 23.7, 21.7], $ [31.4, 58.5, 27.6, 27.1], $ [27.9, 52.1, 30.6, 25.4], $ [22.1, 49.9, 23.2, 21.3], $ [25.5, 53.5, 24.8, 19.3], $ [31.1, 56.6, 30.0, 25.4], $ [30.4, 56.7, 28.3, 27.2], $ [18.7, 46.5, 23.0, 11.7], $ [19.7, 44.2, 28.6, 17.8], $ [14.6, 42.7, 21.3, 12.8], $ [29.5, 54.4, 30.1, 23.9], $ [27.7, 55.3, 25.7, 22.6], $ [30.2, 58.6, 24.6, 25.4], $ [22.7, 48.2, 27.1, 14.8], $ [25.2, 51.0, 27.5, 21.1]] The variables that will contain the values returned by the COEFFICIENTS, EIGENVALUES, and VARIANCES keywords to the PCOMP routine must be initialized as nonzero values prior to calling PCOMP. coef = 1 & eval = 1 & var = 1 ; Compute the derived variables based upon ; the principal components. result = PCOMP(data, COEFFICIENTS = coef, $ EIGENVALUES = eval, VARIANCES = var) ; Display the array of derived variables:, result, FORMAT = '(4(f5.1, 2x))' 4 of 5 3/14/11 2:32 PM

8 Multivariate Analysis IDL prints: Display the percentage of total variance for each derived variable:, var IDL prints: Display the percentage of variance for the first two derived variables; the first two columns of the resulting array above., TOTAL(var[0:1]) IDL prints: This indicates that the first two derived variables (the first two columns of the resulting array) account for 96.3% of the total variance of the original data, and thus could be used to summarize the original data. Routines for Multivariate Analysis See Multivariate Analysis (in the functional category "Mathematics" (IDL Reference Guide)) for a brief description of IDL routines for multivariate analysis. Detailed information is available in the IDL Reference Guide. 5 of 5 3/14/11 2:32 PM

Applied Neuroscience. Columbia Science Honors Program Fall Machine Learning and Neural Networks

Applied Neuroscience. Columbia Science Honors Program Fall Machine Learning and Neural Networks Applied Neuroscience Columbia Science Honors Program Fall 2016 Machine Learning and Neural Networks Machine Learning and Neural Networks Objective: Introduction to Machine Learning Agenda: 1. JavaScript

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

Principal Component Image Interpretation A Logical and Statistical Approach

Principal Component Image Interpretation A Logical and Statistical Approach Principal Component Image Interpretation A Logical and Statistical Approach Md Shahid Latif M.Tech Student, Department of Remote Sensing, Birla Institute of Technology, Mesra Ranchi, Jharkhand-835215 Abstract

More information

USING PRINCIPAL COMPONENTS ANALYSIS FOR AGGREGATING JUDGMENTS IN THE ANALYTIC HIERARCHY PROCESS

USING PRINCIPAL COMPONENTS ANALYSIS FOR AGGREGATING JUDGMENTS IN THE ANALYTIC HIERARCHY PROCESS Analytic Hierarchy To Be Submitted to the the Analytic Hierarchy 2014, Washington D.C., U.S.A. USING PRINCIPAL COMPONENTS ANALYSIS FOR AGGREGATING JUDGMENTS IN THE ANALYTIC HIERARCHY PROCESS Natalie M.

More information

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview

D-Optimal Designs. Chapter 888. Introduction. D-Optimal Design Overview Chapter 888 Introduction This procedure generates D-optimal designs for multi-factor experiments with both quantitative and qualitative factors. The factors can have a mixed number of levels. For example,

More information

Biology Project 1

Biology Project 1 Biology 6317 Project 1 Data and illustrations courtesy of Professor Tony Frankino, Department of Biology/Biochemistry 1. Background The data set www.math.uh.edu/~charles/wing_xy.dat has measurements related

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte

Statistical Analysis of Metabolomics Data. Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Statistical Analysis of Metabolomics Data Xiuxia Du Department of Bioinformatics & Genomics University of North Carolina at Charlotte Outline Introduction Data pre-treatment 1. Normalization 2. Centering,

More information

General Instructions. Questions

General Instructions. Questions CS246: Mining Massive Data Sets Winter 2018 Problem Set 2 Due 11:59pm February 8, 2018 Only one late period is allowed for this homework (11:59pm 2/13). General Instructions Submission instructions: These

More information

JMP Book Descriptions

JMP Book Descriptions JMP Book Descriptions The collection of JMP documentation is available in the JMP Help > Books menu. This document describes each title to help you decide which book to explore. Each book title is linked

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type.

An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Data Structures Introduction An array is a collection of data that holds fixed number of values of same type. It is also known as a set. An array is a data type. Representation of a large number of homogeneous

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

CSE 481C Imitation Learning in Humanoid Robots Motion capture, inverse kinematics, and dimensionality reduction

CSE 481C Imitation Learning in Humanoid Robots Motion capture, inverse kinematics, and dimensionality reduction 1 CSE 481C Imitation Learning in Humanoid Robots Motion capture, inverse kinematics, and dimensionality reduction Robotic Imitation of Human Actions 2 The inverse kinematics problem Joint angles Human-robot

More information

Chapter 1. Using the Cluster Analysis. Background Information

Chapter 1. Using the Cluster Analysis. Background Information Chapter 1 Using the Cluster Analysis Background Information Cluster analysis is the name of a multivariate technique used to identify similar characteristics in a group of observations. In cluster analysis,

More information

CSE 547: Machine Learning for Big Data Spring Problem Set 2. Please read the homework submission policies.

CSE 547: Machine Learning for Big Data Spring Problem Set 2. Please read the homework submission policies. CSE 547: Machine Learning for Big Data Spring 2019 Problem Set 2 Please read the homework submission policies. 1 Principal Component Analysis and Reconstruction (25 points) Let s do PCA and reconstruct

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Statistical Models for Shape and Appearance Note some material for these slides came from Algorithms

More information

Multivariate Capability Analysis

Multivariate Capability Analysis Multivariate Capability Analysis Summary... 1 Data Input... 3 Analysis Summary... 4 Capability Plot... 5 Capability Indices... 6 Capability Ellipse... 7 Correlation Matrix... 8 Tests for Normality... 8

More information

Clustering analysis of gene expression data

Clustering analysis of gene expression data Clustering analysis of gene expression data Chapter 11 in Jonathan Pevsner, Bioinformatics and Functional Genomics, 3 rd edition (Chapter 9 in 2 nd edition) Human T cell expression data The matrix contains

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Raquel Urtasun & Rich Zemel University of Toronto Nov 4, 2015 Urtasun & Zemel (UofT) CSC 411: 14-PCA & Autoencoders Nov 4, 2015 1 / 18

More information

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS

COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS COMBINED METHOD TO VISUALISE AND REDUCE DIMENSIONALITY OF THE FINANCIAL DATA SETS Toomas Kirt Supervisor: Leo Võhandu Tallinn Technical University Toomas.Kirt@mail.ee Abstract: Key words: For the visualisation

More information

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra

Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Introduction Classroom Tips and Techniques: Stepwise Solutions in Maple - Part 2 - Linear Algebra Robert J. Lopez Emeritus Professor of Mathematics and Maple Fellow Maplesoft In the preceding article Stepwise

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 14-PCA & Autoencoders 1 / 18

More information

Digital Image Processing Chapter 11: Image Description and Representation

Digital Image Processing Chapter 11: Image Description and Representation Digital Image Processing Chapter 11: Image Description and Representation Image Representation and Description? Objective: To represent and describe information embedded in an image in other forms that

More information

Lecture 07 Dimensionality Reduction with PCA

Lecture 07 Dimensionality Reduction with PCA Lecture 07 Dimensionality Reduction with PCA 10 February 2016 Taylor B. Arnold Yale Statistics STAT 365/665 1/9 As we have started to see, the curse of dimensionality stops us from being able to fit arbitrarily

More information

Lecture 3: Camera Calibration, DLT, SVD

Lecture 3: Camera Calibration, DLT, SVD Computer Vision Lecture 3 23--28 Lecture 3: Camera Calibration, DL, SVD he Inner Parameters In this section we will introduce the inner parameters of the cameras Recall from the camera equations λx = P

More information

The EMCLUS Procedure. The EMCLUS Procedure

The EMCLUS Procedure. The EMCLUS Procedure The EMCLUS Procedure Overview Procedure Syntax PROC EMCLUS Statement VAR Statement INITCLUS Statement Output from PROC EMCLUS EXAMPLES-SECTION Example 1: Syntax for PROC FASTCLUS Example 2: Use of the

More information

Chapter 13 Multivariate Techniques. Chapter Table of Contents

Chapter 13 Multivariate Techniques. Chapter Table of Contents Chapter 13 Multivariate Techniques Chapter Table of Contents Introduction...279 Principal Components Analysis...280 Canonical Correlation...289 References...298 278 Chapter 13. Multivariate Techniques

More information

6 Randomized rounding of semidefinite programs

6 Randomized rounding of semidefinite programs 6 Randomized rounding of semidefinite programs We now turn to a new tool which gives substantially improved performance guarantees for some problems We now show how nonlinear programming relaxations can

More information

Indirect Pairwise Comparison Method

Indirect Pairwise Comparison Method Indirect Pairwise Comparison Method An AHP-based Procedure for Sensory Data Collection and Analysis in Quality and Reliability Applications FLAVIO S. FOGLIATTO Federal University of Rio Grande do Sul Porto

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Image Processing. Image Features

Image Processing. Image Features Image Processing Image Features Preliminaries 2 What are Image Features? Anything. What they are used for? Some statements about image fragments (patches) recognition Search for similar patches matching

More information

Appendix B BASIC MATRIX OPERATIONS IN PROC IML B.1 ASSIGNING SCALARS

Appendix B BASIC MATRIX OPERATIONS IN PROC IML B.1 ASSIGNING SCALARS Appendix B BASIC MATRIX OPERATIONS IN PROC IML B.1 ASSIGNING SCALARS Scalars can be viewed as 1 1 matrices and can be created using Proc IML by using the statement x¼scalar_value or x¼{scalar_value}. As

More information

CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening

CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening CDAA No. 4 - Part Two - Multiple Regression - Initial Data Screening Variables Entered/Removed b Variables Entered GPA in other high school, test, Math test, GPA, High school math GPA a Variables Removed

More information

Multivariate analyses in ecology. Cluster (part 2) Ordination (part 1 & 2)

Multivariate analyses in ecology. Cluster (part 2) Ordination (part 1 & 2) Multivariate analyses in ecology Cluster (part 2) Ordination (part 1 & 2) 1 Exercise 9B - solut 2 Exercise 9B - solut 3 Exercise 9B - solut 4 Exercise 9B - solut 5 Multivariate analyses in ecology Cluster

More information

A. Incorrect! This would be the negative of the range. B. Correct! The range is the maximum data value minus the minimum data value.

A. Incorrect! This would be the negative of the range. B. Correct! The range is the maximum data value minus the minimum data value. AP Statistics - Problem Drill 05: Measures of Variation No. 1 of 10 1. The range is calculated as. (A) The minimum data value minus the maximum data value. (B) The maximum data value minus the minimum

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Workload Characterization Techniques

Workload Characterization Techniques Workload Characterization Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/

More information

Rotation Perturbation Technique for Privacy Preserving in Data Stream Mining

Rotation Perturbation Technique for Privacy Preserving in Data Stream Mining 218 IJSRSET Volume 4 Issue 8 Print ISSN: 2395-199 Online ISSN : 2394-499 Themed Section : Engineering and Technology Rotation Perturbation Technique for Privacy Preserving in Data Stream Mining Kalyani

More information

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22

Feature selection. Term 2011/2012 LSI - FIB. Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/ / 22 Feature selection Javier Béjar cbea LSI - FIB Term 2011/2012 Javier Béjar cbea (LSI - FIB) Feature selection Term 2011/2012 1 / 22 Outline 1 Dimensionality reduction 2 Projections 3 Attribute selection

More information

Feature Selection Using Principal Feature Analysis

Feature Selection Using Principal Feature Analysis Feature Selection Using Principal Feature Analysis Ira Cohen Qi Tian Xiang Sean Zhou Thomas S. Huang Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana,

More information

Recognition, SVD, and PCA

Recognition, SVD, and PCA Recognition, SVD, and PCA Recognition Suppose you want to find a face in an image One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom) Another

More information

DESIGNING ALGORITHMS FOR SEARCHING FOR OPTIMAL/TWIN POINTS OF SALE IN EXPANSION STRATEGIES FOR GEOMARKETING TOOLS

DESIGNING ALGORITHMS FOR SEARCHING FOR OPTIMAL/TWIN POINTS OF SALE IN EXPANSION STRATEGIES FOR GEOMARKETING TOOLS X MODELLING WEEK DESIGNING ALGORITHMS FOR SEARCHING FOR OPTIMAL/TWIN POINTS OF SALE IN EXPANSION STRATEGIES FOR GEOMARKETING TOOLS FACULTY OF MATHEMATICS PARTICIPANTS: AMANDA CABANILLAS (UCM) MIRIAM FERNÁNDEZ

More information

SVD ANALYSIS OF A MACHINED SURFACE IMAGE FOR THE TOOL WEAR ESTIMATION

SVD ANALYSIS OF A MACHINED SURFACE IMAGE FOR THE TOOL WEAR ESTIMATION 5th International DAAAM Baltic Conference "INDUSTRIAL ENGINEERING ADDING INNOVATION CAPACITY OF LABOUR FORCE AND ENTREPRENEURS" 0 April 006, Tallinn, Estonia SVD ANALYSIS OF A MACHINED SURFACE IMAGE FOR

More information

Statistical Models for Management. Instituto Superior de Ciências do Trabalho e da Empresa (ISCTE) Lisbon. February 24 26, 2010

Statistical Models for Management. Instituto Superior de Ciências do Trabalho e da Empresa (ISCTE) Lisbon. February 24 26, 2010 Statistical Models for Management Instituto Superior de Ciências do Trabalho e da Empresa (ISCTE) Lisbon February 24 26, 2010 Graeme Hutcheson, University of Manchester Principal Component and Factor Analysis

More information

Image Compression with Singular Value Decomposition & Correlation: a Graphical Analysis

Image Compression with Singular Value Decomposition & Correlation: a Graphical Analysis ISSN -7X Volume, Issue June 7 Image Compression with Singular Value Decomposition & Correlation: a Graphical Analysis Tamojay Deb, Anjan K Ghosh, Anjan Mukherjee Tripura University (A Central University),

More information

Inf2B assignment 2. Natural images classification. Hiroshi Shimodaira and Pol Moreno. Submission due: 4pm, Wednesday 30 March 2016.

Inf2B assignment 2. Natural images classification. Hiroshi Shimodaira and Pol Moreno. Submission due: 4pm, Wednesday 30 March 2016. Inf2B assignment 2 (Ver. 1.2) Natural images classification Submission due: 4pm, Wednesday 30 March 2016 Hiroshi Shimodaira and Pol Moreno This assignment is out of 100 marks and forms 12.5% of your final

More information

PERFORMANCE OF THE DISTRIBUTED KLT AND ITS APPROXIMATE IMPLEMENTATION

PERFORMANCE OF THE DISTRIBUTED KLT AND ITS APPROXIMATE IMPLEMENTATION 20th European Signal Processing Conference EUSIPCO 2012) Bucharest, Romania, August 27-31, 2012 PERFORMANCE OF THE DISTRIBUTED KLT AND ITS APPROXIMATE IMPLEMENTATION Mauricio Lara 1 and Bernard Mulgrew

More information

Multivariate Normal Random Numbers

Multivariate Normal Random Numbers Multivariate Normal Random Numbers Revised: 10/11/2017 Summary... 1 Data Input... 3 Analysis Options... 4 Analysis Summary... 5 Matrix Plot... 6 Save Results... 8 Calculations... 9 Summary This procedure

More information

Version 2.4 of Idiogrid

Version 2.4 of Idiogrid Version 2.4 of Idiogrid Structural and Visual Modifications 1. Tab delimited grids in Grid Data window. The most immediately obvious change to this newest version of Idiogrid will be the tab sheets that

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 9. Linear regression with latent variables 9.1 Principal component regression (PCR) 9.2 Partial least-squares regression (PLS) [ mostly

More information

CSE 258 Lecture 5. Web Mining and Recommender Systems. Dimensionality Reduction

CSE 258 Lecture 5. Web Mining and Recommender Systems. Dimensionality Reduction CSE 258 Lecture 5 Web Mining and Recommender Systems Dimensionality Reduction This week How can we build low dimensional representations of high dimensional data? e.g. how might we (compactly!) represent

More information

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y.

2 Second Derivatives. As we have seen, a function f (x, y) of two variables has four different partial derivatives: f xx. f yx. f x y. 2 Second Derivatives As we have seen, a function f (x, y) of two variables has four different partial derivatives: (x, y), (x, y), f yx (x, y), (x, y) It is convenient to gather all four of these into

More information

Clustering in Networks

Clustering in Networks Clustering in Networks (Spectral Clustering with the Graph Laplacian... a brief introduction) Tom Carter Computer Science CSU Stanislaus http://csustan.csustan.edu/ tom/clustering April 1, 2012 1 Our general

More information

SAS/STAT 13.2 User s Guide. The VARCLUS Procedure

SAS/STAT 13.2 User s Guide. The VARCLUS Procedure SAS/STAT 13.2 User s Guide The VARCLUS Procedure This document is an individual chapter from SAS/STAT 13.2 User s Guide. The correct bibliographic citation for the complete manual is as follows: SAS Institute

More information

Face Recognition for Mobile Devices

Face Recognition for Mobile Devices Face Recognition for Mobile Devices Aditya Pabbaraju (adisrinu@umich.edu), Srujankumar Puchakayala (psrujan@umich.edu) INTRODUCTION Face recognition is an application used for identifying a person from

More information

Work 2. Case-based reasoning exercise

Work 2. Case-based reasoning exercise Work 2. Case-based reasoning exercise Marc Albert Garcia Gonzalo, Miquel Perelló Nieto November 19, 2012 1 Introduction In this exercise we have implemented a case-based reasoning system, specifically

More information

Chapter 15 Introduction to Linear Programming

Chapter 15 Introduction to Linear Programming Chapter 15 Introduction to Linear Programming An Introduction to Optimization Spring, 2015 Wei-Ta Chu 1 Brief History of Linear Programming The goal of linear programming is to determine the values of

More information

Multivariate Methods

Multivariate Methods Multivariate Methods Cluster Analysis http://www.isrec.isb-sib.ch/~darlene/embnet/ Classification Historically, objects are classified into groups periodic table of the elements (chemistry) taxonomy (zoology,

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

ECONOMIC DESIGN OF STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENTS ANALYSIS AND THE SIMPLICIAL DEPTH RANK CONTROL CHART

ECONOMIC DESIGN OF STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENTS ANALYSIS AND THE SIMPLICIAL DEPTH RANK CONTROL CHART ECONOMIC DESIGN OF STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENTS ANALYSIS AND THE SIMPLICIAL DEPTH RANK CONTROL CHART Vadhana Jayathavaj Rangsit University, Thailand vadhana.j@rsu.ac.th Adisak

More information

Design and Performance Improvements for Fault Detection in Tightly-Coupled Multi-Robot Team Tasks

Design and Performance Improvements for Fault Detection in Tightly-Coupled Multi-Robot Team Tasks Design and Performance Improvements for Fault Detection in Tightly-Coupled Multi-Robot Team Tasks Xingyan Li and Lynne E. Parker Distributed Intelligence Laboratory, Department of Electrical Engineering

More information

CSE 255 Lecture 5. Data Mining and Predictive Analytics. Dimensionality Reduction

CSE 255 Lecture 5. Data Mining and Predictive Analytics. Dimensionality Reduction CSE 255 Lecture 5 Data Mining and Predictive Analytics Dimensionality Reduction Course outline Week 4: I ll cover homework 1, and get started on Recommender Systems Week 5: I ll cover homework 2 (at the

More information

Data Analysis and Solver Plugins for KSpread USER S MANUAL. Tomasz Maliszewski

Data Analysis and Solver Plugins for KSpread USER S MANUAL. Tomasz Maliszewski Data Analysis and Solver Plugins for KSpread USER S MANUAL Tomasz Maliszewski tmaliszewski@wp.pl Table of Content CHAPTER 1: INTRODUCTION... 3 1.1. ABOUT DATA ANALYSIS PLUGIN... 3 1.3. ABOUT SOLVER PLUGIN...

More information

SAS/STAT 13.1 User s Guide. The NESTED Procedure

SAS/STAT 13.1 User s Guide. The NESTED Procedure SAS/STAT 13.1 User s Guide The NESTED Procedure This document is an individual chapter from SAS/STAT 13.1 User s Guide. The correct bibliographic citation for the complete manual is as follows: SAS Institute

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

SGN (4 cr) Chapter 10

SGN (4 cr) Chapter 10 SGN-41006 (4 cr) Chapter 10 Feature Selection and Extraction Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology February 18, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006

More information

Data Analysis Guidelines

Data Analysis Guidelines Data Analysis Guidelines DESCRIPTIVE STATISTICS Standard Deviation Standard deviation is a calculated value that describes the variation (or spread) of values in a data set. It is calculated using a formula

More information

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning

CSE 40171: Artificial Intelligence. Learning from Data: Unsupervised Learning CSE 40171: Artificial Intelligence Learning from Data: Unsupervised Learning 32 Homework #6 has been released. It is due at 11:59PM on 11/7. 33 CSE Seminar: 11/1 Amy Reibman Purdue University 3:30pm DBART

More information

MATLAB COURSE FALL 2004 SESSION 1 GETTING STARTED. Christian Daude 1

MATLAB COURSE FALL 2004 SESSION 1 GETTING STARTED. Christian Daude 1 MATLAB COURSE FALL 2004 SESSION 1 GETTING STARTED Christian Daude 1 Introduction MATLAB is a software package designed to handle a broad range of mathematical needs one may encounter when doing scientific

More information

MATLAB Blocks September 2006

MATLAB Blocks September 2006 MATLAB Blocks September 2006 Notice The information contained in this document is subject to change without notice. Agilent Technologies makes no warranty of any kind with regard to this material, including,

More information

NAG Library Function Document nag_mv_prin_comp (g03aac)

NAG Library Function Document nag_mv_prin_comp (g03aac) g03 Multivariate Methods g03aac NAG Library Function Document nag_mv_prin_comp (g03aac) 1 Purpose nag_mv_prin_comp (g03aac) performs a principal component analysis on a data matrix; both the principal

More information

Lecture 25 Nonlinear Programming. November 9, 2009

Lecture 25 Nonlinear Programming. November 9, 2009 Nonlinear Programming November 9, 2009 Outline Nonlinear Programming Another example of NLP problem What makes these problems complex Scalar Function Unconstrained Problem Local and global optima: definition,

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

Principal Components Analysis with Spatial Data

Principal Components Analysis with Spatial Data Principal Components Analysis with Spatial Data A SpaceStat Software Tutorial Copyright 2013, BioMedware, Inc. (www.biomedware.com). All rights reserved. SpaceStat and BioMedware are trademarks of BioMedware,

More information

NAG Toolbox for MATLAB. g02ef.1

NAG Toolbox for MATLAB. g02ef.1 G2 Correlation and Regression Analysis g2ef Purpose NAG Toolbox for MATLAB g2ef g2ef calculates a full stepwise selection from p variables by using Clarke s sweep algorithm on the correlation matrix of

More information

Data preprocessing Functional Programming and Intelligent Algorithms

Data preprocessing Functional Programming and Intelligent Algorithms Data preprocessing Functional Programming and Intelligent Algorithms Que Tran Høgskolen i Ålesund 20th March 2017 1 Why data preprocessing? Real-world data tend to be dirty incomplete: lacking attribute

More information

The Novel Approach for 3D Face Recognition Using Simple Preprocessing Method

The Novel Approach for 3D Face Recognition Using Simple Preprocessing Method The Novel Approach for 3D Face Recognition Using Simple Preprocessing Method Parvin Aminnejad 1, Ahmad Ayatollahi 2, Siamak Aminnejad 3, Reihaneh Asghari Abstract In this work, we presented a novel approach

More information

If you are not familiar with IMP you should download and read WhatIsImp and CoordGenManual before proceeding.

If you are not familiar with IMP you should download and read WhatIsImp and CoordGenManual before proceeding. IMP: PCAGen6- Principal Components Generation Utility PCAGen6 This software package is a Principal Components Analysis utility intended for use with landmark based morphometric data. The program loads

More information

Facial Expression Detection Using Implemented (PCA) Algorithm

Facial Expression Detection Using Implemented (PCA) Algorithm Facial Expression Detection Using Implemented (PCA) Algorithm Dileep Gautam (M.Tech Cse) Iftm University Moradabad Up India Abstract: Facial expression plays very important role in the communication with

More information

Image Coding with Active Appearance Models

Image Coding with Active Appearance Models Image Coding with Active Appearance Models Simon Baker, Iain Matthews, and Jeff Schneider CMU-RI-TR-03-13 The Robotics Institute Carnegie Mellon University Abstract Image coding is the task of representing

More information

ViSta THE L.L. THURSTONE PSYCHOMETRIC LABORATORY UNIVERSITY OF NORTH CAROLINA. Developing Statistical Objects. Forrest W. Young

ViSta THE L.L. THURSTONE PSYCHOMETRIC LABORATORY UNIVERSITY OF NORTH CAROLINA. Developing Statistical Objects. Forrest W. Young ViSta Developing Statistical Objects Forrest W. Young October, 1996 Research Memorandum Number 96-1 THE L.L. THURSTONE PSYCHOMETRIC LABORATORY UNIVERSITY OF NORTH CAROLINA CHAPEL HILL, N.C. U.S.A. 27599-3270

More information

Week 7 Picturing Network. Vahe and Bethany

Week 7 Picturing Network. Vahe and Bethany Week 7 Picturing Network Vahe and Bethany Freeman (2005) - Graphic Techniques for Exploring Social Network Data The two main goals of analyzing social network data are identification of cohesive groups

More information

Python Certification Training

Python Certification Training Introduction To Python Python Certification Training Goal : Give brief idea of what Python is and touch on basics. Define Python Know why Python is popular Setup Python environment Discuss flow control

More information

CIE L*a*b* color model

CIE L*a*b* color model CIE L*a*b* color model To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (X n,y n,z n ) are the tristimulus

More information

Stats fest Multivariate analysis. Multivariate analyses. Aims. Multivariate analyses. Objects. Variables

Stats fest Multivariate analysis. Multivariate analyses. Aims. Multivariate analyses. Objects. Variables Stats fest 7 Multivariate analysis murray.logan@sci.monash.edu.au Multivariate analyses ims Data reduction Reduce large numbers of variables into a smaller number that adequately summarize the patterns

More information

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe

Face detection and recognition. Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Many slides adapted from K. Grauman and D. Lowe Face detection and recognition Detection Recognition Sally History Early face recognition systems: based on features and distances

More information

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100.

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100. Linear Model Selection and Regularization especially usefull in high dimensions p>>100. 1 Why Linear Model Regularization? Linear models are simple, BUT consider p>>n, we have more features than data records

More information

Introduction to Scientific Computing with Matlab

Introduction to Scientific Computing with Matlab UNIVERSITY OF WATERLOO Introduction to Scientific Computing with Matlab SAW Training Course R. William Lewis Computing Consultant Client Services Information Systems & Technology 2007 Table of Contents

More information

CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS

CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS 38 CHAPTER 3 PRINCIPAL COMPONENT ANALYSIS AND FISHER LINEAR DISCRIMINANT ANALYSIS 3.1 PRINCIPAL COMPONENT ANALYSIS (PCA) 3.1.1 Introduction In the previous chapter, a brief literature review on conventional

More information

IDL Primer - Week 1 John Rausch

IDL Primer - Week 1 John Rausch IDL Primer - Week 1 John Rausch 3 December 2009 A distillation of a CSU class 1 What is IDL? Interactive Data Language Like MATLAB, IDL is a high level computing language and visualization tool. It allows

More information

Fundamentals of Python: First Programs. Chapter 4: Strings (Indexing, Slicing, and Methods)

Fundamentals of Python: First Programs. Chapter 4: Strings (Indexing, Slicing, and Methods) Fundamentals of Python: First Programs Chapter 4: Strings (Indexing, Slicing, and Methods) Objectives After completing this lesson, you will be able to: 1) Know the definition of a string and that strings

More information

Lecture 8 Object Descriptors

Lecture 8 Object Descriptors Lecture 8 Object Descriptors Azadeh Fakhrzadeh Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Reading instructions Chapter 11.1 11.4 in G-W Azadeh Fakhrzadeh

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Fabio G. Cozman - fgcozman@usp.br November 16, 2018 What can we do? We just have a dataset with features (no labels, no response). We want to understand the data... no easy to define

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information