Handout 10: Imperative programs and the Lambda Calculus

Size: px
Start display at page:

Download "Handout 10: Imperative programs and the Lambda Calculus"

Transcription

1 Princ of Progr Languages (and Extended ) The University of Birmingham Spring Semester School of Computer Science c Uday Reddy Handout 10: Imperative programs and the Lambda Calculus Algol-like languages as typed lambda calculi The Algol 60 programming language was defined by an international committee of computer scientists, some of whom were familiar with the lambda calculus Perhaps as a result, the procedure mechanism of Algol 60 was defined along the same lines as that of the lambda calculus Peter Landin 1 showed the correspondence between the two procedure mechanisms a few years later However, the lambda calculus, by itself, expresses only functional programs, not imperative programs John Reynolds 2 proposed that Algol-like languages should be viewed as typed lambda calculi, which share the procedure mechanism of the lambda calculus, but have base types that represent imperative computations (which are not by themselves part of the lambda calculus) His formal language is called Idealized Algol It represents a very satisfying view of Algol-like programming languages, and we examine it in this section 1 Typed lambda calculus We define a typed lambda calculus by first stating its types There will be some collection of basic types, which may be chosen depending on the application one wishes to model Each basic type is a type Whenever T 1 and T 2 are types, T 1 T 2 is a type (It evidently represents the collection of functions from values of type T 1 to those of type T 2 ) One might also add other type constructors to the calculus without upsetting its fundamental structure example: For Whenever T 1,, T n are types (T 1,, T n ) is a type (It evidently represents the collection of tuples whose components are of types T 1,, T n respectively) The terms of a typed lambda calculus have the same surface syntax as that of the (untyped) lambda calculus: M ::= x c λx M M 1 M 2 However, the terms are expected to obey the type rules We omit the details in this handout A functional programming language can be obtained by picking the basic types to be data types such as integer, boolean, character, etc 2 Lambda calculus for imperative programs To obtain a typed imperative programming language, we pick basic types to be those representing imperative programming concepts (cf Handout 9) These are: Mutable variables, also called references, representing storage locations Expressions that read the state of variables and return a value Commands that alter the state of variables Variables, expressions and commands are not treated as types in typical imperative programming languages Rather, they are designated as separate syntactic categories However, to obtain the full power of typed lambda calculus, it is useful to regard them as types The basic data types such as int, bool, and char or not regarded as types of the lambda calculus This is because there are no terms in imperative programming languages that directly denote data values (except constants) Rather, terms denote either mutable variables or expressions, each of which might deal with values of particular data types Let δ stand for types such as int, bool, Then the basic types of the lambda calculus for imperative programs are: 1 Landin, Peter A correspondence between ALGOL 60 and Church s Lambda-notations: Part II, Communications of the ACM, March Reynolds, John The essence of Algol, in Algorithmic Languages, North-Holland, 1981

2 var[δ], also written as ref[δ], for variables that store δ-typed data values exp[δ], for expressions that return δ-typed data values comm, for commands In summary, the types of our lambda calculus for imperative programs is as follows: T ::= var[δ] exp[δ] comm T 1 T 2 3 Terminology: variables and references Note that the term variable in imperative programming refers to storage locations whose values can be modified In contrast, lambda calculus as well as standard mathematics use the term variable for a completely different concept, viz, symbols used to stand for values To avoid conflict between the two uses, Algol 68 introduced the term reference for mutable variables in the sense of imperative programming The terminology does not catch on within the imperative language culture (except in isolated usages like call by reference ) However, it became standard in functional programming culture So, we use both the terms variable and reference for referring to this concept For example, in the term λx x + y of type exp[int] exp[int], the symbol x is a bound identifier and y is a free identifier 4 Constants for imperative programs All the primitive operations of the imperative programs are modelled as constants in our typed lambda calculus We group them into four classes, for ease of exposition: Primitive operations for expressions All the constants and primitive operations needed for data values are expressed as constants that act on exp types Some examples are: 0, 1, 2, :: exp[int] true, false :: exp[bool] +, -, :: exp[int] exp[int] exp[int] =, <, :: exp[int] exp[int] exp[bool] &&, :: exp[bool] exp[bool] exp[bool] not :: exp[bool] exp[bool] The only thing surprising about these types is that they involve the exp type constructor We need the exp type constructor because, in general, the arguments for operations such as + are expressions which can read the state of variables The result of such an application, eg, x + y, is again an expression that is state-dependent Primitive operations that deal with commands These are as follows: skip :: comm seq :: comm comm comm if :: exp[bool] comm comm comm We will use syntactic sugar that makes these operations more convenient to write: C 1 ; C 2 seq C 1 C 2 if B then C 1 else C 2 if B C 1 C 2 Primitive operations that deal with variables These are as follows: read :: var[δ] exp[δ] write :: var[δ] exp[δ] comm The types we assign to these constants are quite important You would find them surprising at first sight However, they are entirely consistent with the normal interpretation of these operations: If V is a variable, then read V is an expression whose effect is to read the value of V and return it If V is a variable and E an expression then write V E is a command whose effect is to evaluate E and assign its value to V

3 We will use the syntactic sugar: V := E write V E To obtain the conventional imperative programming notation, we also treat read as an implicit coercion : Whenever a variable V is used as an expression, we understand it to mean (read V ) Here are some examples of syntactically sugared terms obtained from these conventions: x := x + 1 write x (+ (read x) 1) if x > y then m := x else m := y (if (> (read x) (read y)) (write m (read x)) (write m (read y))) Finally, we have an operation for local variable declarations: local[δ] :: (var[δ] comm) comm This constant is used to desugar local variable declarations as follows: {int x; C} local[int] (λx C) {δ x; C} local[δ] (λx C) The effect of local[δ] B is to create a new local variable for δ-typed values, say V, and then execute B(V ) After B(V ) finishes, the local variable is deallocated Note that this is exactly what we expect from a local variable declaration of the form {δ x; C} In summary, all the behaviour of imperative programs can be modelled using a few primitive functions in terms of the basic types var[δ], exp[δ] and comm 5 Procedures The procedures of Algol-like languages are mapped directly into the functions of lambda calculus For example, the Algol 60 procedure declaration: procedure swap(int x, int y) { int t; t := x; x := y; y := t } is thought of as the definition of a function swap: let swap = λx λy {int t; t := read x; x := read y; y := read t } What is the type of this function? Even though the Algol 60 declaration seems to suggest that the parameters of swap are integers, in reality, they are variables that hold integers, ie, entities of type var[int] in our terminology We can apply swap to two integer variables, say i and j The result of the application (swap i j) is then a command that can be executed as part of a larger command: swap i j; Therefore, the type of swap is: swap : var[int] var[int] comm 6 Semantics of procedure call Prior to Algol 60, the meaning of a procedure such as swap was understood operationally, in terms of machine instructions that would be executed That story might run as follows: 1 Push references to the variables i and j on the system stack 2 Push the program counter on the stack, and jump to the code of swap

4 3 When the code of swap finishes, pop the arguments i and j as well as the saved program counter from the system stack, and jump back to the saved program counter position The definition of Algol 60 put paid to such operational descriptions The semantics of a procedure call, as given in the Algol 60 Report, is to simply copy the body of the procedure to where the procedure call appears, and replace the formal parameters by the arguments, like so: swap i j; = {int t; t := read i; i := read j; j := read t} This semantics came to be known as the Algol copy rule We might also call it procedure unfolding Note that the copy rule is precisely the β-equivalence reduction rule of the lambda calculus 7 Orthogonality of procedures and commands John Reynolds noted that the procedure call mechanism and command execution in Algol 60 are orthogonal, ie, they are independent mechanisms that are both used in the program interpretation, but there is no interference between them More concretely, it means something like this An Algol 60 program is a term C of type comm We can repeatedly unfold all its procedure calls: C = C 1 = C 2 = = C n = This process might go on for ever However, if C has a terminating execution, there will be a finite term in the series, say C n, which can be executed as if it were a simple imperative program Any procedure calls embedded in it will not need to be unfolded, because they will be in conditional branches that are skipped We do not know, in advance, the finite unfolding C n needed for the execution So, in practice, we interleave the unfolding process and the command execution process, and only unfold those procedure calls that are needed for command execution However, orthogonality means that we could in principle unfold all the needed procedure calls in advance, before the command execution begins 8 Call by name The mode of parameter passing in Algol 60 is termed call by name, the same as in lambda calculus That means that the terms denoting the arguments are substituted for formal parameters in the body of the procedure When used in conjunction with imperative programs, the call-by-name parameter passing gives rise to a surprising amount of interference effects 9 Interference between parameters Consider using the swap procedure with arrays Let a be an array of integers, whose component variables are written as a[0], a[1],, and consider a procedure call swap i a[i] Recall that a[i] should be really thought of as a[read i] because i is a variable used in place of an expression and therefore involves the implicit coercion read As per the Algol 60 copy rule, the procedure call swap i (a[read i]) unfolds to the following command: {int t; t := read i; i := read a[read i]; a[read i] := read t } Consider executing this command from an initial state where i = 0, a[0] = 1, a[1] = 2, We might expect that the effect of the procedure call swap i (a[read i]) should be to swap the variables i and a[read i], ie, i should become 1, a[0] should become 0 and all other elements of the array should remain unchanged However, what happens is quite different The first assignment sets t to 0 The second assignment sets i to 1 Since, i is now 1, the third assignment has the effect of a[1] := t So, a[1] changes to 0, and a[0] remains unchanged! The problem here is that the two parameters i and a[read i] interfere, ie, changing one of them affects the meaning of the other term On the other hand, when we define the procedure swap x y, we tend to assume that x and y are independent, ie, changing one of them does not the affect the meaning of the other Thus, there is a mismatch of expectations

5 Imperative programming in Haskell Haskell is a functional programming language, but it also has imperative features The imperative features are a bit cumbersome compared to Algol But since most of the programming in Haskell is done in functional style, this is not a problem in practice 10 IO type constructor In Haskell, the two separate type constructors exp and comm of Algol are combined into a single type constructor IO Computations of type IO T can do both the reading and writing of the state variables (In contrast, exp[δ]-typed computations can only read the state and comm-typed computations can modify the state) Secondly, the results returned from (IOT )-typed computations can return results of any type T They are not limited to a special class of data types as in Algol The name IO is short for input-output When Haskell was designed, only input-output actions were considered Later, general state-change actions were also incorporated into the same type 11 Constants for IO The primitive operations for IO type computations are as follows: return :: t IO t >>= :: IO t (t IO u) IO u The return operation simply returns its argument, without doing any state changes (It is similar in spirit to the skip command) The >>= operation (normally read as bind ) sequences two state change actions An expression of the form C >>= F represents a compound action which carries out two actions represented by C and F However, note that actions return values The value returned by C would be some value x of type t This value is passed as an argument to F, which is of type t IO u The value returned by F (x) is of type u This is the result returned by the whole action C >>= F Since the result is of type u, the whole action is of type IO u Here is an example to illustrate these operations: dialogue = putstrln "Type in a string" >>= \() -> getstrln >>= \in -> putstrln "you typed " + in This action first outputs the string Type in a string This is an action of type IO () Next it inputs a string, an action of type IO String Finally it writes back the string that has been typed We normally type the above code with line breaks as follows: dialogue = putstrln "Type in a string" >>= \() -> getstrln >>= \in -> putstrln "you typed " + in This seems a bit strange because we are splitting the formal parameter of a lambda abstraction and the body of the lambda abstraction into separate lines However, this style of typing it is in fact easier to read 1 Ouput Type in s astring Let the result be () 2 Read a string Let the result be in 3 Output you typed and in So the lambda abstraction allows the English language locution Let the result be x The fact that the scope of a lambda abstraction extends as far to the right (and down) as possible, the variable x mentioned in the locution can be used in the rest of the body of the definition

6 12 References For every type T, Haskell allows us to create references (ie, mutable variables) that can hold values of type T Their type is denoted IORef T The constants (primitive operations) dealing with references are as follows: readioref :: IORef t IO t writeioref :: IORef t t IO () newioref :: t IO (IORef t) The operation readioref is the counterpart of read in Idealized Algol Since the Exp type constructor is subsumed by IO, we have lost the information that the read operation is a pure state reader Here, the type says that it is some state action The operation writeioref is the counterpart of write in Idealized Algol The type IO () corresponds comm The operation newioref is similar to local in Idealized Algol It takes an initial value of type t and produces an IO action, which creates a reference with that initial value Why can t the result type be just be IORef t? The answer is that there isn t a single unique reference for a type t Every time, we execute newioref, we expect to get a new reference Hence this is an action, not just a reference

Polymorphic lambda calculus Princ. of Progr. Languages (and Extended ) The University of Birmingham. c Uday Reddy

Polymorphic lambda calculus Princ. of Progr. Languages (and Extended ) The University of Birmingham. c Uday Reddy 06-02552 Princ. of Progr. Languages (and Extended ) The University of Birmingham Spring Semester 2016-17 School of Computer Science c Uday Reddy2016-17 Handout 6: Polymorphic Type Systems 1. Polymorphic

More information

Handout 9: Imperative Programs and State

Handout 9: Imperative Programs and State 06-02552 Princ. of Progr. Languages (and Extended ) The University of Birmingham Spring Semester 2016-17 School of Computer Science c Uday Reddy2016-17 Handout 9: Imperative Programs and State Imperative

More information

CS 6110 S14 Lecture 1 Introduction 24 January 2014

CS 6110 S14 Lecture 1 Introduction 24 January 2014 CS 6110 S14 Lecture 1 Introduction 24 January 2014 1 Introduction What is a program? Is it just something that tells the computer what to do? Yes, but there is much more to it than that. The basic expressions

More information

Pure (Untyped) λ-calculus. Andrey Kruglyak, 2010

Pure (Untyped) λ-calculus. Andrey Kruglyak, 2010 Pure (Untyped) λ-calculus Andrey Kruglyak, 2010 1 Pure (untyped) λ-calculus An example of a simple formal language Invented by Alonzo Church (1936) Used as a core language (a calculus capturing the essential

More information

Software System Design and Implementation

Software System Design and Implementation Software System Design and Implementation Controlling Effects Gabriele Keller The University of New South Wales School of Computer Science and Engineering Sydney, Australia COMP3141 18s1 Examples of effects

More information

Denotational Semantics. Domain Theory

Denotational Semantics. Domain Theory Denotational Semantics and Domain Theory 1 / 51 Outline Denotational Semantics Basic Domain Theory Introduction and history Primitive and lifted domains Sum and product domains Function domains Meaning

More information

CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Dan Grossman Spring 2011

CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Dan Grossman Spring 2011 CS152: Programming Languages Lecture 11 STLC Extensions and Related Topics Dan Grossman Spring 2011 Review e ::= λx. e x e e c v ::= λx. e c τ ::= int τ τ Γ ::= Γ, x : τ (λx. e) v e[v/x] e 1 e 1 e 1 e

More information

CMSC 330: Organization of Programming Languages. Operational Semantics

CMSC 330: Organization of Programming Languages. Operational Semantics CMSC 330: Organization of Programming Languages Operational Semantics Notes about Project 4, Parts 1 & 2 Still due today (7/2) Will not be graded until 7/11 (along with Part 3) You are strongly encouraged

More information

Formal Systems and their Applications

Formal Systems and their Applications Formal Systems and their Applications Dave Clarke (Dave.Clarke@cs.kuleuven.be) Acknowledgment: these slides are based in part on slides from Benjamin Pierce and Frank Piessens 1 Course Overview Introduction

More information

Lambda Calculus. Variables and Functions. cs3723 1

Lambda Calculus. Variables and Functions. cs3723 1 Lambda Calculus Variables and Functions cs3723 1 Lambda Calculus Mathematical system for functions Computation with functions Captures essence of variable binding Function parameters and substitution Can

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 4 MODULE, SPRING SEMESTER MATHEMATICAL FOUNDATIONS OF PROGRAMMING ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 4 MODULE, SPRING SEMESTER MATHEMATICAL FOUNDATIONS OF PROGRAMMING ANSWERS The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 4 MODULE, SPRING SEMESTER 2012 2013 MATHEMATICAL FOUNDATIONS OF PROGRAMMING ANSWERS Time allowed TWO hours Candidates may complete the front

More information

Introduction to lambda calculus Part 3

Introduction to lambda calculus Part 3 Introduction to lambda calculus Part 3 Antti-Juhani Kaijanaho 2017-01-27... 1 Untyped lambda calculus... 2 Typed lambda calculi In an untyped lambda calculus extended with integers, it is required that

More information

CIS 500 Software Foundations Fall September 25

CIS 500 Software Foundations Fall September 25 CIS 500 Software Foundations Fall 2006 September 25 The Lambda Calculus The lambda-calculus If our previous language of arithmetic expressions was the simplest nontrivial programming language, then the

More information

Mutable References. Chapter 1

Mutable References. Chapter 1 Chapter 1 Mutable References In the (typed or untyped) λ-calculus, or in pure functional languages, a variable is immutable in that once bound to a value as the result of a substitution, its contents never

More information

Types and Static Type Checking (Introducing Micro-Haskell)

Types and Static Type Checking (Introducing Micro-Haskell) Types and Static (Introducing Micro-Haskell) Informatics 2A: Lecture 13 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 16 October, 2012 1 / 21 1 Types 2 3 4 2 / 21 Thus far

More information

11/6/17. Outline. FP Foundations, Scheme. Imperative Languages. Functional Programming. Mathematical Foundations. Mathematical Foundations

11/6/17. Outline. FP Foundations, Scheme. Imperative Languages. Functional Programming. Mathematical Foundations. Mathematical Foundations Outline FP Foundations, Scheme In Text: Chapter 15 Mathematical foundations Functional programming λ-calculus LISP Scheme 2 Imperative Languages We have been discussing imperative languages C/C++, Java,

More information

Imperative Functional Programming

Imperative Functional Programming Imperative Functional Programming Uday S. Reddy Department of Computer Science The University of Illinois at Urbana-Champaign Urbana, Illinois 61801 reddy@cs.uiuc.edu Our intuitive idea of a function is

More information

Programming Languages Third Edition

Programming Languages Third Edition Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages. Lambda calculus

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages. Lambda calculus Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Tuesday, February 19, 2013 The lambda calculus (or λ-calculus) was introduced by Alonzo Church and Stephen Cole Kleene in

More information

Types and Static Type Checking (Introducing Micro-Haskell)

Types and Static Type Checking (Introducing Micro-Haskell) Types and Static (Introducing Micro-Haskell) Informatics 2A: Lecture 14 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 17 October 2017 1 / 21 1 Types 2 3 4 2 / 21 So far in

More information

9/23/2014. Why study? Lambda calculus. Church Rosser theorem Completeness of Lambda Calculus: Turing Complete

9/23/2014. Why study? Lambda calculus. Church Rosser theorem Completeness of Lambda Calculus: Turing Complete Dr A Sahu Dept of Computer Science & Engineering IIT Guwahati Why study? Lambda calculus Syntax Evaluation Relationship to programming languages Church Rosser theorem Completeness of Lambda Calculus: Turing

More information

CSE 505: Concepts of Programming Languages

CSE 505: Concepts of Programming Languages CSE 505: Concepts of Programming Languages Dan Grossman Fall 2003 Lecture 6 Lambda Calculus Dan Grossman CSE505 Fall 2003, Lecture 6 1 Where we are Done: Modeling mutation and local control-flow Proving

More information

Type Systems Winter Semester 2006

Type Systems Winter Semester 2006 Type Systems Winter Semester 2006 Week 4 November 8 November 15, 2006 - version 1.1 The Lambda Calculus The lambda-calculus If our previous language of arithmetic expressions was the simplest nontrivial

More information

The Lambda Calculus. 27 September. Fall Software Foundations CIS 500. The lambda-calculus. Announcements

The Lambda Calculus. 27 September. Fall Software Foundations CIS 500. The lambda-calculus. Announcements CIS 500 Software Foundations Fall 2004 27 September IS 500, 27 September 1 The Lambda Calculus IS 500, 27 September 3 Announcements Homework 1 is graded. Pick it up from Cheryl Hickey (Levine 502). We

More information

1 Introduction. 3 Syntax

1 Introduction. 3 Syntax CS 6110 S18 Lecture 19 Typed λ-calculus 1 Introduction Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-proving techniques based on axiomatic semantics,

More information

Nano-Lisp The Tutorial Handbook

Nano-Lisp The Tutorial Handbook Nano-Lisp The Tutorial Handbook Francis Sergeraert March 4, 2006 1 Various types of Nano-Lisp objects. There are several type notions and in this documentation only the notion of implementation type (itype

More information

Programming Language Concepts, cs2104 Lecture 04 ( )

Programming Language Concepts, cs2104 Lecture 04 ( ) Programming Language Concepts, cs2104 Lecture 04 (2003-08-29) Seif Haridi Department of Computer Science, NUS haridi@comp.nus.edu.sg 2003-09-05 S. Haridi, CS2104, L04 (slides: C. Schulte, S. Haridi) 1

More information

Review. CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Let bindings (CBV) Adding Stuff. Booleans and Conditionals

Review. CS152: Programming Languages. Lecture 11 STLC Extensions and Related Topics. Let bindings (CBV) Adding Stuff. Booleans and Conditionals Review CS152: Programming Languages Lecture 11 STLC Extensions and Related Topics e ::= λx. e x ee c v ::= λx. e c (λx. e) v e[v/x] e 1 e 2 e 1 e 2 τ ::= int τ τ Γ ::= Γ,x : τ e 2 e 2 ve 2 ve 2 e[e /x]:

More information

Semantics of programming languages

Semantics of programming languages Semantics of programming languages Informatics 2A: Lecture 27 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 21 November, 2011 1 / 19 1 2 3 4 2 / 19 Semantics for programming

More information

Informal Semantics of Data. semantic specification names (identifiers) attributes binding declarations scope rules visibility

Informal Semantics of Data. semantic specification names (identifiers) attributes binding declarations scope rules visibility Informal Semantics of Data semantic specification names (identifiers) attributes binding declarations scope rules visibility 1 Ways to Specify Semantics Standards Documents (Language Definition) Language

More information

Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP)

Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP) Fundamentals of Artificial Intelligence COMP221: Functional Programming in Scheme (and LISP) Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology

More information

(Refer Slide Time: 4:00)

(Refer Slide Time: 4:00) Principles of Programming Languages Dr. S. Arun Kumar Department of Computer Science & Engineering Indian Institute of Technology, Delhi Lecture - 38 Meanings Let us look at abstracts namely functional

More information

Introduction to the Lambda Calculus

Introduction to the Lambda Calculus Introduction to the Lambda Calculus Overview: What is Computability? Church s Thesis The Lambda Calculus Scope and lexical address The Church-Rosser Property Recursion References: Daniel P. Friedman et

More information

CMSC330. Objects, Functional Programming, and lambda calculus

CMSC330. Objects, Functional Programming, and lambda calculus CMSC330 Objects, Functional Programming, and lambda calculus 1 OOP vs. FP Object-oriented programming (OOP) Computation as interactions between objects Objects encapsulate mutable data (state) Accessed

More information

Tail Calls. CMSC 330: Organization of Programming Languages. Tail Recursion. Tail Recursion (cont d) Names and Binding. Tail Recursion (cont d)

Tail Calls. CMSC 330: Organization of Programming Languages. Tail Recursion. Tail Recursion (cont d) Names and Binding. Tail Recursion (cont d) CMSC 330: Organization of Programming Languages Tail Calls A tail call is a function call that is the last thing a function does before it returns let add x y = x + y let f z = add z z (* tail call *)

More information

The Essence of Reynolds

The Essence of Reynolds The Essence of Reynolds 3. State and Abstraction Uday S. Reddy 1 1 University of Birmingham POPL, 2014 John C. Reynolds, 1935-2013 Emmy Noether, 1882-1935 According to Mac Lane, she emphasized the importance

More information

Comp 411 Principles of Programming Languages Lecture 7 Meta-interpreters. Corky Cartwright January 26, 2018

Comp 411 Principles of Programming Languages Lecture 7 Meta-interpreters. Corky Cartwright January 26, 2018 Comp 411 Principles of Programming Languages Lecture 7 Meta-interpreters Corky Cartwright January 26, 2018 Denotational Semantics The primary alternative to syntactic semantics is denotational semantics.

More information

CS 242. Fundamentals. Reading: See last slide

CS 242. Fundamentals. Reading: See last slide CS 242 Fundamentals Reading: See last slide Syntax and Semantics of Programs Syntax The symbols used to write a program Semantics The actions that occur when a program is executed Programming language

More information

Functional Programming Languages (FPL)

Functional Programming Languages (FPL) Functional Programming Languages (FPL) 1. Definitions... 2 2. Applications... 2 3. Examples... 3 4. FPL Characteristics:... 3 5. Lambda calculus (LC)... 4 6. Functions in FPLs... 7 7. Modern functional

More information

G Programming Languages - Fall 2012

G Programming Languages - Fall 2012 G22.2110-003 Programming Languages - Fall 2012 Lecture 4 Thomas Wies New York University Review Last week Control Structures Selection Loops Adding Invariants Outline Subprograms Calling Sequences Parameter

More information

Types and Type Inference

Types and Type Inference CS 242 2012 Types and Type Inference Notes modified from John Mitchell and Kathleen Fisher Reading: Concepts in Programming Languages, Revised Chapter 6 - handout on Web!! Outline General discussion of

More information

CS 6110 S11 Lecture 25 Typed λ-calculus 6 April 2011

CS 6110 S11 Lecture 25 Typed λ-calculus 6 April 2011 CS 6110 S11 Lecture 25 Typed λ-calculus 6 April 2011 1 Introduction Type checking is a lightweight technique for proving simple properties of programs. Unlike theorem-proving techniques based on axiomatic

More information

6.001 Notes: Section 6.1

6.001 Notes: Section 6.1 6.001 Notes: Section 6.1 Slide 6.1.1 When we first starting talking about Scheme expressions, you may recall we said that (almost) every Scheme expression had three components, a syntax (legal ways of

More information

6.001 Notes: Section 8.1

6.001 Notes: Section 8.1 6.001 Notes: Section 8.1 Slide 8.1.1 In this lecture we are going to introduce a new data type, specifically to deal with symbols. This may sound a bit odd, but if you step back, you may realize that everything

More information

Constraint-based Analysis. Harry Xu CS 253/INF 212 Spring 2013

Constraint-based Analysis. Harry Xu CS 253/INF 212 Spring 2013 Constraint-based Analysis Harry Xu CS 253/INF 212 Spring 2013 Acknowledgements Many slides in this file were taken from Prof. Crista Lope s slides on functional programming as well as slides provided by

More information

Com S 541. Programming Languages I

Com S 541. Programming Languages I Programming Languages I Lecturer: TA: Markus Lumpe Department of Computer Science 113 Atanasoff Hall http://www.cs.iastate.edu/~lumpe/coms541.html TR 12:40-2, W 5 Pramod Bhanu Rama Rao Office hours: TR

More information

Functional Programming and λ Calculus. Amey Karkare Dept of CSE, IIT Kanpur

Functional Programming and λ Calculus. Amey Karkare Dept of CSE, IIT Kanpur Functional Programming and λ Calculus Amey Karkare Dept of CSE, IIT Kanpur 0 Software Development Challenges Growing size and complexity of modern computer programs Complicated architectures Massively

More information

The Design of Core C++ (Notes)

The Design of Core C++ (Notes) The Design of Core C++ (Notes) Uday Reddy May 13, 1994 This note is to define a small formal language called Core C++ which reflects the essential structure of C++. As the name implies, the design only

More information

Abstract register machines Lecture 23 Tuesday, April 19, 2016

Abstract register machines Lecture 23 Tuesday, April 19, 2016 Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 23 Tuesday, April 19, 2016 1 Why abstract machines? So far in the class, we have seen a variety of language features.

More information

Programming Languages Third Edition. Chapter 7 Basic Semantics

Programming Languages Third Edition. Chapter 7 Basic Semantics Programming Languages Third Edition Chapter 7 Basic Semantics Objectives Understand attributes, binding, and semantic functions Understand declarations, blocks, and scope Learn how to construct a symbol

More information

Harvard School of Engineering and Applied Sciences Computer Science 152

Harvard School of Engineering and Applied Sciences Computer Science 152 Harvard School of Engineering and Applied Sciences Computer Science 152 Lecture 17 Tuesday, March 30, 2010 1 Polymorph means many forms. Polymorphism is the ability of code to be used on values of different

More information

Types and Type Inference

Types and Type Inference Types and Type Inference Mooly Sagiv Slides by Kathleen Fisher and John Mitchell Reading: Concepts in Programming Languages, Revised Chapter 6 - handout on the course homepage Outline General discussion

More information

Reasoning About Imperative Programs. COS 441 Slides 10

Reasoning About Imperative Programs. COS 441 Slides 10 Reasoning About Imperative Programs COS 441 Slides 10 The last few weeks Agenda reasoning about functional programming It s very simple and very uniform: substitution of equal expressions for equal expressions

More information

M. Snyder, George Mason University LAMBDA CALCULUS. (untyped)

M. Snyder, George Mason University LAMBDA CALCULUS. (untyped) 1 LAMBDA CALCULUS (untyped) 2 The Untyped Lambda Calculus (λ) Designed by Alonzo Church (1930s) Turing Complete (Turing was his doctoral student!) Models functions, always as 1-input Definition: terms,

More information

5. Introduction to the Lambda Calculus. Oscar Nierstrasz

5. Introduction to the Lambda Calculus. Oscar Nierstrasz 5. Introduction to the Lambda Calculus Oscar Nierstrasz Roadmap > What is Computability? Church s Thesis > Lambda Calculus operational semantics > The Church-Rosser Property > Modelling basic programming

More information

CS 4110 Programming Languages & Logics. Lecture 17 Programming in the λ-calculus

CS 4110 Programming Languages & Logics. Lecture 17 Programming in the λ-calculus CS 4110 Programming Languages & Logics Lecture 17 Programming in the λ-calculus 10 October 2014 Announcements 2 Foster Office Hours 11-12 Enjoy fall break! Review: Church Booleans 3 We can encode TRUE,

More information

The Substitution Model

The Substitution Model The Substitution Model Prof. Clarkson Fall 2017 Today s music: Substitute by The Who Review Previously in 3110: simple interpreter for expression language abstract syntax tree (AST) evaluation based on

More information

3.7 Denotational Semantics

3.7 Denotational Semantics 3.7 Denotational Semantics Denotational semantics, also known as fixed-point semantics, associates to each programming language construct a well-defined and rigorously understood mathematical object. These

More information

Foundations. Yu Zhang. Acknowledgement: modified from Stanford CS242

Foundations. Yu Zhang. Acknowledgement: modified from Stanford CS242 Spring 2013 Foundations Yu Zhang Acknowledgement: modified from Stanford CS242 https://courseware.stanford.edu/pg/courses/317431/ Course web site: http://staff.ustc.edu.cn/~yuzhang/fpl Reading Concepts

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 18 Thursday, April 3, 2014 1 Error-propagating semantics For the last few weeks, we have been studying type systems.

More information

One of a number of approaches to a mathematical challenge at the time (1930): Constructibility

One of a number of approaches to a mathematical challenge at the time (1930): Constructibility λ Calculus Church s λ Calculus: Brief History One of a number of approaches to a mathematical challenge at the time (1930): Constructibility (What does it mean for an object, e.g. a natural number, to

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Lambda Calculus CMSC 330 1 Programming Language Features Many features exist simply for convenience Multi-argument functions foo ( a, b, c ) Use currying

More information

Lambda Calculus and Extensions as Foundation of Functional Programming

Lambda Calculus and Extensions as Foundation of Functional Programming Lambda Calculus and Extensions as Foundation of Functional Programming David Sabel and Manfred Schmidt-Schauß 29. September 2015 Lehrerbildungsforum Informatik Last update: 30. September 2015 Overview

More information

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages

Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Lecture 18 Thursday, March 29, 2018 In abstract algebra, algebraic structures are defined by a set of elements and operations

More information

A Small Interpreted Language

A Small Interpreted Language A Small Interpreted Language What would you need to build a small computing language based on mathematical principles? The language should be simple, Turing equivalent (i.e.: it can compute anything that

More information

Concepts of programming languages

Concepts of programming languages Concepts of programming languages Lecture 5 Wouter Swierstra 1 Announcements Submit your project proposal to me by email on Friday; The presentation schedule in now online Exercise session after the lecture.

More information

A macro- generator for ALGOL

A macro- generator for ALGOL A macro- generator for ALGOL byh.leroy Compagnie Bull-General Electric Paris, France INTRODUCfION The concept of macro-facility is ambiguous, when applied to higher level languages. For some authorsl,2,

More information

Organization of Programming Languages CS3200/5200N. Lecture 11

Organization of Programming Languages CS3200/5200N. Lecture 11 Organization of Programming Languages CS3200/5200N Razvan C. Bunescu School of Electrical Engineering and Computer Science bunescu@ohio.edu Functional vs. Imperative The design of the imperative languages

More information

On Academic Dishonesty. Declarative Computation Model. Single assignment store. Single assignment store (2) Single assignment store (3)

On Academic Dishonesty. Declarative Computation Model. Single assignment store. Single assignment store (2) Single assignment store (3) Declarative Computation Model Single assignment store (VRH 2.2) Kernel language syntax (VRH 2.3) Carlos Varela RPI October 6, 2009 Adapted with permission from: Seif Haridi KTH Peter Van Roy UCL On Academic

More information

Functional Programming. Big Picture. Design of Programming Languages

Functional Programming. Big Picture. Design of Programming Languages Functional Programming Big Picture What we ve learned so far: Imperative Programming Languages Variables, binding, scoping, reference environment, etc What s next: Functional Programming Languages Semantics

More information

CS4215 Programming Language Implementation. Martin Henz

CS4215 Programming Language Implementation. Martin Henz CS4215 Programming Language Implementation Martin Henz Thursday 15 March, 2012 2 Chapter 11 impl: A Simple Imperative Language 11.1 Introduction So far, we considered only languages, in which an identifier

More information

CS152: Programming Languages. Lecture 7 Lambda Calculus. Dan Grossman Spring 2011

CS152: Programming Languages. Lecture 7 Lambda Calculus. Dan Grossman Spring 2011 CS152: Programming Languages Lecture 7 Lambda Calculus Dan Grossman Spring 2011 Where we are Done: Syntax, semantics, and equivalence For a language with little more than loops and global variables Now:

More information

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University

G Programming Languages Spring 2010 Lecture 4. Robert Grimm, New York University G22.2110-001 Programming Languages Spring 2010 Lecture 4 Robert Grimm, New York University 1 Review Last week Control Structures Selection Loops 2 Outline Subprograms Calling Sequences Parameter Passing

More information

Functional Programming and Haskell

Functional Programming and Haskell Functional Programming and Haskell Tim Dawborn University of Sydney, Australia School of Information Technologies Tim Dawborn Functional Programming and Haskell 1/22 What are Programming Paradigms? A programming

More information

Lambda Calculus. Gunnar Gotshalks LC-1

Lambda Calculus. Gunnar Gotshalks LC-1 Lambda Calculus LC-1 l- Calculus History Developed by Alonzo Church during 1930 s-40 s One fundamental goal was to describe what can be computed. Full definition of l-calculus is equivalent in power to

More information

Functions as data. Massimo Merro. 9 November Massimo Merro The Lambda language 1 / 21

Functions as data. Massimo Merro. 9 November Massimo Merro The Lambda language 1 / 21 Functions as data Massimo Merro 9 November 2011 Massimo Merro The Lambda language 1 / 21 The core of sequential programming languages In the mid 1960s, Peter Landin observed that a complex programming

More information

1007 Imperative Programming Part II

1007 Imperative Programming Part II Agenda 1007 Imperative Programming Part II We ve seen the basic ideas of sequence, iteration and selection. Now let s look at what else we need to start writing useful programs. Details now start to be

More information

COMP 1130 Lambda Calculus. based on slides by Jeff Foster, U Maryland

COMP 1130 Lambda Calculus. based on slides by Jeff Foster, U Maryland COMP 1130 Lambda Calculus based on slides by Jeff Foster, U Maryland Motivation Commonly-used programming languages are large and complex ANSI C99 standard: 538 pages ANSI C++ standard: 714 pages Java

More information

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine.

1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 1. true / false By a compiler we mean a program that translates to code that will run natively on some machine. 2. true / false ML can be compiled. 3. true / false FORTRAN can reasonably be considered

More information

CSE 413 Languages & Implementation. Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341)

CSE 413 Languages & Implementation. Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341) CSE 413 Languages & Implementation Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341) 1 Goals Representing programs as data Racket structs as a better way to represent

More information

Chapter 6 Control Flow. June 9, 2015

Chapter 6 Control Flow. June 9, 2015 Chapter 6 Control Flow June 9, 2015 Expression evaluation It s common in programming languages to use the idea of an expression, which might be a simple object function invocation over some number of arguments

More information

CSCC24 Functional Programming Scheme Part 2

CSCC24 Functional Programming Scheme Part 2 CSCC24 Functional Programming Scheme Part 2 Carolyn MacLeod 1 winter 2012 1 Based on slides from Anya Tafliovich, and with many thanks to Gerald Penn and Prabhakar Ragde. 1 The Spirit of Lisp-like Languages

More information

Lecture 9: Typed Lambda Calculus

Lecture 9: Typed Lambda Calculus Advanced Topics in Programming Languages Spring Semester, 2012 Lecture 9: Typed Lambda Calculus May 8, 2012 Lecturer: Mooly Sagiv Scribe: Guy Golan Gueta and Shachar Itzhaky 1 Defining a Type System for

More information

CSCI B522 Lecture 11 Naming and Scope 8 Oct, 2009

CSCI B522 Lecture 11 Naming and Scope 8 Oct, 2009 CSCI B522 Lecture 11 Naming and Scope 8 Oct, 2009 Lecture notes for CS 6110 (Spring 09) taught by Andrew Myers at Cornell; edited by Amal Ahmed, Fall 09. 1 Static vs. dynamic scoping The scope of a variable

More information

Introduction. chapter Functions

Introduction. chapter Functions chapter 1 Introduction In this chapter we set the stage for the rest of the book. We start by reviewing the notion of a function, then introduce the concept of functional programming, summarise the main

More information

6.001 Notes: Section 15.1

6.001 Notes: Section 15.1 6.001 Notes: Section 15.1 Slide 15.1.1 Our goal over the next few lectures is to build an interpreter, which in a very basic sense is the ultimate in programming, since doing so will allow us to define

More information

Goal. CS152: Programming Languages. Lecture 15 Parametric Polymorphism. What the Library Likes. What The Client Likes. Start simpler.

Goal. CS152: Programming Languages. Lecture 15 Parametric Polymorphism. What the Library Likes. What The Client Likes. Start simpler. Goal Understand what this interface means and why it matters: CS152: Programming Languages Lecture 15 Parametric Polymorphism Dan Grossman Spring 2011 type a mylist; val mt_list : a mylist val cons : a

More information

Pure Lambda Calculus. Lecture 17

Pure Lambda Calculus. Lecture 17 Pure Lambda Calculus Lecture 17 Lambda Calculus Lambda Calculus (λ-calculus) is a functional notation introduced by Alonzo Church in the early 1930s to formalize the notion of computability. Pure λ-calculus

More information

Formal Semantics. Prof. Clarkson Fall Today s music: Down to Earth by Peter Gabriel from the WALL-E soundtrack

Formal Semantics. Prof. Clarkson Fall Today s music: Down to Earth by Peter Gabriel from the WALL-E soundtrack Formal Semantics Prof. Clarkson Fall 2015 Today s music: Down to Earth by Peter Gabriel from the WALL-E soundtrack Review Previously in 3110: simple interpreter for expression language: abstract syntax

More information

Lecture 4 Searching Arrays

Lecture 4 Searching Arrays Lecture 4 Searching Arrays 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning One of the fundamental and recurring problems in computer science is to find elements in collections,

More information

4.2 Variations on a Scheme -- Lazy Evaluation

4.2 Variations on a Scheme -- Lazy Evaluation [Go to first, previous, next page; contents; index] 4.2 Variations on a Scheme -- Lazy Evaluation Now that we have an evaluator expressed as a Lisp program, we can experiment with alternative choices in

More information

The Substitution Model. Nate Foster Spring 2018

The Substitution Model. Nate Foster Spring 2018 The Substitution Model Nate Foster Spring 2018 Review Previously in 3110: simple interpreter for expression language abstract syntax tree (AST) evaluation based on single steps parser and lexer (in lab)

More information

CSc 520 final exam Wednesday 13 December 2000 TIME = 2 hours

CSc 520 final exam Wednesday 13 December 2000 TIME = 2 hours NAME s GRADE Prob 1 2 3 4 5 I II III Σ Max 12 12 12 12 12 26 26 26 100(+... ) Score CSc 520 exam Wednesday 13 December 2000 TIME = 2 hours Write all answers ON THIS EXAMINATION, and submit it IN THE ENVELOPE

More information

RSL Reference Manual

RSL Reference Manual RSL Reference Manual Part No.: Date: April 6, 1990 Original Authors: Klaus Havelund, Anne Haxthausen Copyright c 1990 Computer Resources International A/S This document is issued on a restricted basis

More information

CMSC 330: Organization of Programming Languages. Lambda Calculus

CMSC 330: Organization of Programming Languages. Lambda Calculus CMSC 330: Organization of Programming Languages Lambda Calculus 1 Turing Completeness Turing machines are the most powerful description of computation possible They define the Turing-computable functions

More information

Principles of Programming Languages COMP251: Functional Programming in Scheme (and LISP)

Principles of Programming Languages COMP251: Functional Programming in Scheme (and LISP) Principles of Programming Languages COMP251: Functional Programming in Scheme (and LISP) Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology

More information

Lecture Notes on Data Representation

Lecture Notes on Data Representation Lecture Notes on Data Representation 15-814: Types and Programming Languages Frank Pfenning Lecture 9 Tuesday, October 2, 2018 1 Introduction In this lecture we ll see our type system in action. In particular

More information

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics Recall Architecture of Compilers, Interpreters CMSC 330: Organization of Programming Languages Source Scanner Parser Static Analyzer Operational Semantics Intermediate Representation Front End Back End

More information

More Lambda Calculus and Intro to Type Systems

More Lambda Calculus and Intro to Type Systems More Lambda Calculus and Intro to Type Systems Plan Heavy Class Participation Thus, wake up! Lambda Calculus How is it related to real life? Encodings Fixed points Type Systems Overview Static, Dyamic

More information

1 Scope, Bound and Free Occurrences, Closed Terms

1 Scope, Bound and Free Occurrences, Closed Terms CS 6110 S18 Lecture 2 The λ-calculus Last time we introduced the λ-calculus, a mathematical system for studying the interaction of functional abstraction and functional application. We discussed the syntax

More information