A Structure-Based Variable Ordering Heuristic for SAT. By Jinbo Huang and Adnan Darwiche Presented by Jack Pinette

Size: px
Start display at page:

Download "A Structure-Based Variable Ordering Heuristic for SAT. By Jinbo Huang and Adnan Darwiche Presented by Jack Pinette"

Transcription

1 A Structure-Based Variable Ordering Heuristic for SAT By Jinbo Huang and Adnan Darwiche Presented by Jack Pinette

2 Overview 1. Divide-and-conquer for SAT 2. DPLL & variable ordering 3. Using dtrees for SAT decomposition 4. Conflict-directed backtracking 5. Experiments 6. Questions

3 Basic DPLL: sat(cnf:c) 1. If there is an inconsistent clause, return false 2. If there is no uninstantiated variable, return true 3. Select an uninstd. variable v vars(c) 4. Return sat(c v=true ) sat(c v=false ) (neglects unit propagation)

4 Divide and Conquer Split a large problem into disconnected components Each subcomponent can be solved independently Solution is the combination of sub-solutions

5 Dividing SAT problems CNF C = {c 1, c 2,, c m }, a set of clauses which must be satisfied In general, any c i, c j C may share variables Straightforward divide-and-conquer is not possible

6 Disconnecting CNF C = {c 1, c 2,, c m } Split C into C L and C R, with variable sets V L and V R, respectively V L V R 0 ; they may still be connected

7 Workaround In sat(c), insist that vars V L V R are instantiated first Then we have C L and C R as fully independent sub-problems: V L = V L - V L V R V R = V R - V L V R Recursively decompose to individual clauses

8 Using the decomposition Feed the decomposition to the DPLL solver as a variable ordering

9 Variable orderings in SAT Recall line 3 of the DPLL algorithm: 3. Select an uninstantiated variable v C In general, different choices of v may lead to different search complexity

10 Static vs. Dynamic Static orderings are predetermined and fixed for the run of the SAT solver Dynamic orderings are computed before each split decision Chaff uses VSIDS, a dynamic ordering

11 Chaff s VSIDS 1. Keep occurrence count of each literal (that is, x and x are counted separately) 2. Periodically divide all counts by some constant 3. Choose the literal with the highest count In practice, favors literals involved in recent conflicts

12 Divide-and-conquer ordering For CNF C = C L C R, order by groups (recursively): 1. V L V R 2. V L = V L - V L V R 3. V R = V R - V L V R (choice of left-to-right is arbitrary)

13 Divide-and-conquer ordering Within each group, use any other variable ordering 1. V L V R 2. V L = V L - V L V R 3. V R = V R - V L V R (choice of left-to-right is arbitrary)

14 Partition mechanism How do we choose the partition C L, C R? Use a dtree (decomposition tree)

15 dtree for CNF Full binary tree Nodes represent a subset of CNF C Leaves are individual clauses of C

16 dtree definitions Variables of a dtree node: union of its children s variables For a leaf: all vars mentioned in the associated clause

17 Cutset of a dtree node: intersection of its children s variables, minus its ancestors cutsets dtree definitions

18 variables and cutsets explained Each node of the dtree represents part of the CNF A node s variables = all the variables in that part of the CNF

19 variables and cutsets explained A node s cutset = the vars that must be instantiated before the node s children become independent subproblems

20 dtree variable group ordering The v.g.o. induced by a dtree: 1. The cutset of the root 2. The v.g.o. of the left subtree 3. The v.g.o. of the right subtree

21 dtree variable group ordering Our example dtree induces the v.g.o.: {u,z}, {x}, {y}, {w}, {v}

22 Choosing a dtree Any nontrivial CNF has multiple dtrees Q: how to pick a good dtree? A: use a hypergraph partitioning algorithm

23 Hypergraph partitioning A hypergraph is a generalized graph, where edges (hyperedges) may connect more than two vertices. Hypergraph partitioning: split the vertices into k approximately equal-sized parts, minimizing the connections between vertices in different parts

24 Hypergraph partitioning Hypergraph partitioning is well-studied The authors use the hmetis package from University of Minnesota; literature claims order-of-magnitude performance gains over competitors hmetis lets the user specify how balanced the partition should be

25 CNF hypergraph Add a hypergraph node for each CNF clause Add a hyperedge for each variable in the CNF, connecting the nodes (clauses) in which the variable appears

26 Hypergraph example Showing hyperedges connecting two or more nodes

27 Hypergraph example hmetis tries to choose a balanced partition, that minimizes the number of crossing edges

28 Hypergraph example This partition is balanced (2 and 2) and crosses two hyperedges, u and z This corresponds to a cutset of {u,z} for the root node of the dtree

29 How to use this? We can use hypergraph partitioning to generate a dtree We can use the dtree to generate a variable group ordering Does this guarantee that a DPLL solver will handle the problem decomposition?

30 Wasted effort Example: C = C L C R, say V L V R is fully instantiated, and C L has been satisfied If a conflict is found while exploring C R, DPLL could backtrack to a decision in V L (wasting effort). It should backtrack directly to a decision in V L V R.

31 Conflict-directed backtracking Tracks the decisions responsible for the assignments leading to a conflict A DPLL solver with conflict-directed backtracking will know not to backtrack to a decision in V L, but will skip back to V L V R as desired.

32 Implementation Modifications to ZChaff: Package to generate dtree Package to extract v.g.o. from dtree Changes to ZChaff: forced to obey v.g.o.; inside a group, uses VSIDS to choose Compared to stock ZChaff on selected benchmarks

33 Results Dtree-ZChaff wins for many instances

34 Improves many instances Most improved are hard instances for Zchaff Harmful for a few instances

35 Complexity For a CNF C whose connectivity graph has treewidth w: There exists a dtree for C with height log n (where C has n clauses) and all cutsets have size w A DPLL solver with conflict-directed backtracking can solve C in O(n exp(w log n)) time

36 Questions How were the benchmarks selected? Are some problem domains known to generate problems with this type of structure? Is there a fast way to guess whether dtree will be helpful or not for an arbitrary CNF?

37 Related materials S. Szeider at University of Toronto has recent papers on fixed-parameter tractable SAT problems

Guiding Real-World SAT Solving with Dynamic Hypergraph Separator Decomposition

Guiding Real-World SAT Solving with Dynamic Hypergraph Separator Decomposition Guiding Real-World SAT Solving with Dynamic Hypergraph Separator Decomposition Wei Li and Peter van Beek School of Computer Science University of Waterloo 200 University Ave. West Waterloo, Ontario N2L

More information

Decomposition and Tractability in Qualitative Spatial and Temporal Reasoning

Decomposition and Tractability in Qualitative Spatial and Temporal Reasoning Decomposition and Tractability in Qualitative Spatial and Temporal Reasoning Jinbo Huang a,b, Jason Jingshi Li c, Jochen Renz b a NICTA, Australia b Australian National University, Australia c Ecole Polytechnique

More information

Using DPLL for Efficient OBDD Construction

Using DPLL for Efficient OBDD Construction Using DPLL for Efficient OBDD Construction Jinbo Huang and Adnan Darwiche Computer Science Department University of California, Los Angeles {jinbo,darwiche}@cs.ucla.edu Abstract. The DPLL procedure has

More information

Compiling Probabilistic Graphical Models using Sentential Decision Diagrams

Compiling Probabilistic Graphical Models using Sentential Decision Diagrams Compiling Probabilistic Graphical Models using Sentential Decision Diagrams Arthur Choi, Doga Kisa, and Adnan Darwiche University of California, Los Angeles, California 90095, USA {aychoi,doga,darwiche}@cs.ucla.edu

More information

Factored Planning Using Decomposition Trees

Factored Planning Using Decomposition Trees Factored Planning Using Decomposition Trees Elena Kelareva Olivier Buffet, Jinbo Huang, Sylvie Thiébaux University of Melbourne National ICT Australia and Australian National University Melbourne, Victoria

More information

ESE535: Electronic Design Automation CNF. Today CNF. 3-SAT Universal. Problem (A+B+/C)*(/B+D)*(C+/A+/E)

ESE535: Electronic Design Automation CNF. Today CNF. 3-SAT Universal. Problem (A+B+/C)*(/B+D)*(C+/A+/E) ESE535: Electronic Design Automation CNF Day 21: April 21, 2008 Modern SAT Solvers ({z}chaff, GRASP,miniSAT) Conjunctive Normal Form Logical AND of a set of clauses Product of sums Clauses: logical OR

More information

Knowledge Compilation Properties of Tree-of-BDDs

Knowledge Compilation Properties of Tree-of-BDDs Knowledge Compilation Properties of Tree-of-BDDs Sathiamoorthy Subbarayan IT University of Copenhagen, Denmark sathi@itu.dk Lucas Bordeaux and Youssef Hamadi Microsoft Research, Cambridge, UK lucasb,youssefh@microsoft.com

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2013 Soleymani Course material: Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Solving 3-SAT. Radboud University Nijmegen. Bachelor Thesis. Supervisors: Henk Barendregt Alexandra Silva. Author: Peter Maandag s

Solving 3-SAT. Radboud University Nijmegen. Bachelor Thesis. Supervisors: Henk Barendregt Alexandra Silva. Author: Peter Maandag s Solving 3-SAT Radboud University Nijmegen Bachelor Thesis Author: Peter Maandag s3047121 Supervisors: Henk Barendregt Alexandra Silva July 2, 2012 Contents 1 Introduction 2 1.1 Problem context............................

More information

SDD Advanced-User Manual Version 1.1

SDD Advanced-User Manual Version 1.1 SDD Advanced-User Manual Version 1.1 Arthur Choi and Adnan Darwiche Automated Reasoning Group Computer Science Department University of California, Los Angeles Email: sdd@cs.ucla.edu Download: http://reasoning.cs.ucla.edu/sdd

More information

A Compiler for Deterministic, Decomposable Negation Normal Form

A Compiler for Deterministic, Decomposable Negation Normal Form From: AAAI-02 Proceedings. Copyright 2002, AAAI (www.aaai.org). All rights reserved. A Compiler for Deterministic, Decomposable Negation Normal Form Adnan Darwiche Computer Science Department University

More information

Boolean Representations and Combinatorial Equivalence

Boolean Representations and Combinatorial Equivalence Chapter 2 Boolean Representations and Combinatorial Equivalence This chapter introduces different representations of Boolean functions. It then discusses the applications of these representations for proving

More information

Zchaff: A fast SAT solver. Zchaff: A fast SAT solver

Zchaff: A fast SAT solver. Zchaff: A fast SAT solver * We d like to build a complete decision procedure for SAT which is efficient. Generalized D-P-L algorithm: while (true) { if (! decide( )) /* no unassigned variables */ return (sat) while (! bcp ( ))

More information

On Hybrid SAT Solving Using Tree Decompositions and BDDs

On Hybrid SAT Solving Using Tree Decompositions and BDDs On Hybrid SAT Solving Using Tree Decompositions and BDDs Sathiamoorthy Subbarayan Lucas Bordeaux Youssef Hamadi March 2006 Technical Report MSR-TR-2006-28 The goal of this paper is to study the benefits

More information

Satisfiability Solvers

Satisfiability Solvers Satisfiability Solvers Part 1: Systematic Solvers 600.325/425 Declarative Methods - J. Eisner 1 Vars SAT solving has made some progress 100000 10000 1000 100 10 1 1960 1970 1980 1990 2000 2010 Year slide

More information

Set 5: Constraint Satisfaction Problems Chapter 6 R&N

Set 5: Constraint Satisfaction Problems Chapter 6 R&N Set 5: Constraint Satisfaction Problems Chapter 6 R&N ICS 271 Fall 2017 Kalev Kask ICS-271:Notes 5: 1 The constraint network model Outline Variables, domains, constraints, constraint graph, solutions Examples:

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems In which we see how treating states as more than just little black boxes leads to the invention of a range of powerful new search methods and a deeper understanding of

More information

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence,

Lars Schmidt-Thieme, Information Systems and Machine Learning Lab (ISMLL), University of Hildesheim, Germany, Course on Artificial Intelligence, Course on Artificial Intelligence, winter term 2012/2013 0/35 Artificial Intelligence Artificial Intelligence 3. Constraint Satisfaction Problems Lars Schmidt-Thieme Information Systems and Machine Learning

More information

A Pearl on SAT Solving in Prolog

A Pearl on SAT Solving in Prolog Funded by EPSRC grants EP/E033106 and EP/E034519 and a Royal Society Industrial Fellowship FLOPS 10, Sendai, 21st April Introduction SAT solving: DPLL with watched literals Stability tests in fixpoint

More information

Guiding CNF-SAT Search via Efficient Constraint Partitioning

Guiding CNF-SAT Search via Efficient Constraint Partitioning SUBMITTED TO ICCAD 04 1 Guiding CNF-SAT Search via Efficient Constraint Partitioning Vijay Durairaj and Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake City,

More information

Set 5: Constraint Satisfaction Problems

Set 5: Constraint Satisfaction Problems Set 5: Constraint Satisfaction Problems ICS 271 Fall 2014 Kalev Kask ICS-271:Notes 5: 1 The constraint network model Outline Variables, domains, constraints, constraint graph, solutions Examples: graph-coloring,

More information

CS-E3220 Declarative Programming

CS-E3220 Declarative Programming CS-E3220 Declarative Programming Lecture 5: Premises for Modern SAT Solving Aalto University School of Science Department of Computer Science Spring 2018 Motivation The Davis-Putnam-Logemann-Loveland (DPLL)

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley Project Proposals Due Friday, February 13 on bcourses Will discuss project topics on Monday Instructions

More information

SAT Solver Heuristics

SAT Solver Heuristics SAT Solver Heuristics SAT-solver History Started with David-Putnam-Logemann-Loveland (DPLL) (1962) Able to solve 10-15 variable problems Satz (Chu Min Li, 1995) Able to solve some 1000 variable problems

More information

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction A Scalable Algorithm for Minimal Unsatisfiable Core Extraction Nachum Dershowitz 1, Ziyad Hanna 2, and Alexander Nadel 1,2 1 School of Computer Science, Tel Aviv University, Ramat Aviv, Israel {nachumd,

More information

An Introduction to SAT Solvers

An Introduction to SAT Solvers An Introduction to SAT Solvers Knowles Atchison, Jr. Fall 2012 Johns Hopkins University Computational Complexity Research Paper December 11, 2012 Abstract As the first known example of an NP Complete problem,

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Tuomas Sandholm Carnegie Mellon University Computer Science Department [Read Chapter 6 of Russell & Norvig] Constraint satisfaction problems (CSPs) Standard search problem:

More information

Clone: Solving Weighted Max-SAT in a Reduced Search Space

Clone: Solving Weighted Max-SAT in a Reduced Search Space Clone: Solving Weighted Max-SAT in a Reduced Search Space Knot Pipatsrisawat and Adnan Darwiche {thammakn,darwiche}@cs.ucla.edu Computer Science Department University of California, Los Angeles Abstract.

More information

Constraint Satisfaction Problems. Chapter 6

Constraint Satisfaction Problems. Chapter 6 Constraint Satisfaction Problems Chapter 6 Constraint Satisfaction Problems A constraint satisfaction problem consists of three components, X, D, and C: X is a set of variables, {X 1,..., X n }. D is a

More information

Variable Ordering for Efficient SAT Search by Analyzing Constraint-Variable Dependencies

Variable Ordering for Efficient SAT Search by Analyzing Constraint-Variable Dependencies Variable Ordering for Efficient SAT Search by Analyzing Constraint-Variable Dependencies Vijay Durairaj and Priyank Kalla Department of Electrical and Computer Engineering University of Utah, Salt Lake

More information

Example: Map coloring

Example: Map coloring Today s s lecture Local Search Lecture 7: Search - 6 Heuristic Repair CSP and 3-SAT Solving CSPs using Systematic Search. Victor Lesser CMPSCI 683 Fall 2004 The relationship between problem structure and

More information

Guiding CNF-SAT Search by Analyzing Constraint-Variable Dependencies and Clause Lengths

Guiding CNF-SAT Search by Analyzing Constraint-Variable Dependencies and Clause Lengths APPEARED IN HLDVT 06 1 Guiding CNF-SAT Search by Analyzing Constraint-Variable Dependencies and Clause Lengths Vijay Durairaj and Priyank Kalla Department of Electrical and Computer Engineering University

More information

Lecture 14: Lower Bounds for Tree Resolution

Lecture 14: Lower Bounds for Tree Resolution IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 14: Lower Bounds for Tree Resolution David Mix Barrington and Alexis Maciel August

More information

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Formal Methods Boolean Satisfiability Solving. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Formal Methods Boolean Satisfiability Solving Sanjit A. Seshia EECS, UC Berkeley The Boolean Satisfiability Problem (SAT) Given: A Boolean formula F(x 1, x 2, x 3,, x n ) Can F evaluate to 1

More information

DM841 DISCRETE OPTIMIZATION. Part 2 Heuristics. Satisfiability. Marco Chiarandini

DM841 DISCRETE OPTIMIZATION. Part 2 Heuristics. Satisfiability. Marco Chiarandini DM841 DISCRETE OPTIMIZATION Part 2 Heuristics Satisfiability Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Mathematical Programming Constraint

More information

!!" '!" Fall 2003 ICS 275A - Constraint Networks 2

!! '! Fall 2003 ICS 275A - Constraint Networks 2 chapter 10 1 !"!!" # $ %&!" '!" Fall 2003 ICS 275A - Constraint Networks 2 ( Complexity : O(exp(n)) Fall 2003 ICS 275A - Constraint Networks 3 * bucket i = O(exp( w )) DR time and space : O( n exp( w *

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 5. Constraint Satisfaction Problems CSPs as Search Problems, Solving CSPs, Problem Structure Wolfram Burgard, Bernhard Nebel, and Martin Riedmiller Albert-Ludwigs-Universität

More information

New Advances in Inference by Recursive Conditioning

New Advances in Inference by Recursive Conditioning New Advances in Inference by Recursive Conditioning David Allen and Adnan Darwiche Computer Science Department University of California Los Angeles, CA 90095 {dlallen,darwiche}@cs.ucla.edu Abstract Recursive

More information

Exploring A Two-Solver Architecture for Clause Learning CSP Solvers. Ozan Erdem

Exploring A Two-Solver Architecture for Clause Learning CSP Solvers. Ozan Erdem Exploring A Two-Solver Architecture for Clause Learning CSP Solvers by Ozan Erdem A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer

More information

Evaluating the Impact of AND/OR Search on 0-1 Integer Linear Programming

Evaluating the Impact of AND/OR Search on 0-1 Integer Linear Programming Evaluating the Impact of AND/OR Search on 0-1 Integer Linear Programming Radu Marinescu, Rina Dechter Donald Bren School of Information and Computer Science University of California, Irvine, CA 92697,

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 5: CSPs II 9/8/2011 Dan Klein UC Berkeley Multiple slides over the course adapted from either Stuart Russell or Andrew Moore 1 Today Efficient Solution

More information

Parallelizing SAT Solver With specific application on solving Sudoku Puzzles

Parallelizing SAT Solver With specific application on solving Sudoku Puzzles 6.338 Applied Parallel Computing Final Report Parallelizing SAT Solver With specific application on solving Sudoku Puzzles Hank Huang May 13, 2009 This project was focused on parallelizing a SAT solver

More information

DPLL with a Trace: From SAT to Knowledge Compilation

DPLL with a Trace: From SAT to Knowledge Compilation DPLL with a Trace: From SAT to Knowledge Compilation Jinbo Huang Adnan Darwiche Computer Science Department University of California, Los Angeles Los Angeles, CA 90095 {jinbo, darwiche}@cs.ucla.edu Abstract

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Search and Lookahead Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 4/6, 2012 Nebel, Hué and Wölfl (Universität Freiburg) Constraint

More information

Combinational Equivalence Checking

Combinational Equivalence Checking Combinational Equivalence Checking Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab. Dept. of Electrical Engineering Indian Institute of Technology Bombay viren@ee.iitb.ac.in

More information

Constraint Satisfaction

Constraint Satisfaction Constraint Satisfaction Philipp Koehn 1 October 2015 Outline 1 Constraint satisfaction problems (CSP) examples Backtracking search for CSPs Problem structure and problem decomposition Local search for

More information

Stochastic greedy local search Chapter 7

Stochastic greedy local search Chapter 7 Stochastic greedy local search Chapter 7 ICS-275 Winter 2016 Example: 8-queen problem Main elements Choose a full assignment and iteratively improve it towards a solution Requires a cost function: number

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

A Lightweight Component Caching Scheme for Satisfiability Solvers

A Lightweight Component Caching Scheme for Satisfiability Solvers A Lightweight Component Caching Scheme for Satisfiability Solvers Knot Pipatsrisawat and Adnan Darwiche {thammakn,darwiche}@cs.ucla.edu Computer Science Department University of California, Los Angeles

More information

1 Inference for Boolean theories

1 Inference for Boolean theories Scribe notes on the class discussion on consistency methods for boolean theories, row convex constraints and linear inequalities (Section 8.3 to 8.6) Speaker: Eric Moss Scribe: Anagh Lal Corrector: Chen

More information

SAT Solver. CS 680 Formal Methods Jeremy Johnson

SAT Solver. CS 680 Formal Methods Jeremy Johnson SAT Solver CS 680 Formal Methods Jeremy Johnson Disjunctive Normal Form A Boolean expression is a Boolean function Any Boolean function can be written as a Boolean expression s x 0 x 1 f Disjunctive normal

More information

2 Decision Procedures for Propositional Logic

2 Decision Procedures for Propositional Logic 2 Decision Procedures for Propositional Logic 2.1 Propositional Logic We assume that the reader is familiar with propositional logic, and with the complexity classes NP and NP-complete. The syntax of formulas

More information

Normal Forms for Boolean Expressions

Normal Forms for Boolean Expressions Normal Forms for Boolean Expressions A NORMAL FORM defines a class expressions s.t. a. Satisfy certain structural properties b. Are usually universal: able to express every boolean function 1. Disjunctive

More information

Set 5: Constraint Satisfaction Problems

Set 5: Constraint Satisfaction Problems Set 5: Constraint Satisfaction Problems ICS 271 Fall 2012 Rina Dechter ICS-271:Notes 5: 1 Outline The constraint network model Variables, domains, constraints, constraint graph, solutions Examples: graph-coloring,

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Frank C. Langbein F.C.Langbein@cs.cf.ac.uk Department of Computer Science Cardiff University 13th February 2001 Constraint Satisfaction Problems (CSPs) A CSP is a high

More information

A Divide-and-Conquer Approach for Solving Interval Algebra Networks

A Divide-and-Conquer Approach for Solving Interval Algebra Networks A Divide-and-Conquer Approach for Solving Interval Algebra Networks Jason Jingshi Li, Jinbo Huang, and Jochen Renz Australian National University and National ICT Australia Canberra, ACT 0200 Australia

More information

Horn Formulae. CS124 Course Notes 8 Spring 2018

Horn Formulae. CS124 Course Notes 8 Spring 2018 CS124 Course Notes 8 Spring 2018 In today s lecture we will be looking a bit more closely at the Greedy approach to designing algorithms. As we will see, sometimes it works, and sometimes even when it

More information

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19

Treaps. 1 Binary Search Trees (BSTs) CSE341T/CSE549T 11/05/2014. Lecture 19 CSE34T/CSE549T /05/04 Lecture 9 Treaps Binary Search Trees (BSTs) Search trees are tree-based data structures that can be used to store and search for items that satisfy a total order. There are many types

More information

Set 5: Constraint Satisfaction Problems

Set 5: Constraint Satisfaction Problems Set 5: Constraint Satisfaction Problems ICS 271 Fall 2013 Kalev Kask ICS-271:Notes 5: 1 The constraint network model Outline Variables, domains, constraints, constraint graph, solutions Examples: graph-coloring,

More information

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25

Multi-way Search Trees. (Multi-way Search Trees) Data Structures and Programming Spring / 25 Multi-way Search Trees (Multi-way Search Trees) Data Structures and Programming Spring 2017 1 / 25 Multi-way Search Trees Each internal node of a multi-way search tree T: has at least two children contains

More information

Practical SAT Solving

Practical SAT Solving Practical SAT Solving Lecture 5 Carsten Sinz, Tomáš Balyo May 23, 2016 INSTITUTE FOR THEORETICAL COMPUTER SCIENCE KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz

More information

4.1 Review - the DPLL procedure

4.1 Review - the DPLL procedure Applied Logic Lecture 4: Efficient SAT solving CS 4860 Spring 2009 Thursday, January 29, 2009 The main purpose of these notes is to help me organize the material that I used to teach today s lecture. They

More information

Boolean Satisfiability Solving Part II: DLL-based Solvers. Announcements

Boolean Satisfiability Solving Part II: DLL-based Solvers. Announcements EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Part II: DLL-based Solvers Sanjit A. Seshia EECS, UC Berkeley With thanks to Lintao Zhang (MSR) Announcements Paper readings will be

More information

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1

Lecture 18. Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Lecture 18 Questions? Monday, February 20 CS 430 Artificial Intelligence - Lecture 18 1 Outline Chapter 6 - Constraint Satisfaction Problems Path Consistency & Global Constraints Sudoku Example Backtracking

More information

ABC basics (compilation from different articles)

ABC basics (compilation from different articles) 1. AIG construction 2. AIG optimization 3. Technology mapping ABC basics (compilation from different articles) 1. BACKGROUND An And-Inverter Graph (AIG) is a directed acyclic graph (DAG), in which a node

More information

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA

Modeling and Reasoning with Bayesian Networks. Adnan Darwiche University of California Los Angeles, CA Modeling and Reasoning with Bayesian Networks Adnan Darwiche University of California Los Angeles, CA darwiche@cs.ucla.edu June 24, 2008 Contents Preface 1 1 Introduction 1 1.1 Automated Reasoning........................

More information

Chaff: Engineering an Efficient SAT Solver

Chaff: Engineering an Efficient SAT Solver Chaff: Engineering an Efficient SAT Solver Matthew W.Moskewicz, Concor F. Madigan, Ying Zhao, Lintao Zhang, Sharad Malik Princeton University Slides: Tamir Heyman Some are from Malik s presentation Last

More information

Search and Optimization

Search and Optimization Search and Optimization Search, Optimization and Game-Playing The goal is to find one or more optimal or sub-optimal solutions in a given search space. We can either be interested in finding any one solution

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Last update: February 25, 2010 Constraint Satisfaction Problems CMSC 421, Chapter 5 CMSC 421, Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure and problem decomposition Local

More information

1 Maximum Independent Set

1 Maximum Independent Set CS 408 Embeddings and MIS Abhiram Ranade In this lecture we will see another application of graph embedding. We will see that certain problems (e.g. maximum independent set, MIS) can be solved fast for

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries.

Today. CS 188: Artificial Intelligence Fall Example: Boolean Satisfiability. Reminder: CSPs. Example: 3-SAT. CSPs: Queries. CS 188: Artificial Intelligence Fall 2007 Lecture 5: CSPs II 9/11/2007 More CSPs Applications Tree Algorithms Cutset Conditioning Today Dan Klein UC Berkeley Many slides over the course adapted from either

More information

CSE 100: B+ TREE, 2-3 TREE, NP- COMPLETNESS

CSE 100: B+ TREE, 2-3 TREE, NP- COMPLETNESS CSE 100: B+ TREE, 2-3 TREE, NP- COMPLETNESS Analyzing find in B-trees Since the B-tree is perfectly height-balanced, the worst case time cost for find is O(logN) Best case: If every internal node is completely

More information

A generic framework for solving CSPs integrating decomposition methods

A generic framework for solving CSPs integrating decomposition methods A generic framework for solving CSPs integrating decomposition methods L. Blet 1,3, S. N. Ndiaye 1,2, and C. Solnon 1,3 1 Université de Lyon - LIRIS 2 Université Lyon 1, LIRIS, UMR5205, F-69622 France

More information

(2,4) Trees. 2/22/2006 (2,4) Trees 1

(2,4) Trees. 2/22/2006 (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2/22/2006 (2,4) Trees 1 Outline and Reading Multi-way search tree ( 10.4.1) Definition Search (2,4) tree ( 10.4.2) Definition Search Insertion Deletion Comparison of dictionary

More information

Yices 1.0: An Efficient SMT Solver

Yices 1.0: An Efficient SMT Solver Yices 1.0: An Efficient SMT Solver SMT-COMP 06 Leonardo de Moura (joint work with Bruno Dutertre) {demoura, bruno}@csl.sri.com. Computer Science Laboratory SRI International Menlo Park, CA Yices: An Efficient

More information

Constraint Satisfaction. AI Slides (5e) c Lin

Constraint Satisfaction. AI Slides (5e) c Lin Constraint Satisfaction 4 AI Slides (5e) c Lin Zuoquan@PKU 2003-2018 4 1 4 Constraint Satisfaction 4.1 Constraint satisfaction problems 4.2 Backtracking search 4.3 Constraint propagation 4.4 Local search

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Chapter 5 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure and problem decomposition Local search for CSPs Chapter 5 2 Constraint satisfaction

More information

Figure 4.1: The evolution of a rooted tree.

Figure 4.1: The evolution of a rooted tree. 106 CHAPTER 4. INDUCTION, RECURSION AND RECURRENCES 4.6 Rooted Trees 4.6.1 The idea of a rooted tree We talked about how a tree diagram helps us visualize merge sort or other divide and conquer algorithms.

More information

Better test results for the graph coloring and the Pigeonhole Problems using DPLL with k-literal representation

Better test results for the graph coloring and the Pigeonhole Problems using DPLL with k-literal representation Proceedings of the 7 th International Conference on Applied Informatics Eger, Hungary, January 28 31, 2007. Vol. 2. pp. 127 135. Better test results for the graph coloring and the Pigeonhole Problems using

More information

Finite Model Generation for Isabelle/HOL Using a SAT Solver

Finite Model Generation for Isabelle/HOL Using a SAT Solver Finite Model Generation for / Using a SAT Solver Tjark Weber webertj@in.tum.de Technische Universität München Winterhütte, März 2004 Finite Model Generation for / p.1/21 is a generic proof assistant: Highly

More information

Circuit versus CNF Reasoning for Equivalence Checking

Circuit versus CNF Reasoning for Equivalence Checking Circuit versus CNF Reasoning for Equivalence Checking Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria Equivalence Checking Workshop 25 Madonna di Campiglio,

More information

Lecture 6: Constraint Satisfaction Problems (CSPs)

Lecture 6: Constraint Satisfaction Problems (CSPs) Lecture 6: Constraint Satisfaction Problems (CSPs) CS 580 (001) - Spring 2018 Amarda Shehu Department of Computer Science George Mason University, Fairfax, VA, USA February 28, 2018 Amarda Shehu (580)

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

New Compilation Languages Based on Structured Decomposability

New Compilation Languages Based on Structured Decomposability Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008) New Compilation Languages Based on Structured Decomposability Knot Pipatsrisawat and Adnan Darwiche Computer Science Department

More information

Reduced branching-factor algorithms for constraint satisfaction problems

Reduced branching-factor algorithms for constraint satisfaction problems Reduced branching-factor algorithms for constraint satisfaction problems Igor Razgon and Amnon Meisels Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84-105, Israel {irazgon,am}@cs.bgu.ac.il

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Revised by Hankui Zhuo, March 14, 2018 Constraint Satisfaction Problems Chapter 5 Chapter 5 1 Outline CSP examples Backtracking search for CSPs Problem structure and problem decomposition Local search

More information

Satisfiability. Michail G. Lagoudakis. Department of Computer Science Duke University Durham, NC SATISFIABILITY

Satisfiability. Michail G. Lagoudakis. Department of Computer Science Duke University Durham, NC SATISFIABILITY Satisfiability Michail G. Lagoudakis Department of Computer Science Duke University Durham, NC 27708 COMPSCI 271 - Spring 2001 DUKE UNIVERSITY Page 1 Why SAT? Historical Reasons The first NP-COMPLETE problem

More information

CSE373: Data Structures & Algorithms Lecture 28: Final review and class wrap-up. Nicki Dell Spring 2014

CSE373: Data Structures & Algorithms Lecture 28: Final review and class wrap-up. Nicki Dell Spring 2014 CSE373: Data Structures & Algorithms Lecture 28: Final review and class wrap-up Nicki Dell Spring 2014 Final Exam As also indicated on the web page: Next Tuesday, 2:30-4:20 in this room Cumulative but

More information

Integrating a SAT Solver with Isabelle/HOL

Integrating a SAT Solver with Isabelle/HOL Integrating a SAT Solver with / Tjark Weber (joint work with Alwen Tiu et al.) webertj@in.tum.de First Munich-Nancy Workshop on Decision Procedures for Theorem Provers March 6th & 7th, 2006 Integrating

More information

Conflict Graphs for Combinatorial Optimization Problems

Conflict Graphs for Combinatorial Optimization Problems Conflict Graphs for Combinatorial Optimization Problems Ulrich Pferschy joint work with Andreas Darmann and Joachim Schauer University of Graz, Austria Introduction Combinatorial Optimization Problem CO

More information

Structural Relaxations by Variable Renaming and their Compilation for Solving MinCostSAT

Structural Relaxations by Variable Renaming and their Compilation for Solving MinCostSAT Structural Relaxations by Variable Renaming and their Compilation for Solving MinCostSAT Miquel Ramírez 1 and Hector Geffner 2 1 Universitat Pompeu Fabra Passeig de Circumvalació 8 08003 Barcelona Spain

More information

Example: Map-Coloring. Constraint Satisfaction Problems Western Australia. Example: Map-Coloring contd. Outline. Constraint graph

Example: Map-Coloring. Constraint Satisfaction Problems Western Australia. Example: Map-Coloring contd. Outline. Constraint graph Example: Map-Coloring Constraint Satisfaction Problems Western Northern erritory ueensland Chapter 5 South New South Wales asmania Variables, N,,, V, SA, Domains D i = {red,green,blue} Constraints: adjacent

More information

10/11/2017. Constraint Satisfaction Problems II. Review: CSP Representations. Heuristic 1: Most constrained variable

10/11/2017. Constraint Satisfaction Problems II. Review: CSP Representations. Heuristic 1: Most constrained variable //7 Review: Constraint Satisfaction Problems Constraint Satisfaction Problems II AIMA: Chapter 6 A CSP consists of: Finite set of X, X,, X n Nonempty domain of possible values for each variable D, D, D

More information

Utilizing Device Behavior in Structure-Based Diagnosis

Utilizing Device Behavior in Structure-Based Diagnosis Utilizing Device Behavior in Structure-Based Diagnosis Adnan Darwiche Cognitive Systems Laboratory Department of Computer Science University of California Los Angeles, CA 90024 darwiche @cs. ucla. edu

More information

SAT Solvers. Ranjit Jhala, UC San Diego. April 9, 2013

SAT Solvers. Ranjit Jhala, UC San Diego. April 9, 2013 SAT Solvers Ranjit Jhala, UC San Diego April 9, 2013 Decision Procedures We will look very closely at the following 1. Propositional Logic 2. Theory of Equality 3. Theory of Uninterpreted Functions 4.

More information

Algorithm classification

Algorithm classification Types of Algorithms Algorithm classification Algorithms that use a similar problem-solving approach can be grouped together We ll talk about a classification scheme for algorithms This classification scheme

More information

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1

(2,4) Trees Goodrich, Tamassia (2,4) Trees 1 (2,4) Trees 9 2 5 7 10 14 2004 Goodrich, Tamassia (2,4) Trees 1 Multi-Way Search Tree A multi-way search tree is an ordered tree such that Each internal node has at least two children and stores d -1 key-element

More information

Sorting and Selection

Sorting and Selection Sorting and Selection Introduction Divide and Conquer Merge-Sort Quick-Sort Radix-Sort Bucket-Sort 10-1 Introduction Assuming we have a sequence S storing a list of keyelement entries. The key of the element

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Join Tree Importance of s Solving Topological structure defines key features for a wide class of problems CSP: Inference in acyclic network is extremely efficient (polynomial) Idea: remove cycles

More information