Debugging and Optimization strategies

Size: px
Start display at page:

Download "Debugging and Optimization strategies"

Transcription

1 Debugging and Optimization strategies Philip Blakely Laboratory for Scientific Computing, Cambridge Philip Blakely (LSC) Optimization 1 / 25

2 Writing a correct CUDA code You should start with a functional CPU/serial code If possible, port small parts to GPU at a time Codes should give exactly the same results at all times If possible, display intermediate results to test individual kernels A lot of the difficulty with CUDA is thinking about parallelism in the right way, and working out which threads and blocks should do what work. Philip Blakely (LSC) Optimization 2 / 25

3 Error checking Always make use of error-return codes Use cudagetlasterror() Common errors: Mixing up host and device pointers - use e.g. hdata[], ddata[] naming convention Reversing direction of copying in cudamemcpy() cudamemcpy(dest, src, numbytes, cudamemcpykind) Allocating too little memory - cudamalloc needs no. of bytes - use sizeof() float3 a; a = cudamalloc((void )&a, sizeof(float3) N); Philip Blakely (LSC) Optimization 3 / 25

4 Floating point mismatch Moving from CPU code to GPU code will lead to changes in floating-point results Early CUDA-enabled GPUs did not conform to IEEE 754 exactly Unlikely to lead to noticable errors, except in last d.p. Recall that floating point addition is non-associative Upshot: If you are summing in parallel, result may be different from serial result Extra FMA instructions on GPUs can also affect result. See Floating Point on NVIDIA GPU.pdf Consider whether you need single-precision or double-precision arithmetic. Former is faster (by at least factor of 8) but may not be accurate enough. If any of this leads to stability problems - rethink your algorithm Philip Blakely (LSC) Optimization 4 / 25

5 Indexing errors Always check correct calculation of indexes Usually blockidx.x * blockdim.x + threadidx.x May have different expressions depending on distribution of data between threads/thread-blocks Always check for out-of-bounds access It s common to have redundant threads that shouldn t access data - make sure they have an appropriate if statement to make them do nothing Philip Blakely (LSC) Optimization 5 / 25

6 Race conditions If your code occasionally gives errors or gives different results for the same input, you ve probably got a race condition, i.e. the final state of code is dependent on order of execution of threads/blocks. Avoiding race conditions Never assume thread blocks are executed in a particular order Distinct thread blocks should not depend on each other s results Best approach is for a kernel to take data from one global array and compute a result into another array. Do not use the same array for input and output. Philip Blakely (LSC) Optimization 6 / 25

7 Global memory race conditions Usually occur when two or more threads update global memory value independently No guarantee in which order they will occur No guarantee which will succeed General rule: Avoid updating same global memory location from distinct threads (Unless you use atomic instructions, in which case you may have performance problems instead.) Philip Blakely (LSC) Optimization 7 / 25

8 Shared memory race conditions Occur when distinct threads within a thread-block update single shared memory location independently These can be overcome by correct use of syncthreads() Ensures that all threads in block have reached same point in kernel General advice: When using shared memory, check use of syncthreads() It may be possible to avoid some of this due to threads in the same warp advancing in lock-step. Philip Blakely (LSC) Optimization 8 / 25

9 Volatile variables In the absence of syncthreads() etc. the compiler is free to assume that no other thread will update a memory location It can therefore assume that adjacent reads give the same value and can reuse a previous value without rereading memory To avoid this, use volatile: volatile float avol = a; float tmp1 = a[i]; // Some calculation... float tmp2 = a[i]; Without volatile, compiler may/will only issue one memory-read instruction, even if in practice it might have been updated by another thread. Philip Blakely (LSC) Optimization 9 / 25

10 Basic debugging Often the easiest form of debugging is printf statements This is allowed in CUDA for compute capability 2.x Output for all printf statements encountered will be emitted on host No guarantee about which order print statements will occur in from different threads The output buffer is of limited size (1MB), and is dumped to screen at kernel launch or at cudadevicesynchronize() If the buffer fills up, further output will overwrite the earliest output The buffer size can be increased using cudadevicesetlimit() This feature should therefore only be used as a quick-and-dirty debugging tool. Upshot: printf may be helpful but abscence of output does not imply absence of thread reaching a particular point. Philip Blakely (LSC) Optimization 10 / 25

11 Use of a debugger The cuda-gdb debugger is an extension of gdb Need to compile with -g -G options Allows explicit switching between threads/blocks and checking of values Allows stepping through kernels line-by-line Not part of the practicals, as I ve had problems using it in the past, and it locks up the compute card which a kernel is being debugged. See /lsc/opt/cuda-8.0/doc/pdf/cuda-gdb.pdf Philip Blakely (LSC) Optimization 11 / 25

12 cuda-memcheck In a similar way to valgrind, cuda-memcheck can check for simple out-of-bounds memory access. Ill-formed CUDA program global void f(float a, int N) { int idx = blockdim.x blockidx.x + threadidx.x; } a[idx] = sinf(idx); Philip Blakely (LSC) Optimization 12 / 25

13 Memcheck output cuda-memcheck output ========= CUDA-MEMCHECK ========= Invalid global write of size 4 ========= at 0x in f ========= by thread (32,0,0) in block (2,0) ========= Address 0x is out of bounds ========= ========= ERROR SUMMARY: 1 error See /lsc/opt/cuda-8.0/doc/pdf/cuda Memcheck.pdf Philip Blakely (LSC) Optimization 13 / 25

14 Memcheck continued memcheck is capable of a large number of checks: Out-of-bounds access check Malloc/free error-checks CUDA API checks (although you should be doing this anyway) Memory leaks Race condition checks (tool=--racecheck) Philip Blakely (LSC) Optimization 14 / 25

15 CUDA features CUDA features miscellancy: Textures Warp-vote functions Atomic operations Streams Philip Blakely (LSC) Optimization 15 / 25

16 Textures Textures are 1D, 2D, or 3D constant arrays composed of 1,2, or 4 elements which are 8-bit, 16-bit, or 32-bit integers or floats. Provide some performance advantages Can linearly interpolate floating point values Can deal gracefully with out-of-range indexes Terminology and reason for existence obviously left over from graphics Can be useful for some applications Philip Blakely (LSC) Optimization 16 / 25

17 Textures - example application MRI scanners produce visualization of e.g. tumours Need to match-up images taken at different times Use Medial Image Registration to find transformation to map new image onto old one Automatically optimizes transformation parameters by computing distance function between images and minimizing it Determiniation of distance-function very compute-intensive Ansorge et al. used CUDA with texture-arrays to give speed-up of 750. (Disclaimer: serial code was unoptimal!) Philip Blakely (LSC) Optimization 17 / 25

18 Textures - allocation At file-scope: texture<int4, 2, cudareadmodeelementtype> pictexture; In main program: cudachannelformatdesc chandes = cudacreatechanneldesc<float4>(); cudaarray picarray; cudamallocarray(&picarray, &chandesc, width, height); Can now access the CUDA array as a texture within kernel: int4 pixel = tex2d(pictexture, xtrans, ytrans); Philip Blakely (LSC) Optimization 18 / 25

19 Textures - setting attributes Can set various attributes for accessing texture pictexture.addressmode[0] = cudaaddressmodewrap; pictexture.addressmode[1] = cudaaddressmodewrap; pictexture.filtermode = cudafiltermodepoint; pictexture.normalized = true; // access with floating point texture coordinates Normalized: true - Access using [0, 1] coordinates false - Access using integer [0, N 1] coordinates Wrap/Clamp bounds Wrap - wrap out-of-bounds coordinates to other side Clamp - clamp out-of-bounds coordinates to nearest end of range Filter mode: cudafiltermodepoint - just access exact memory value cudafiltermodelinear - perform (9-bit) linear interpolation Philip Blakely (LSC) Optimization 19 / 25

20 Warp vote functions The following functions allow communication between all threads in a single warp (32 threads): int all(int predicate); returns non-zero value iff predicate is non-zero on all active threads in the warp. int any(int predicate); returns non-zero value iff predicate is non-zero on at least one (active) thread in the warp. Philip Blakely (LSC) Optimization 20 / 25

21 Warp vote functions ctd. unsigned int ballot(int predicate); returns an integer whose Nth bit is set iff predicate is non-zero on thread N. Note that an unsigned int has 32 bits and there are 32 threads in a warp. Philip Blakely (LSC) Optimization 21 / 25

22 Warp-size note Kepler Tuning Guide.pdf Warp-synchronous programs are unsafe and easily broken by evolutionary improvements to the optimization strategies used by the CUDA compiler toolchain. Such programs also tend to assume that the warp size is 32 threads, which may not necessarily be the case for all future CUDA-capable architectures. Therefore, programmers should avoid warp-synchronous programming to ensure future-proof correctness in CUDA applications. On the other hand, the pre-processing WARP SIZE is available, and you could raise a compile-time error if this is not 32. Philip Blakely (LSC) Optimization 22 / 25

23 Atomic functions In machine-code, an instruction such as i += 1 where i is in global or shared memory requires three instructions: Read i into a register Increment i Write i back to memory which results in a potential race condition. atomicadd(&i, 1); only uses one instruction for global/shared memory Other atomic instructions: atomicsub(), atomicexch(),... Example use: Keep a count of how many thread-blocks have completed. Nearly avoids global memory access issue - but you still don t know what order updates will occur in Only available for integer and 32-bit float operations except for atomicadd() for 64-bit floats on Pascal archiecture (CC 6.0). Philip Blakely (LSC) Optimization 23 / 25

24 Streams Kernels can be run concurrently on latest Fermi and Kepler GPUs Done via streams Each stream is independent - no communication between them possible Any attempt at communication between streams via GPU memory very likely to give race conditions, with no way to rationalize them. Philip Blakely (LSC) Optimization 24 / 25

25 Streams ctd. Streams example for( int i = 0; i < 2; i++) cudastreamcreate(&stream[i]); for( int i = 0; i < 2 ; i++) f<<<100, 200, 0, stream[i]>>>(myarray[i]); If possible, the two calls of f will execute concurrently, on separate data. To synchronize all kernel calls and memory copies for a stream: cudastreamsynchronize() To make sure all streams have completed: cudathreadsynchronize() To destroy streams: cudastreamdestroy(stream[i]) Philip Blakely (LSC) Optimization 25 / 25

Introduction to CUDA C

Introduction to CUDA C Introduction to CUDA C What will you learn today? Start from Hello, World! Write and launch CUDA C kernels Manage GPU memory Run parallel kernels in CUDA C Parallel communication and synchronization Race

More information

Introduction to CUDA C

Introduction to CUDA C NVIDIA GPU Technology Introduction to CUDA C Samuel Gateau Seoul December 16, 2010 Who should you thank for this talk? Jason Sanders Senior Software Engineer, NVIDIA Co-author of CUDA by Example What is

More information

Class. Windows and CUDA : Shu Guo. Program from last time: Constant memory

Class. Windows and CUDA : Shu Guo. Program from last time: Constant memory Class Windows and CUDA : Shu Guo Program from last time: Constant memory Windows on CUDA Reference: NVIDIA CUDA Getting Started Guide for Microsoft Windows Whiting School has Visual Studio Cuda 5.5 Installer

More information

Programming with CUDA

Programming with CUDA Programming with CUDA Jens K. Mueller jkm@informatik.uni-jena.de Department of Mathematics and Computer Science Friedrich-Schiller-University Jena Tuesday 19 th April, 2011 Today s lecture: Synchronization

More information

CUDA C Programming Mark Harris NVIDIA Corporation

CUDA C Programming Mark Harris NVIDIA Corporation CUDA C Programming Mark Harris NVIDIA Corporation Agenda Tesla GPU Computing CUDA Fermi What is GPU Computing? Introduction to Tesla CUDA Architecture Programming & Memory Models Programming Environment

More information

Atomic Operations. Atomic operations, fast reduction. GPU Programming. Szénási Sándor.

Atomic Operations. Atomic operations, fast reduction. GPU Programming.   Szénási Sándor. Atomic Operations Atomic operations, fast reduction GPU Programming http://cuda.nik.uni-obuda.hu Szénási Sándor szenasi.sandor@nik.uni-obuda.hu GPU Education Center of Óbuda University ATOMIC OPERATIONS

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 35 Course outline Introduction to GPU hardware

More information

ECE 408 / CS 483 Final Exam, Fall 2014

ECE 408 / CS 483 Final Exam, Fall 2014 ECE 408 / CS 483 Final Exam, Fall 2014 Thursday 18 December 2014 8:00 to 11:00 Central Standard Time You may use any notes, books, papers, or other reference materials. In the interest of fair access across

More information

CS 179: GPU Computing. Lecture 2: The Basics

CS 179: GPU Computing. Lecture 2: The Basics CS 179: GPU Computing Lecture 2: The Basics Recap Can use GPU to solve highly parallelizable problems Performance benefits vs. CPU Straightforward extension to C language Disclaimer Goal for Week 1: Fast-paced

More information

Parallel Programming and Debugging with CUDA C. Geoff Gerfin Sr. System Software Engineer

Parallel Programming and Debugging with CUDA C. Geoff Gerfin Sr. System Software Engineer Parallel Programming and Debugging with CUDA C Geoff Gerfin Sr. System Software Engineer CUDA - NVIDIA s Architecture for GPU Computing Broad Adoption Over 250M installed CUDA-enabled GPUs GPU Computing

More information

Introduction to CUDA CME343 / ME May James Balfour [ NVIDIA Research

Introduction to CUDA CME343 / ME May James Balfour [ NVIDIA Research Introduction to CUDA CME343 / ME339 18 May 2011 James Balfour [ jbalfour@nvidia.com] NVIDIA Research CUDA Programing system for machines with GPUs Programming Language Compilers Runtime Environments Drivers

More information

Outline 2011/10/8. Memory Management. Kernels. Matrix multiplication. CIS 565 Fall 2011 Qing Sun

Outline 2011/10/8. Memory Management. Kernels. Matrix multiplication. CIS 565 Fall 2011 Qing Sun Outline Memory Management CIS 565 Fall 2011 Qing Sun sunqing@seas.upenn.edu Kernels Matrix multiplication Managing Memory CPU and GPU have separate memory spaces Host (CPU) code manages device (GPU) memory

More information

CUDA Odds and Ends. Joseph Kider University of Pennsylvania CIS Fall 2011

CUDA Odds and Ends. Joseph Kider University of Pennsylvania CIS Fall 2011 CUDA Odds and Ends Joseph Kider University of Pennsylvania CIS 565 - Fall 2011 Sources Patrick Cozzi Spring 2011 NVIDIA CUDA Programming Guide CUDA by Example Programming Massively Parallel Processors

More information

Textures & Surfaces CUDA Webinar Gernot Ziegler, Developer Technology (Compute)

Textures & Surfaces CUDA Webinar Gernot Ziegler, Developer Technology (Compute) Textures & Surfaces CUDA Webinar Gernot Ziegler, Developer Technology (Compute) Outline Intro to Texturing and Texture Unit CUDA Array Storage Textures in CUDA C (Setup, Binding Modes, Coordinates) Texture

More information

CUDA Odds and Ends. Administrivia. Administrivia. Agenda. Patrick Cozzi University of Pennsylvania CIS Spring Assignment 5.

CUDA Odds and Ends. Administrivia. Administrivia. Agenda. Patrick Cozzi University of Pennsylvania CIS Spring Assignment 5. Administrivia CUDA Odds and Ends Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2011 Assignment 5 Handed out Wednesday, 03/16 Due Friday, 03/25 Project One page pitch due Sunday, 03/20, at 11:59pm

More information

CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci

CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci TECHNISCHE UNIVERSITÄT WIEN Fakultät für Informatik Cyber-Physical Systems Group CUDA Programming (Basics, Cuda Threads, Atomics) Ezio Bartocci Outline of CUDA Basics Basic Kernels and Execution on GPU

More information

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Basic Elements of CUDA Algoritmi e Calcolo Parallelo References q This set of slides is mainly based on: " CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory " Slide of

More information

Scientific discovery, analysis and prediction made possible through high performance computing.

Scientific discovery, analysis and prediction made possible through high performance computing. Scientific discovery, analysis and prediction made possible through high performance computing. An Introduction to GPGPU Programming Bob Torgerson Arctic Region Supercomputing Center November 21 st, 2013

More information

PANOPTES: A BINARY TRANSLATION FRAMEWORK FOR CUDA. Chris Kennelly D. E. Shaw Research

PANOPTES: A BINARY TRANSLATION FRAMEWORK FOR CUDA. Chris Kennelly D. E. Shaw Research PANOPTES: A BINARY TRANSLATION FRAMEWORK FOR CUDA Chris Kennelly D. E. Shaw Research Outline The Motivating Problems Binary Translation as a Solution Results of Panoptes Future Work My Story: Buffer Ping-Ponging

More information

CUDA C/C++ BASICS. NVIDIA Corporation

CUDA C/C++ BASICS. NVIDIA Corporation CUDA C/C++ BASICS NVIDIA Corporation What is CUDA? CUDA Architecture Expose GPU parallelism for general-purpose computing Retain performance CUDA C/C++ Based on industry-standard C/C++ Small set of extensions

More information

CUDA C/C++ BASICS. NVIDIA Corporation

CUDA C/C++ BASICS. NVIDIA Corporation CUDA C/C++ BASICS NVIDIA Corporation What is CUDA? CUDA Architecture Expose GPU parallelism for general-purpose computing Retain performance CUDA C/C++ Based on industry-standard C/C++ Small set of extensions

More information

Lecture 6. Programming with Message Passing Message Passing Interface (MPI)

Lecture 6. Programming with Message Passing Message Passing Interface (MPI) Lecture 6 Programming with Message Passing Message Passing Interface (MPI) Announcements 2011 Scott B. Baden / CSE 262 / Spring 2011 2 Finish CUDA Today s lecture Programming with message passing 2011

More information

Massively Parallel Algorithms

Massively Parallel Algorithms Massively Parallel Algorithms Introduction to CUDA & Many Fundamental Concepts of Parallel Programming G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de Hybrid/Heterogeneous Computation/Architecture

More information

CUDA Memory Hierarchy

CUDA Memory Hierarchy CUDA Memory Hierarchy Piotr Danilewski October 2012 Saarland University Memory GTX 690 GTX 690 Memory host memory main GPU memory (global memory) shared memory caches registers Memory host memory GPU global

More information

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Graph Search

CSE 599 I Accelerated Computing - Programming GPUS. Parallel Patterns: Graph Search CSE 599 I Accelerated Computing - Programming GPUS Parallel Patterns: Graph Search Objective Study graph search as a prototypical graph-based algorithm Learn techniques to mitigate the memory-bandwidth-centric

More information

CUDA Performance Optimization. Patrick Legresley

CUDA Performance Optimization. Patrick Legresley CUDA Performance Optimization Patrick Legresley Optimizations Kernel optimizations Maximizing global memory throughput Efficient use of shared memory Minimizing divergent warps Intrinsic instructions Optimizations

More information

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS

CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS CS 179: GPU Computing LECTURE 4: GPU MEMORY SYSTEMS 1 Last time Each block is assigned to and executed on a single streaming multiprocessor (SM). Threads execute in groups of 32 called warps. Threads in

More information

CUDA Performance Considerations (2 of 2) Varun Sampath Original Slides by Patrick Cozzi University of Pennsylvania CIS Spring 2012

CUDA Performance Considerations (2 of 2) Varun Sampath Original Slides by Patrick Cozzi University of Pennsylvania CIS Spring 2012 CUDA Performance Considerations (2 of 2) Varun Sampath Original Slides by Patrick Cozzi University of Pennsylvania CIS 565 - Spring 2012 Agenda Instruction Optimizations Mixed Instruction Types Loop Unrolling

More information

GPU Programming Using CUDA. Samuli Laine NVIDIA Research

GPU Programming Using CUDA. Samuli Laine NVIDIA Research GPU Programming Using CUDA Samuli Laine NVIDIA Research Today GPU vs CPU Different architecture, different workloads Basics of CUDA Executing code on GPU Managing memory between CPU and GPU CUDA API Quick

More information

Information Coding / Computer Graphics, ISY, LiTH. CUDA memory! ! Coalescing!! Constant memory!! Texture memory!! Pinned memory 26(86)

Information Coding / Computer Graphics, ISY, LiTH. CUDA memory! ! Coalescing!! Constant memory!! Texture memory!! Pinned memory 26(86) 26(86) Information Coding / Computer Graphics, ISY, LiTH CUDA memory Coalescing Constant memory Texture memory Pinned memory 26(86) CUDA memory We already know... Global memory is slow. Shared memory is

More information

CS/CoE 1541 Final exam (Fall 2017). This is the cumulative final exam given in the Fall of Question 1 (12 points): was on Chapter 4

CS/CoE 1541 Final exam (Fall 2017). This is the cumulative final exam given in the Fall of Question 1 (12 points): was on Chapter 4 CS/CoE 1541 Final exam (Fall 2017). Name: This is the cumulative final exam given in the Fall of 2017. Question 1 (12 points): was on Chapter 4 Question 2 (13 points): was on Chapter 4 For Exam 2, you

More information

High Performance Linear Algebra on Data Parallel Co-Processors I

High Performance Linear Algebra on Data Parallel Co-Processors I 926535897932384626433832795028841971693993754918980183 592653589793238462643383279502884197169399375491898018 415926535897932384626433832795028841971693993754918980 592653589793238462643383279502884197169399375491898018

More information

GPU Programming. Alan Gray, James Perry EPCC The University of Edinburgh

GPU Programming. Alan Gray, James Perry EPCC The University of Edinburgh GPU Programming EPCC The University of Edinburgh Contents NVIDIA CUDA C Proprietary interface to NVIDIA architecture CUDA Fortran Provided by PGI OpenCL Cross platform API 2 NVIDIA CUDA CUDA allows NVIDIA

More information

Writing and compiling a CUDA code

Writing and compiling a CUDA code Writing and compiling a CUDA code Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) Writing CUDA code 1 / 65 The CUDA language If we want fast code, we (unfortunately)

More information

Shared Memory and Synchronizations

Shared Memory and Synchronizations and Synchronizations Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics Technology SM can be accessed by all threads within a block (but not across blocks) Threads within a block can

More information

CS 179: GPU Computing. Recitation 2: Synchronization, Shared memory, Matrix Transpose

CS 179: GPU Computing. Recitation 2: Synchronization, Shared memory, Matrix Transpose CS 179: GPU Computing Recitation 2: Synchronization, Shared memory, Matrix Transpose Synchronization Ideal case for parallelism: no resources shared between threads no communication between threads Many

More information

Programming with CUDA WS 08/09. Lecture 7 Thu, 13 Nov, 2008

Programming with CUDA WS 08/09. Lecture 7 Thu, 13 Nov, 2008 Programming with CUDA WS 08/09 Lecture 7 Thu, 13 Nov, 2008 Previously CUDA Runtime Common Built-in vector types Math functions Timing Textures Texture fetch Texture reference Texture read modes Normalized

More information

Programming with CUDA, WS09

Programming with CUDA, WS09 Programming with CUDA and Parallel Algorithms Waqar Saleem Jens Müller Lecture 3 Thursday, 29 Nov, 2009 Recap Motivational videos Example kernel Thread IDs Memory overhead CUDA hardware and programming

More information

CUDA Kenjiro Taura 1 / 36

CUDA Kenjiro Taura 1 / 36 CUDA Kenjiro Taura 1 / 36 Contents 1 Overview 2 CUDA Basics 3 Kernels 4 Threads and thread blocks 5 Moving data between host and device 6 Data sharing among threads in the device 2 / 36 Contents 1 Overview

More information

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1

Lecture 15: Introduction to GPU programming. Lecture 15: Introduction to GPU programming p. 1 Lecture 15: Introduction to GPU programming Lecture 15: Introduction to GPU programming p. 1 Overview Hardware features of GPGPU Principles of GPU programming A good reference: David B. Kirk and Wen-mei

More information

CUDA Parallel Programming Model. Scalable Parallel Programming with CUDA

CUDA Parallel Programming Model. Scalable Parallel Programming with CUDA CUDA Parallel Programming Model Scalable Parallel Programming with CUDA Some Design Goals Scale to 100s of cores, 1000s of parallel threads Let programmers focus on parallel algorithms not mechanics of

More information

ECE 574 Cluster Computing Lecture 17

ECE 574 Cluster Computing Lecture 17 ECE 574 Cluster Computing Lecture 17 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 March 2019 HW#8 (CUDA) posted. Project topics due. Announcements 1 CUDA installing On Linux

More information

CUDA Parallel Programming Model Michael Garland

CUDA Parallel Programming Model Michael Garland CUDA Parallel Programming Model Michael Garland NVIDIA Research Some Design Goals Scale to 100s of cores, 1000s of parallel threads Let programmers focus on parallel algorithms not mechanics of a parallel

More information

GPU Programming. CUDA Memories. Miaoqing Huang University of Arkansas Spring / 43

GPU Programming. CUDA Memories. Miaoqing Huang University of Arkansas Spring / 43 1 / 43 GPU Programming CUDA Memories Miaoqing Huang University of Arkansas Spring 2016 2 / 43 Outline CUDA Memories Atomic Operations 3 / 43 Hardware Implementation of CUDA Memories Each thread can: Read/write

More information

Hardware/Software Co-Design

Hardware/Software Co-Design 1 / 13 Hardware/Software Co-Design Review so far Miaoqing Huang University of Arkansas Fall 2011 2 / 13 Problem I A student mentioned that he was able to multiply two 1,024 1,024 matrices using a tiled

More information

Advanced CUDA Optimizations. Umar Arshad ArrayFire

Advanced CUDA Optimizations. Umar Arshad ArrayFire Advanced CUDA Optimizations Umar Arshad (@arshad_umar) ArrayFire (@arrayfire) ArrayFire World s leading GPU experts In the industry since 2007 NVIDIA Partner Deep experience working with thousands of customers

More information

Lecture 11: GPU programming

Lecture 11: GPU programming Lecture 11: GPU programming David Bindel 4 Oct 2011 Logistics Matrix multiply results are ready Summary on assignments page My version (and writeup) on CMS HW 2 due Thursday Still working on project 2!

More information

CME 213 S PRING Eric Darve

CME 213 S PRING Eric Darve CME 213 S PRING 2017 Eric Darve Review Secret behind GPU performance: simple cores but a large number of them; even more threads can exist live on the hardware (10k 20k threads live). Important performance

More information

CUDA Advanced Techniques 3 Mohamed Zahran (aka Z)

CUDA Advanced Techniques 3 Mohamed Zahran (aka Z) Some slides are used and slightly modified from: NVIDIA teaching kit CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming CUDA Advanced Techniques 3 Mohamed Zahran (aka Z) mzahran@cs.nyu.edu

More information

Speed Up Your Codes Using GPU

Speed Up Your Codes Using GPU Speed Up Your Codes Using GPU Wu Di and Yeo Khoon Seng (Department of Mechanical Engineering) The use of Graphics Processing Units (GPU) for rendering is well known, but their power for general parallel

More information

COSC 462 Parallel Programming

COSC 462 Parallel Programming November 22, 2017 1/12 COSC 462 Parallel Programming CUDA Beyond Basics Piotr Luszczek Mixing Blocks and Threads int N = 100, SN = N * sizeof(double); global void sum(double *a, double *b, double *c) {

More information

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17

CUDA Lecture 2. Manfred Liebmann. Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 CUDA Lecture 2 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de December 15, 2015 CUDA Programming Fundamentals CUDA

More information

CUDA C/C++ Basics GTC 2012 Justin Luitjens, NVIDIA Corporation

CUDA C/C++ Basics GTC 2012 Justin Luitjens, NVIDIA Corporation CUDA C/C++ Basics GTC 2012 Justin Luitjens, NVIDIA Corporation What is CUDA? CUDA Platform Expose GPU computing for general purpose Retain performance CUDA C/C++ Based on industry-standard C/C++ Small

More information

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture

An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture An Introduction to GPGPU Pro g ra m m ing - CUDA Arc hitec ture Rafia Inam Mälardalen Real-Time Research Centre Mälardalen University, Västerås, Sweden http://www.mrtc.mdh.se rafia.inam@mdh.se CONTENTS

More information

GPU CUDA Programming

GPU CUDA Programming GPU CUDA Programming 이정근 (Jeong-Gun Lee) 한림대학교컴퓨터공학과, 임베디드 SoC 연구실 www.onchip.net Email: Jeonggun.Lee@hallym.ac.kr ALTERA JOINT LAB Introduction 차례 Multicore/Manycore and GPU GPU on Medical Applications

More information

CUDA Programming. Week 1. Basic Programming Concepts Materials are copied from the reference list

CUDA Programming. Week 1. Basic Programming Concepts Materials are copied from the reference list CUDA Programming Week 1. Basic Programming Concepts Materials are copied from the reference list G80/G92 Device SP: Streaming Processor (Thread Processors) SM: Streaming Multiprocessor 128 SP grouped into

More information

CUDA PROGRAMMING MODEL. Carlo Nardone Sr. Solution Architect, NVIDIA EMEA

CUDA PROGRAMMING MODEL. Carlo Nardone Sr. Solution Architect, NVIDIA EMEA CUDA PROGRAMMING MODEL Carlo Nardone Sr. Solution Architect, NVIDIA EMEA CUDA: COMMON UNIFIED DEVICE ARCHITECTURE Parallel computing architecture and programming model GPU Computing Application Includes

More information

Lecture 8: GPU Programming. CSE599G1: Spring 2017

Lecture 8: GPU Programming. CSE599G1: Spring 2017 Lecture 8: GPU Programming CSE599G1: Spring 2017 Announcements Project proposal due on Thursday (4/28) 5pm. Assignment 2 will be out today, due in two weeks. Implement GPU kernels and use cublas library

More information

CSE 591: GPU Programming. Using CUDA in Practice. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591: GPU Programming. Using CUDA in Practice. Klaus Mueller. Computer Science Department Stony Brook University CSE 591: GPU Programming Using CUDA in Practice Klaus Mueller Computer Science Department Stony Brook University Code examples from Shane Cook CUDA Programming Related to: score boarding load and store

More information

CUDA OPTIMIZATIONS ISC 2011 Tutorial

CUDA OPTIMIZATIONS ISC 2011 Tutorial CUDA OPTIMIZATIONS ISC 2011 Tutorial Tim C. Schroeder, NVIDIA Corporation Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Information Coding / Computer Graphics, ISY, LiTH. Introduction to CUDA. Ingemar Ragnemalm Information Coding, ISY

Information Coding / Computer Graphics, ISY, LiTH. Introduction to CUDA. Ingemar Ragnemalm Information Coding, ISY Introduction to CUDA Ingemar Ragnemalm Information Coding, ISY This lecture: Programming model and language Memory spaces and memory access Shared memory Examples Lecture questions: 1. Suggest two significant

More information

Review. Lecture 10. Today s Outline. Review. 03b.cu. 03?.cu CUDA (II) Matrix addition CUDA-C API

Review. Lecture 10. Today s Outline. Review. 03b.cu. 03?.cu CUDA (II) Matrix addition CUDA-C API Review Lecture 10 CUDA (II) host device CUDA many core processor threads thread blocks grid # threads >> # of cores to be efficient Threads within blocks can cooperate Threads between thread blocks cannot

More information

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono

Basic Elements of CUDA Algoritmi e Calcolo Parallelo. Daniele Loiacono Basic Elements of CUDA Algoritmi e Calcolo Parallelo References This set of slides is mainly based on: CUDA Technical Training, Dr. Antonino Tumeo, Pacific Northwest National Laboratory Slide of Applied

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

Cartoon parallel architectures; CPUs and GPUs

Cartoon parallel architectures; CPUs and GPUs Cartoon parallel architectures; CPUs and GPUs CSE 6230, Fall 2014 Th Sep 11! Thanks to Jee Choi (a senior PhD student) for a big assist 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ~ socket 14 ~ core 14 ~ HWMT+SIMD

More information

ECE 574 Cluster Computing Lecture 15

ECE 574 Cluster Computing Lecture 15 ECE 574 Cluster Computing Lecture 15 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 30 March 2017 HW#7 (MPI) posted. Project topics due. Update on the PAPI paper Announcements

More information

EEM528 GPU COMPUTING

EEM528 GPU COMPUTING EEM528 CS 193G GPU COMPUTING Lecture 2: GPU History & CUDA Programming Basics Slides Credit: Jared Hoberock & David Tarjan CS 193G History of GPUs Graphics in a Nutshell Make great images intricate shapes

More information

GPU Programming Using CUDA. Samuli Laine NVIDIA Research

GPU Programming Using CUDA. Samuli Laine NVIDIA Research GPU Programming Using CUDA Samuli Laine NVIDIA Research Today GPU vs CPU Different architecture, different workloads Basics of CUDA Executing code on GPU Managing memory between CPU and GPU CUDA API Quick

More information

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series Introduction to GPU Computing Using CUDA Spring 2014 Westgid Seminar Series Scott Northrup SciNet www.scinethpc.ca (Slides http://support.scinet.utoronto.ca/ northrup/westgrid CUDA.pdf) March 12, 2014

More information

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series

Introduction to GPU Computing Using CUDA. Spring 2014 Westgid Seminar Series Introduction to GPU Computing Using CUDA Spring 2014 Westgid Seminar Series Scott Northrup SciNet www.scinethpc.ca March 13, 2014 Outline 1 Heterogeneous Computing 2 GPGPU - Overview Hardware Software

More information

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5)

CUDA programming model. N. Cardoso & P. Bicudo. Física Computacional (FC5) CUDA programming model N. Cardoso & P. Bicudo Física Computacional (FC5) N. Cardoso & P. Bicudo CUDA programming model 1/23 Outline 1 CUDA qualifiers 2 CUDA Kernel Thread hierarchy Kernel, configuration

More information

Lecture 2: Introduction to CUDA C

Lecture 2: Introduction to CUDA C CS/EE 217 GPU Architecture and Programming Lecture 2: Introduction to CUDA C David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2013 1 CUDA /OpenCL Execution Model Integrated host+device app C program Serial or

More information

Data Parallel Execution Model

Data Parallel Execution Model CS/EE 217 GPU Architecture and Parallel Programming Lecture 3: Kernel-Based Data Parallel Execution Model David Kirk/NVIDIA and Wen-mei Hwu, 2007-2013 Objective To understand the organization and scheduling

More information

Information Coding / Computer Graphics, ISY, LiTH. More memory! ! Managed memory!! Atomics!! Pinned memory 25(85)

Information Coding / Computer Graphics, ISY, LiTH. More memory! ! Managed memory!! Atomics!! Pinned memory 25(85) 25(85) Information Coding / Computer Graphics, ISY, LiTH More memory Managed memory Atomics Pinned memory 25(85) Managed memory Makes read/write memory as easy as constant New, simpler Hello World #include

More information

An Introduction to GPU Computing and CUDA Architecture

An Introduction to GPU Computing and CUDA Architecture An Introduction to GPU Computing and CUDA Architecture Sarah Tariq, NVIDIA Corporation GPU Computing GPU: Graphics Processing Unit Traditionally used for real-time rendering High computational density

More information

Module 2: Introduction to CUDA C

Module 2: Introduction to CUDA C ECE 8823A GPU Architectures Module 2: Introduction to CUDA C 1 Objective To understand the major elements of a CUDA program Introduce the basic constructs of the programming model Illustrate the preceding

More information

Introduction to GPU Computing Junjie Lai, NVIDIA Corporation

Introduction to GPU Computing Junjie Lai, NVIDIA Corporation Introduction to GPU Computing Junjie Lai, NVIDIA Corporation Outline Evolution of GPU Computing Heterogeneous Computing CUDA Execution Model & Walkthrough of Hello World Walkthrough : 1D Stencil Once upon

More information

Mathematical computations with GPUs

Mathematical computations with GPUs Master Educational Program Information technology in applications Mathematical computations with GPUs CUDA Alexey A. Romanenko arom@ccfit.nsu.ru Novosibirsk State University CUDA - Compute Unified Device

More information

Module 2: Introduction to CUDA C. Objective

Module 2: Introduction to CUDA C. Objective ECE 8823A GPU Architectures Module 2: Introduction to CUDA C 1 Objective To understand the major elements of a CUDA program Introduce the basic constructs of the programming model Illustrate the preceding

More information

CUDA Parallelism Model

CUDA Parallelism Model GPU Teaching Kit Accelerated Computing CUDA Parallelism Model Kernel-Based SPMD Parallel Programming Multidimensional Kernel Configuration Color-to-Grayscale Image Processing Example Image Blur Example

More information

Administrative. L8: Writing Correct Programs, cont. and Control Flow. Questions/comments from previous lectures. Outline 2/10/11

Administrative. L8: Writing Correct Programs, cont. and Control Flow. Questions/comments from previous lectures. Outline 2/10/11 Administrative L8 Writing Correct Programs, cont. and Control Flow Next assignment available Goals of assignment simple memory hierarchy management block-thread decomposition tradeoff Due Thursday, Feb.

More information

ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications

ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications ECE/ME/EMA/CS 759 High Performance Computing for Engineering Applications The NVIDIA GPU Memory Ecosystem Atomic operations in CUDA The thrust library October 7, 2015 Dan Negrut, 2015 ECE/ME/EMA/CS 759

More information

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming

Overview. Lecture 1: an introduction to CUDA. Hardware view. Hardware view. hardware view software view CUDA programming Overview Lecture 1: an introduction to CUDA Mike Giles mike.giles@maths.ox.ac.uk hardware view software view Oxford University Mathematical Institute Oxford e-research Centre Lecture 1 p. 1 Lecture 1 p.

More information

Pinned-Memory. Table of Contents. Streams Learning CUDA to Solve Scientific Problems. Objectives. Technical Issues Stream. Pinned-memory.

Pinned-Memory. Table of Contents. Streams Learning CUDA to Solve Scientific Problems. Objectives. Technical Issues Stream. Pinned-memory. Table of Contents Streams Learning CUDA to Solve Scientific Problems. 1 Objectives Miguel Cárdenas Montes Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain miguel.cardenas@ciemat.es

More information

Practical Introduction to CUDA and GPU

Practical Introduction to CUDA and GPU Practical Introduction to CUDA and GPU Charlie Tang Centre for Theoretical Neuroscience October 9, 2009 Overview CUDA - stands for Compute Unified Device Architecture Introduced Nov. 2006, a parallel computing

More information

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam Convolution Soup: A case study in CUDA optimization The Fairmont San Jose 10:30 AM Friday October 2, 2009 Joe Stam Optimization GPUs are very fast BUT Naïve programming can result in disappointing performance

More information

April 4-7, 2016 Silicon Valley. CUDA DEBUGGING TOOLS IN CUDA8 Vyas Venkataraman, Kudbudeen Jalaludeen, April 6, 2016

April 4-7, 2016 Silicon Valley. CUDA DEBUGGING TOOLS IN CUDA8 Vyas Venkataraman, Kudbudeen Jalaludeen, April 6, 2016 April 4-7, 2016 Silicon Valley CUDA DEBUGGING TOOLS IN CUDA8 Vyas Venkataraman, Kudbudeen Jalaludeen, April 6, 2016 AGENDA General debugging approaches Cuda-gdb Demo 2 CUDA API CHECKING CUDA calls are

More information

CS 179: GPU Programming. Lecture 7

CS 179: GPU Programming. Lecture 7 CS 179: GPU Programming Lecture 7 Week 3 Goals: More involved GPU-accelerable algorithms Relevant hardware quirks CUDA libraries Outline GPU-accelerated: Reduction Prefix sum Stream compaction Sorting(quicksort)

More information

CS179 GPU Programming Recitation 4: CUDA Particles

CS179 GPU Programming Recitation 4: CUDA Particles Recitation 4: CUDA Particles Lab 4 CUDA Particle systems Two parts Simple repeat of Lab 3 Interacting Flocking simulation 2 Setup Two folders given particles_simple, particles_interact Must install NVIDIA_CUDA_SDK

More information

CUDA Architecture & Programming Model

CUDA Architecture & Programming Model CUDA Architecture & Programming Model Course on Multi-core Architectures & Programming Oliver Taubmann May 9, 2012 Outline Introduction Architecture Generation Fermi A Brief Look Back At Tesla What s New

More information

GPU Fundamentals Jeff Larkin November 14, 2016

GPU Fundamentals Jeff Larkin November 14, 2016 GPU Fundamentals Jeff Larkin , November 4, 206 Who Am I? 2002 B.S. Computer Science Furman University 2005 M.S. Computer Science UT Knoxville 2002 Graduate Teaching Assistant 2005 Graduate

More information

Memory concept. Grid concept, Synchronization. GPU Programming. Szénási Sándor.

Memory concept. Grid concept, Synchronization. GPU Programming.   Szénási Sándor. Memory concept Grid concept, Synchronization GPU Programming http://cuda.nik.uni-obuda.hu Szénási Sándor szenasi.sandor@nik.uni-obuda.hu GPU Education Center of Óbuda University MEMORY CONCEPT Off-chip

More information

Tesla Architecture, CUDA and Optimization Strategies

Tesla Architecture, CUDA and Optimization Strategies Tesla Architecture, CUDA and Optimization Strategies Lan Shi, Li Yi & Liyuan Zhang Hauptseminar: Multicore Architectures and Programming Page 1 Outline Tesla Architecture & CUDA CUDA Programming Optimization

More information

High Performance Computing and GPU Programming

High Performance Computing and GPU Programming High Performance Computing and GPU Programming Lecture 3: GPU Application GPU Intro Review Simple Example Memory Effects GPU Intro Review GPU Intro Review Shared Multiprocessors Global parallelism Assign

More information

TUNING CUDA APPLICATIONS FOR MAXWELL

TUNING CUDA APPLICATIONS FOR MAXWELL TUNING CUDA APPLICATIONS FOR MAXWELL DA-07173-001_v7.0 March 2015 Application Note TABLE OF CONTENTS Chapter 1. Maxwell Tuning Guide... 1 1.1. NVIDIA Maxwell Compute Architecture... 1 1.2. CUDA Best Practices...2

More information

Automatic translation from CUDA to C++ Luca Atzori, Vincenzo Innocente, Felice Pantaleo, Danilo Piparo

Automatic translation from CUDA to C++ Luca Atzori, Vincenzo Innocente, Felice Pantaleo, Danilo Piparo Automatic translation from CUDA to C++ Luca Atzori, Vincenzo Innocente, Felice Pantaleo, Danilo Piparo 31 August, 2015 Goals Running CUDA code on CPUs. Why? Performance portability! A major challenge faced

More information

CUDA Advanced Techniques 2 Mohamed Zahran (aka Z)

CUDA Advanced Techniques 2 Mohamed Zahran (aka Z) CSCI-GA.3033-004 Graphics Processing Units (GPUs): Architecture and Programming CUDA Advanced Techniques 2 Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Alignment Memory Alignment Memory

More information

Introduction to GPU programming. Introduction to GPU programming p. 1/17

Introduction to GPU programming. Introduction to GPU programming p. 1/17 Introduction to GPU programming Introduction to GPU programming p. 1/17 Introduction to GPU programming p. 2/17 Overview GPUs & computing Principles of CUDA programming One good reference: David B. Kirk

More information

Register file. A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks.

Register file. A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks. Sharing the resources of an SM Warp 0 Warp 1 Warp 47 Register file A single large register file (ex. 16K registers) is partitioned among the threads of the dispatched blocks Shared A single SRAM (ex. 16KB)

More information

Zero-copy. Table of Contents. Multi-GPU Learning CUDA to Solve Scientific Problems. Objectives. Technical Issues Zero-copy. Multigpu.

Zero-copy. Table of Contents. Multi-GPU Learning CUDA to Solve Scientific Problems. Objectives. Technical Issues Zero-copy. Multigpu. Table of Contents Multi-GPU Learning CUDA to Solve Scientific Problems. 1 Objectives Miguel Cárdenas Montes 2 Zero-copy Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain

More information