NEW METHODS USING COLUMN GENERATION: AN EXAMPLE - ASSIGNING JOBS TO IDENTICAL MACHINES

Size: px
Start display at page:

Download "NEW METHODS USING COLUMN GENERATION: AN EXAMPLE - ASSIGNING JOBS TO IDENTICAL MACHINES"

Transcription

1 NEW METHODS USING COLUMN GENERATION: AN EXAMPLE - ASSIGNING JOBS TO IDENTICAL MACHINES Fran B Parng, Illinois Institute of Technology 58 W Boardwal Drive, Palatine IL 667 fparng@alcatel-lucent.com ABSTRACT This paper describes two new column generation methods and illustrates them by solving the problem of assigning obs to identical machines. The obective is to minimize the number of machines used to perform the obs. Two new methods have been developed and compared to the standard column generation methods. The paper compares using the new, Combined method vs. Standard method for the Master Problem. In addition, we also compare the standard subproblem (called Method A) with a new subproblem (called Method B). The paper presents computational results using Lingo on eight sets of data using two different initialization methods. Key Words: Column Generation, Branch-and-Price INTRODUCTION The standard integer programming formulation of the general column generation model being considered is demonstrated below: Minimize cx Subect to Ax b x & integer where the constraints are partitioned into a class of global or lining constraints ( Ax b ) and a class of specific constraints referred to as subproblem constraints (, x & integer). The cost vector c is a x n, x is an n x unnown solution vector, A is a m x n coefficient matrix, b is a m x vector of right hand side constants, B is a m x n coefficient matrix, b is a m x vector of right hand side constants. With identical machines, there is only one subproblem to solve. In Section 2, we introduce the general problem of using column generation techniques; explain why column generation is a unique method and useful approach for identical subproblems. We introduce a variety of problems that are amenable to column generation as well as the basic idea associated with branch-and-price In Section 3, we describe a new formulation of the Master Problem and contrast it to the Standard Master Problem The Standard Master Problem uses the traditional Phase I method. The new method, called the Combined method, combines the subproblem constraints into the Master Problem and does not require solution of a subproblem to generate attractive subproblem solutions)

2 Also, we present a new subproblem, called Method B, and contrast it with the usual formulation that we call Method A. Method B limits the dual prices to the range in which they are nown to be correct. Also, Method B includes the lining constraints in the subproblem formulation. In Section 4, we present numerical results on examples where the obs must be done multiple times. We discussed the benefit and advantage of using the new methods, the Combined method and Method B. Column Generation LITERATURE REVIEW Dychoff, 98 [] is the first to propose an integer linear programming formulation for the problem of getting a guaranteed global optimum to cutting stoc problems under the integrality requirement. Degraeve and Schrage, 999 [2] described a method that embedded the column generation procedure within a branch-and-bound scheme to find optimal integer solutions for cutting stoc problems. Vanderbec and Wolsey, 996 [3] described an exact algorithm for integer programs with a large number of columns. They found no satisfactory general branching scheme has been proposed for identical subproblems and a corresponding method to modify the subproblems after branching, and verify that it can be implemented. They developed a combined branching & subproblem modification scheme that applied to general column generation problems and described the use of lower bounds to reduce the tailing-off effect. Branch-and-price In recent years, branch-and-price has been applied successfully to airline crew scheduling. Vance, Barnhart et al., 997 [4] presented a new formulation for the airline crew scheduling problem such that its LP relaxation provides a tighter bound on the optimal IP solution than the traditional set partitioning formulation. Savelsbergh and Sol, 998 [5] described a branch-andprice algorithm in the transportation system for the general picup and delivery problem. Branch-and-price algorithms have solved many large-scale set partitioning problems successfully. Routing and scheduling has been a particularly good application area of branchand-price; see Desrosiers et al., 995 [6] for a survey of these results. Alternate Formulations for the Master Problem The Standard Method FORMULATIONS OF PROBLEMS Say we have visible solutions to the subproblem. Then the Standard Master Problem is Minimize α ( ) m cx y + α a 2 = i= i

3 Ax y + Ia b y, ai = Subect to ( ) & continuous If α = andα 2 =, it is a pure Phase I. Ifα = andα 2 =, a are forced to be, it is a pure Phase II. If both are positive, we call this is a composite obective function and both feasibility and optimality are considered at the same time. The Combined Method The second way of generating feasible solution is to combine the subproblem variables into the Master Problem with integer variables for the sought subproblem solution. To start Phase I, no integer feasible subproblem solutions are nown, and then the first Combined Master Problem solved is: Minimize α ( cx) Subect to m + α 2 i= a i Ax + Ia b x & integer α α, are constants, a & continuous, 2 Note: We are using a composite obective function. If α = and α 2 =, we have the Pure Phase I. The solution is x. Say we now one subproblem solution for the Combined Master Problem x. The second Combined Master Problem is: { } Minimize ( ) Subect to ( ) m α cx + c x y + α ai 2 i= Ax + Ax y + Ia b x & integer y, a & continuous Say this yields an optimal integer feasible subproblem solution x, call this x 2. In general, if there are integer feasible subproblem solutions, the Combined Master Problem is: Minimize α cx + ( cx ) y + α2 ai = i= Subect to Ax + ( Ax ) y + Ia b = x & integer y, a & continuous

4 =, = and no new x is found and a i >, then no feasible solution exists to the If α α2 original problem. As soon as the artificial variables are all, we have a feasible solution to the original problem. The Combined Master is used until the original obective function value does not decrease in two subsequent problems. Then, we revert to the Standard Master. Alternate formulations of the Subproblem Method A Method B Minimize ( c π ) A x Subect to x & integer Minimize cx π ( r s) Subect to Ax ( r s) r, s & continuous r Down limit, r is the down limit. Method A s obective function calculates the reduced cost of the most attractive subproblem feasible solution to add to the Master problem. Method A assumes π will remain the same, even if we go past the point where the set of binding constraints changes. When we apply Method B, we use both π and down limit r obtained from the Master Problem solution. Method B assumes that the impact on the Master Problem only continues until there is a basis change. We don t now how π will change after the basis change. In Method B, we want to associate this value π with the down limit. We solve the problem first using down limit, and we assume its new value will be after the basis change. Because this is conservative and may not be true, we must use Method A to prove optimality of the continuous Master Problem after Method B no longer gives attractive subproblem solutions. NUMERICAL RESULTS A set of test problems was generated to evaluate the new methods Combined for the Master and Method B for the subproblem. For these test problems, the machines were identical but the number of times each ob needed to be done was larger than one. Two initialization methods were used. Initialization (called the Big M method) started with one column corresponding to doing every ob once. This ensures a feasible solution to the continuous Master Problem, but since all the obs could not be done on one machine, it was given an obective function value of Big M. This very large value would then cause the initial column to leave the solution, somewhat lie Phase I. Initialization 2 (called single ob-single machine) introduced one master column for each ob, doing it only once. This assured there would be a feasible solution to the Master Problem, but would use one machine for each ob and every repetition of the ob. These initial variables were given an obective function coefficient of one because using one machine for each

5 ob and repetition is not attractive. Using either initialization eliminated the necessity of the explicit inclusion of the traditional Phase I artificial variables, one for each ob type to be done (the lining constraints).. Summary Of The Test Results And Conclusions Table : Summary of Results 8/29/28 Summary of the results Methods used Single ob-single machine initialization Machines used Big M initialization Machines used Method B, Method A Combined Master, Method A Method B, Method A Combined Master, Method A Bound 728* 728* 728* 728* * 685* * 8* 8* 8* * 546* * 45* 45* 45* * 782* * 752* * 728* 728* 728* * * * 8* 8* 8* * 45* 45* 45* * * Note: If there is an asteris, we now that it is an optimal solution based on the bound. Several points need to be observed in the numerical tests. First, when Combined was used, it was always followed by the Standard method. Combined is an alternate method of searching for attractive subproblem solutions. Second, Method A always followed Method B (using downlimits) when it was used. This assures that the optimal obective value to the final continuous master is a lower bound on the optimal obective function value for the master solved with integer variables (assuming all columns are available). Third, after establishing the lower bound, the Master was solved as an integer programming model. Note that the number of machines used must be integer so if the obective function lower bound is rounded up (say to T), that is a valid lower bound for the integer master with all subproblem columns present. If the

6 Combined master solved with integer variables yields an obective function value of T, we are assured that we have an optimal solution. Table shows the number of machines used to do all the obs. It loos lie the Combined Master method generally did at least as good as and sometimes better than Standard Master. That is, it often required fewer machines. Compare column 3 to column and column 4 to column 2. So Combined loos lie it actually helps. If you loo at using with the downlimit vs. followed by no downlimit vs. no downlimit at all, sometimes resulted exactly the same, but using the downlimit first actually resulted a better solution. Compare column 2 to column and column 4 to column 3. So using the downlimit at least for the example we looed at, never made things worse, but sometimes made things better. Also, we observe that Big M is inferior to single obsingle machine initialization. From the experiment datasets results, we conclude that Combined is better than Standard in terms of total machines used. Method B using downlimit is better than Method A not using down limit. Method A assumes the dual price remains the same forever when you decrease that right hand side; Method B says the dual price is outside of the limits, and that maes sure that the subproblem solution improvement potential doesn t get overestimated. BIBLIOGRAPHY [] H. Dychoff, A new linear programming approach to the cutting stoc problem, Operational Research [29] [98,pp. 92-4] [2] Zeger Degraeve and Linus Schrage, Optimal integer solutions to industrial cutting stoc problems, INFORMS Journal on Computing Vol. [] No. [4], Fall [999] [3] Francois Vanderbec and Laurence A. Wolsey, An exact algorithm for IP column generation, Operations Research Letters [9] [996, pp.5-59] [4] Pamela H. Vance, Cynthia Barnhart, Ellis L. Johnson and George L. Nemhauser, Airline Crew Scheduling: A new formulation and decomposition algorithm, Operations Research Vol. [45], No. [2], March-April, [997] [5] Martin Savelsberg and Marc Sol, Drive: Dynamic routing of independent vehicles, Operations Research Vol. [46], No. [4], July-August [998] [6] J. Desrosiers, Y. Dumas, N.M. Solomon, and F. Soumis [995]. Time constrained routing and scheduling, M.E. Ball, T.L. Magnanti, C. Monma, and G.L. Nemhauser (eds.) Handboos in Operations Research and Management Science, Volumn [8]: Networ Routing, Elsevier, Amsterdam, [ pp. 35-4]

The successful solution of large-scale mixed integer

The successful solution of large-scale mixed integer BRANCH-AND-PRICE: COLUMN GENERATION FOR SOLVING HUGE INTEGER PROGRAMS CYNTHIA BARNHART*, ELLIS L. JOHNSON, GEORGE L. NEMHAUSER, MARTIN W. P. SAVELSBERGH, and PAMELA H. VANCE** Georgia Institute of Technology,

More information

Column Generation Method for an Agent Scheduling Problem

Column Generation Method for an Agent Scheduling Problem Column Generation Method for an Agent Scheduling Problem Balázs Dezső Alpár Jüttner Péter Kovács Dept. of Algorithms and Their Applications, and Dept. of Operations Research Eötvös Loránd University, Budapest,

More information

Interior Point Stabilization for Column Generation

Interior Point Stabilization for Column Generation Interior Point Stabilization for Column Generation LOUIS-MARTIN ROUSSEAU, MICHEL GENDREAU CRT, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Canada H3C 3J7 {louism,michelg}@crt.umontreal.ca

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Optimization Model for a Distribution System based on Location-Routing with Distance and forbidden route

Optimization Model for a Distribution System based on Location-Routing with Distance and forbidden route International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 3(March 2014), PP.32-40 Optimization Model for a Distribution System based on

More information

Modeling and Solving Location Routing and Scheduling Problems

Modeling and Solving Location Routing and Scheduling Problems Modeling and Solving Location Routing and Scheduling Problems Z. Akca R.T. Berger T.K Ralphs October 13, 2008 Abstract This paper studies location routing and scheduling problems, a class of problems in

More information

Automatic Decomposition and Branch-and-Price A Status Report

Automatic Decomposition and Branch-and-Price A Status Report Automatic Decomposition and Branch-and-Price A Status Report Marco E. Lübbecke RWTH Aachen University, Operations Research, Kackertstraße 7, D-52072 Aachen, Germany marco.luebbecke@rwth-aachen.de Abstract.

More information

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998

56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 56:272 Integer Programming & Network Flows Final Examination -- December 14, 1998 Part A: Answer any four of the five problems. (15 points each) 1. Transportation problem 2. Integer LP Model Formulation

More information

Column Generation in the Integral Simplex Method

Column Generation in the Integral Simplex Method Linköping University Postprint Column Generation in the Integral Simplex Method Elina Rönnberg and Torbjörn Larsson N.B.: When citing this work, cite the original article. Original publication: Elina Rönnberg

More information

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem

Outline. Column Generation: Cutting Stock A very applied method. Introduction to Column Generation. Given an LP problem Column Generation: Cutting Stock A very applied method thst@man.dtu.dk Outline History The Simplex algorithm (re-visited) Column Generation as an extension of the Simplex algorithm A simple example! DTU-Management

More information

Column Generation: Cutting Stock

Column Generation: Cutting Stock Column Generation: Cutting Stock A very applied method thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline History The Simplex algorithm (re-visited) Column Generation as an extension

More information

Experiments On General Disjunctions

Experiments On General Disjunctions Experiments On General Disjunctions Some Dumb Ideas We Tried That Didn t Work* and Others We Haven t Tried Yet *But that may provide some insight Ted Ralphs, Serdar Yildiz COR@L Lab, Department of Industrial

More information

An Integer Programming Approach to Packing Lightpaths on WDM Networks 파장분할다중화망의광경로패킹에대한정수계획해법. 1. Introduction

An Integer Programming Approach to Packing Lightpaths on WDM Networks 파장분할다중화망의광경로패킹에대한정수계획해법. 1. Introduction Journal of the Korean Institute of Industrial Engineers Vol. 32, No. 3, pp. 219-225, September 2006. An Integer Programming Approach to Packing Lightpaths on WDM Networks Kyungsik Lee 1 Taehan Lee 2 Sungsoo

More information

A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions

A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions A Branch-and-Price Algorithm for Combined Location and Routing Problems Under Capacity Restrictions Z. Akca R.T. Berger T.K Ralphs September 17, 2008 Abstract We investigate the problem of simultaneously

More information

COLUMN GENERATION IN LINEAR PROGRAMMING

COLUMN GENERATION IN LINEAR PROGRAMMING COLUMN GENERATION IN LINEAR PROGRAMMING EXAMPLE: THE CUTTING STOCK PROBLEM A certain material (e.g. lumber) is stocked in lengths of 9, 4, and 6 feet, with respective costs of $5, $9, and $. An order for

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs

Computational Integer Programming. Lecture 12: Branch and Cut. Dr. Ted Ralphs Computational Integer Programming Lecture 12: Branch and Cut Dr. Ted Ralphs Computational MILP Lecture 12 1 Reading for This Lecture Wolsey Section 9.6 Nemhauser and Wolsey Section II.6 Martin Computational

More information

Recursive column generation for the Tactical Berth Allocation Problem

Recursive column generation for the Tactical Berth Allocation Problem Recursive column generation for the Tactical Berth Allocation Problem Ilaria Vacca 1 Matteo Salani 2 Michel Bierlaire 1 1 Transport and Mobility Laboratory, EPFL, Lausanne, Switzerland 2 IDSIA, Lugano,

More information

GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI

GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI GENERAL ASSIGNMENT PROBLEM via Branch and Price JOHN AND LEI Outline Review the column generation in Generalized Assignment Problem (GAP) GAP Examples in Branch and Price 2 Assignment Problem The assignment

More information

February 19, Integer programming. Outline. Problem formulation. Branch-andbound

February 19, Integer programming. Outline. Problem formulation. Branch-andbound Olga Galinina olga.galinina@tut.fi ELT-53656 Network Analysis and Dimensioning II Department of Electronics and Communications Engineering Tampere University of Technology, Tampere, Finland February 19,

More information

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS

MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS MATHEMATICS II: COLLECTION OF EXERCISES AND PROBLEMS GRADO EN A.D.E. GRADO EN ECONOMÍA GRADO EN F.Y.C. ACADEMIC YEAR 2011-12 INDEX UNIT 1.- AN INTRODUCCTION TO OPTIMIZATION 2 UNIT 2.- NONLINEAR PROGRAMMING

More information

In the classical vehicle-routing problem (VRP) the objective is to service some geographically scattered customers

In the classical vehicle-routing problem (VRP) the objective is to service some geographically scattered customers TRANSPORTATION SCIENCE Vol. 38, No. 2, May 2004, pp. 197 209 issn 0041-1655 eissn 1526-5447 04 3802 0197 informs doi 10.1287/trsc.1030.0053 2004 INFORMS Scheduling Transportation of Live Animals to Avoid

More information

2 The Service Provision Problem The formulation given here can also be found in Tomasgard et al. [6]. That paper also details the background of the mo

2 The Service Provision Problem The formulation given here can also be found in Tomasgard et al. [6]. That paper also details the background of the mo Two-Stage Service Provision by Branch and Bound Shane Dye Department ofmanagement University of Canterbury Christchurch, New Zealand s.dye@mang.canterbury.ac.nz Asgeir Tomasgard SINTEF, Trondheim, Norway

More information

Solving small VRPTWs with Constraint Programming Based Column Generation

Solving small VRPTWs with Constraint Programming Based Column Generation Proceedings CPAIOR 02 Solving small VRPTWs with Constraint Programming Based Column Generation Louis-Martin Rousseau, Michel Gendreau, Gilles Pesant Center for Research on Transportation Université de

More information

COLUMN GENERATION. Diego Klabjan, Northwestern University

COLUMN GENERATION. Diego Klabjan, Northwestern University PARALLEL PRIMAL-DUAL WITH COLUMN GENERATION Diego Klabjan, Northwestern University Primal-Dual Algorithm Started with Dantzig, Ford, and Fulkerson in 1956. Primal-dual algorithms Primal step: Solve a primal

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Two-stage column generation

Two-stage column generation Two-stage column generation A novel framework Ilaria Vacca and Matteo Salani Transport and Mobility Laboratory EPFL 6th Joint Operations Research Days September 12, 2008 Two stage column generation p.1/15

More information

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007)

Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm. Santos and Mateus (2007) In the name of God Crew Scheduling Problem: A Column Generation Approach Improved by a Genetic Algorithm Spring 2009 Instructor: Dr. Masoud Yaghini Outlines Problem Definition Modeling As A Set Partitioning

More information

4 Integer Linear Programming (ILP)

4 Integer Linear Programming (ILP) TDA6/DIT37 DISCRETE OPTIMIZATION 17 PERIOD 3 WEEK III 4 Integer Linear Programg (ILP) 14 An integer linear program, ILP for short, has the same form as a linear program (LP). The only difference is that

More information

Graph Coloring via Constraint Programming-based Column Generation

Graph Coloring via Constraint Programming-based Column Generation Graph Coloring via Constraint Programming-based Column Generation Stefano Gualandi Federico Malucelli Dipartimento di Elettronica e Informatica, Politecnico di Milano Viale Ponzio 24/A, 20133, Milan, Italy

More information

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2

Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 Surrogate Gradient Algorithm for Lagrangian Relaxation 1,2 X. Zhao 3, P. B. Luh 4, and J. Wang 5 Communicated by W.B. Gong and D. D. Yao 1 This paper is dedicated to Professor Yu-Chi Ho for his 65th birthday.

More information

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs

15.082J and 6.855J. Lagrangian Relaxation 2 Algorithms Application to LPs 15.082J and 6.855J Lagrangian Relaxation 2 Algorithms Application to LPs 1 The Constrained Shortest Path Problem (1,10) 2 (1,1) 4 (2,3) (1,7) 1 (10,3) (1,2) (10,1) (5,7) 3 (12,3) 5 (2,2) 6 Find the shortest

More information

lpsymphony - Integer Linear Programming in R

lpsymphony - Integer Linear Programming in R lpsymphony - Integer Linear Programming in R Vladislav Kim October 30, 2017 Contents 1 Introduction 2 2 lpsymphony: Quick Start 2 3 Integer Linear Programming 5 31 Equivalent and Dual Formulations 5 32

More information

Unit.9 Integer Programming

Unit.9 Integer Programming Unit.9 Integer Programming Xiaoxi Li EMS & IAS, Wuhan University Dec. 22-29, 2016 (revised) Operations Research (Li, X.) Unit.9 Integer Programming Dec. 22-29, 2016 (revised) 1 / 58 Organization of this

More information

The goal of this paper is to develop models and methods that use complementary

The goal of this paper is to develop models and methods that use complementary for a Class of Optimization Problems Vipul Jain Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA Vipul_Jain@i2.com grossmann@cmu.edu

More information

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs

Introduction to Mathematical Programming IE496. Final Review. Dr. Ted Ralphs Introduction to Mathematical Programming IE496 Final Review Dr. Ted Ralphs IE496 Final Review 1 Course Wrap-up: Chapter 2 In the introduction, we discussed the general framework of mathematical modeling

More information

PICKUP AND DELIVERY WITH TIME WINDOWS: ALGORITHMS AND TEST CASE GENERATION. School of Computing, National University of Singapore, Singapore

PICKUP AND DELIVERY WITH TIME WINDOWS: ALGORITHMS AND TEST CASE GENERATION. School of Computing, National University of Singapore, Singapore PICKUP AND DELIVERY WITH TIME WINDOWS: ALGORITHMS AND TEST CASE GENERATION HOONG CHUIN LAU ZHE LIANG School of Computing, National University of Singapore, Singapore 117543. In the pickup and delivery

More information

Reload Cost Trees and Network Design

Reload Cost Trees and Network Design Reload Cost Trees and Network Design Ioannis Gamvros, ILOG, Inc., 1080 Linda Vista Avenue, Mountain View, CA 94043, USA Luis Gouveia, Faculdade de Ciencias da Universidade de Lisboa, Portugal S. Raghavan,

More information

Integer Programming Theory

Integer Programming Theory Integer Programming Theory Laura Galli October 24, 2016 In the following we assume all functions are linear, hence we often drop the term linear. In discrete optimization, we seek to find a solution x

More information

Primal Heuristics for Branch-and-Price Algorithms

Primal Heuristics for Branch-and-Price Algorithms Primal Heuristics for Branch-and-Price Algorithms Marco Lübbecke and Christian Puchert Abstract In this paper, we present several primal heuristics which we implemented in the branch-and-price solver GCG

More information

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems

A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems A Comparison of Mixed-Integer Programming Models for Non-Convex Piecewise Linear Cost Minimization Problems Keely L. Croxton Fisher College of Business The Ohio State University Bernard Gendron Département

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

The MIP-Solving-Framework SCIP

The MIP-Solving-Framework SCIP The MIP-Solving-Framework SCIP Timo Berthold Zuse Institut Berlin DFG Research Center MATHEON Mathematics for key technologies Berlin, 23.05.2007 What Is A MIP? Definition MIP The optimization problem

More information

Principles of Optimization Techniques to Combinatorial Optimization Problems and Decomposition [1]

Principles of Optimization Techniques to Combinatorial Optimization Problems and Decomposition [1] International Journal of scientific research and management (IJSRM) Volume 3 Issue 4 Pages 2582-2588 2015 \ Website: www.ijsrm.in ISSN (e): 2321-3418 Principles of Optimization Techniques to Combinatorial

More information

A. Atamturk. G.L. Nemhauser. M.W.P. Savelsbergh. Georgia Institute of Technology. School of Industrial and Systems Engineering.

A. Atamturk. G.L. Nemhauser. M.W.P. Savelsbergh. Georgia Institute of Technology. School of Industrial and Systems Engineering. A Combined Lagrangian, Linear Programming and Implication Heuristic for Large-Scale Set Partitioning Problems 1 A. Atamturk G.L. Nemhauser M.W.P. Savelsbergh Georgia Institute of Technology School of Industrial

More information

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms

MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms MVE165/MMG631 Linear and integer optimization with applications Lecture 9 Discrete optimization: theory and algorithms Ann-Brith Strömberg 2018 04 24 Lecture 9 Linear and integer optimization with applications

More information

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm

Part 4. Decomposition Algorithms Dantzig-Wolf Decomposition Algorithm In the name of God Part 4. 4.1. Dantzig-Wolf Decomposition Algorithm Spring 2010 Instructor: Dr. Masoud Yaghini Introduction Introduction Real world linear programs having thousands of rows and columns.

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture - 35 Quadratic Programming In this lecture, we continue our discussion on

More information

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 20. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 20 Dr. Ted Ralphs IE406 Lecture 20 1 Reading for This Lecture Bertsimas Sections 10.1, 11.4 IE406 Lecture 20 2 Integer Linear Programming An integer

More information

SCHOOL OF COMPUTER STUDIES RESEARCH REPORT SERIES

SCHOOL OF COMPUTER STUDIES RESEARCH REPORT SERIES University of Leeds SCHOOL OF COMPUTER STUDIES RESEARCH REPORT SERIES Report 96.22 A Column Generation Approach to Bus Driver Scheduling by Sarah Fores, Les Proll & Anthony Wren Division of Operational

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM

9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM 9.4 SOME CHARACTERISTICS OF INTEGER PROGRAMS A SAMPLE PROBLEM Whereas the simplex method is effective for solving linear programs, there is no single technique for solving integer programs. Instead, a

More information

An Algorithm for a 3-Level Location-Routing Problem

An Algorithm for a 3-Level Location-Routing Problem An Algorithm for a 3-Level Location-Routing Problem Leonardo Souza Ribeiro Production Engineering Dept., COPPE/UFRJ Cidade Universitária, CT, Bloco F, Sala 03, RJ, Brasil Petrobras Avenida Almirante Barroso

More information

Optimal Placement by Branch-and-Price

Optimal Placement by Branch-and-Price Optimal Placement by Branch-and-Price Pradeep Ramachandaran 1 Ameya R. Agnihotri 2 Satoshi Ono 2,3,4 Purushothaman Damodaran 1 Krishnaswami Srihari 1 Patrick H. Madden 2,4 SUNY Binghamton SSIE 1 and CSD

More information

Column Generation Based Primal Heuristics

Column Generation Based Primal Heuristics Column Generation Based Primal Heuristics C. Joncour, S. Michel, R. Sadykov, D. Sverdlov, F. Vanderbeck University Bordeaux 1 & INRIA team RealOpt Outline 1 Context Generic Primal Heuristics The Branch-and-Price

More information

Math Models of OR: The Simplex Algorithm: Practical Considerations

Math Models of OR: The Simplex Algorithm: Practical Considerations Math Models of OR: The Simplex Algorithm: Practical Considerations John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA September 2018 Mitchell Simplex Algorithm: Practical Considerations

More information

Column Generation and its applications

Column Generation and its applications Column Generation and its applications Murat Firat, dept. IE&IS, TU/e BPI Cluster meeting Outline Some real-life decision problems Standard formulations Basics of Column Generation Master formulations

More information

The SYMPHONY Callable Library for Mixed-Integer Linear Programming

The SYMPHONY Callable Library for Mixed-Integer Linear Programming The SYMPHONY Callable Library for Mixed-Integer Linear Programming Ted Ralphs and Menal Guzelsoy Industrial and Systems Engineering Lehigh University INFORMS Computing Society Conference, Annapolis, MD,

More information

Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem

Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem Branch-and-Cut and GRASP with Hybrid Local Search for the Multi-Level Capacitated Minimum Spanning Tree Problem Eduardo Uchoa Túlio A.M. Toffolo Mauricio C. de Souza Alexandre X. Martins + Departamento

More information

Using Column Generation for the Pickup and Delivery Problem with Disturbances

Using Column Generation for the Pickup and Delivery Problem with Disturbances Master Thesis Using Column Generation for the Pickup and Delivery Problem with Disturbances Author: Dirk Koning Supervisors: dr. ir. J.M. van den Akker dr. J.A. Hoogeveen Thesis number: ICA-0319791 June

More information

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov

An Extension of the Multicut L-Shaped Method. INEN Large-Scale Stochastic Optimization Semester project. Svyatoslav Trukhanov An Extension of the Multicut L-Shaped Method INEN 698 - Large-Scale Stochastic Optimization Semester project Svyatoslav Trukhanov December 13, 2005 1 Contents 1 Introduction and Literature Review 3 2 Formal

More information

Final Exam Spring 2003

Final Exam Spring 2003 .8 Final Exam Spring Name Instructions.. Please answer all questions in the exam books that are provided.. Please budget your time carefully. It is often a good idea to read the entire exam first, so that

More information

Optimization Methods in Management Science

Optimization Methods in Management Science Problem Set Rules: Optimization Methods in Management Science MIT 15.053, Spring 2013 Problem Set 6, Due: Thursday April 11th, 2013 1. Each student should hand in an individual problem set. 2. Discussing

More information

The Paired Assignment Problem

The Paired Assignment Problem Open Journal of Discrete Mathematics, 04, 4, 44-54 Published Online April 04 in SciRes http://wwwscirporg/ournal/odm http://dxdoiorg/0436/odm044007 The Paired Assignment Problem Vardges Melkonian Department

More information

A Benders decomposition approach for the robust shortest path problem with interval data

A Benders decomposition approach for the robust shortest path problem with interval data A Benders decomposition approach for the robust shortest path problem with interval data R. Montemanni, L.M. Gambardella Istituto Dalle Molle di Studi sull Intelligenza Artificiale (IDSIA) Galleria 2,

More information

Algorithms for Integer Programming

Algorithms for Integer Programming Algorithms for Integer Programming Laura Galli November 9, 2016 Unlike linear programming problems, integer programming problems are very difficult to solve. In fact, no efficient general algorithm is

More information

3 INTEGER LINEAR PROGRAMMING

3 INTEGER LINEAR PROGRAMMING 3 INTEGER LINEAR PROGRAMMING PROBLEM DEFINITION Integer linear programming problem (ILP) of the decision variables x 1,..,x n : (ILP) subject to minimize c x j j n j= 1 a ij x j x j 0 x j integer n j=

More information

V. Solving Integer Linear Programs

V. Solving Integer Linear Programs Optimization Methods Draft of August 26, 2005 V. Solving Integer Linear Programs Robert Fourer Department of Industrial Engineering and Management Sciences Northwestern University Evanston, Illinois 60208-3119,

More information

A Hybrid Recursive Multi-Way Number Partitioning Algorithm

A Hybrid Recursive Multi-Way Number Partitioning Algorithm Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence A Hybrid Recursive Multi-Way Number Partitioning Algorithm Richard E. Korf Computer Science Department University

More information

Manpower Planning: Task Scheduling. Anders Høeg Dohn

Manpower Planning: Task Scheduling. Anders Høeg Dohn : Task Scheduling Anders Høeg Dohn Scope During these lectures I will: Go over some of the practical problems encountered in manpower planning. Rostering Task Scheduling Propose models that can be used

More information

Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem

Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem Disjunctive cuts in branch-and-but-and-price algorithms Application to the capacitated vehicle routing problem Stefan Ropke Technical University of Denmark, Department of Transport (DTU Transport) Column

More information

Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition

Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition 2 INFORMS Journal on Computing 0899-1499 100 1201-0002 $05.00 Vol. 12, No. 1, Winter 2000 2000 INFORMS Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition ELLIS L. JOHNSON,

More information

is shown that this problem can be modeled as an MILP, a CP, a combined MILP-CP OPL model (Hentenryck (1999)), and a hybrid MILP/CP model. The computat

is shown that this problem can be modeled as an MILP, a CP, a combined MILP-CP OPL model (Hentenryck (1999)), and a hybrid MILP/CP model. The computat Algorithms for hybrid MILP/CP models for a class of optimization problems Vipul Jain Λ and Ignacio E. Grossmann y Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA 15213 October

More information

An IP Framework for the Crew Pairing Problem using Subsequence Generation

An IP Framework for the Crew Pairing Problem using Subsequence Generation An IP Framework for the Crew Pairing Problem using Subsequence Generation Report 10 2011 DTU Management Engineering Matias Sevel Rasmussen Richard M. Lusby David M. Ryan Jesper Larsen June 2011 An IP Framework

More information

Contents. Preface CHAPTER III

Contents. Preface CHAPTER III Optimization Edited by G.L. Nemhauser Georgia Institute of Technology A.H.G. Rinnooy Kan Erasmus University Rotterdam M.J. Todd Cornell Univerisity 1989 NORTH-HOLLAND AMSTERDAM NEW YORK OXFORD TOKYO Preface

More information

Using Column Generation for the Bus Line Planning Problem

Using Column Generation for the Bus Line Planning Problem Using Column Generation for the Bus Line Planning Problem Master Thesis Econometrics and Management Science Kai Huiskamp* Erasmus School of Economics Erasmus University Rotterdam December 2016 Abstract

More information

Christian H. Christiansen & Jens Lysgaard. A Column Generation Approach to the Capacitated Vehicle Routing Problem with Stochastic Demands

Christian H. Christiansen & Jens Lysgaard. A Column Generation Approach to the Capacitated Vehicle Routing Problem with Stochastic Demands WORKING PAPER L-2006-04 Christian H. Christiansen & Jens Lysgaard A Column Generation Approach to the Capacitated Vehicle Routing Problem with Stochastic Demands Logistics/SCM Research Group A Column Generation

More information

TIM 206 Lecture Notes Integer Programming

TIM 206 Lecture Notes Integer Programming TIM 206 Lecture Notes Integer Programming Instructor: Kevin Ross Scribe: Fengji Xu October 25, 2011 1 Defining Integer Programming Problems We will deal with linear constraints. The abbreviation MIP stands

More information

Branch-Cut-and-Price solver for Vehicle Routing Problems

Branch-Cut-and-Price solver for Vehicle Routing Problems 1 / 28 Branch-Cut-and-Price solver for Vehicle Routing Problems Ruslan Sadykov 1,2 Issam Tahiri 1,2 François Vanderbeck 2,1 Remi Duclos 1 Artur Pessoa 3 Eduardo Uchoa 3 1 Inria Bordeaux, France 2 Université

More information

Integer Programming and Network Modeis

Integer Programming and Network Modeis H.A. Eiselt C.-L. Sandblom Integer Programming and Network Modeis With Contributions by K. Spielberg, E. Richards, B.T. Smith, G. Laporte, B.T. Boffey With 165 Figures and 43 Tables &m Springer CONTENTS

More information

1 date: September 15, 1998 file: mitche2

1 date: September 15, 1998 file: mitche2 1 date: September 15, 1998 file: mitche2 BRANCH-AND-CUT ALGORITHMS FOR INTEGER PROGRAMMING, Branch-and-cut Branch-and-cut methods are exact algorithms for integer programming problems. They consist of

More information

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2

2. Modeling AEA 2018/2019. Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 2. Modeling AEA 2018/2019 Based on Algorithm Engineering: Bridging the Gap Between Algorithm Theory and Practice - ch. 2 Content Introduction Modeling phases Modeling Frameworks Graph Based Models Mixed

More information

Benders Decomposition

Benders Decomposition Benders Decomposition Using projections to solve problems thst@man.dtu.dk DTU-Management Technical University of Denmark 1 Outline Introduction Using projections Benders decomposition Simple plant location

More information

Plant location with minimum inventory

Plant location with minimum inventory Mathematical Programming 83 (1998) 101-111 Plant location with minimum inventory Francisco Barahona *, David Jensen IBM, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA

More information

DRIVE: Martin Savelsbergh. School of Industrial and Systems Engineering. Georgia Institute of Technology. Marc Sol

DRIVE: Martin Savelsbergh. School of Industrial and Systems Engineering. Georgia Institute of Technology. Marc Sol DRIVE: Dynamic Routing of Independent VEhicles Martin Savelsbergh School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, GA 30332-0205 U.S.A. Marc Sol Department of Mathematics

More information

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch.

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch. Iterative Improvement Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change the current feasible

More information

An Improved Decomposition Algorithm and Computer Technique for Solving LPs

An Improved Decomposition Algorithm and Computer Technique for Solving LPs International Journal of Basic & Applied Sciences IJBAS-IJENS Vol: 11 No: 0 12 An Improved Decomposition Algorithm and Computer Technique for Solving LPs Md. Istiaq Hossain and M Babul Hasan Abstract -

More information

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010

George Reloaded. M. Monaci (University of Padova, Italy) joint work with M. Fischetti. MIP Workshop, July 2010 George Reloaded M. Monaci (University of Padova, Italy) joint work with M. Fischetti MIP Workshop, July 2010 Why George? Because of Karzan, Nemhauser, Savelsbergh Information-based branching schemes for

More information

A robust optimization based approach to the general solution of mp-milp problems

A robust optimization based approach to the general solution of mp-milp problems 21 st European Symposium on Computer Aided Process Engineering ESCAPE 21 E.N. Pistikopoulos, M.C. Georgiadis and A. Kokossis (Editors) 2011 Elsevier B.V. All rights reserved. A robust optimization based

More information

A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints

A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints A Meta-heuristic Applied for a Topologic Pickup and Delivery Problem with Time Windows Constraints Jesús Fabián López Pérez Post-Graduate Program of Management Science, FACPYA UANL, Monterrey, México fabian.lopez@e-arca.com.mx

More information

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem

A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem A Generic Separation Algorithm and Its Application to the Vehicle Routing Problem Presented by: Ted Ralphs Joint work with: Leo Kopman Les Trotter Bill Pulleyblank 1 Outline of Talk Introduction Description

More information

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen

Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen Construction of Minimum-Weight Spanners Mikkel Sigurd Martin Zachariasen University of Copenhagen Outline Motivation and Background Minimum-Weight Spanner Problem Greedy Spanner Algorithm Exact Algorithm:

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Given an NP-hard problem, what should be done? Theory says you're unlikely to find a poly-time algorithm. Must sacrifice one of three desired features. Solve problem to optimality.

More information

Comparison of heuristic approaches for the multiple depot vehicle scheduling problem

Comparison of heuristic approaches for the multiple depot vehicle scheduling problem Comparison of heuristic approaches for the multiple depot vehicle scheduling problem Ann-Sophie Pepin, Guy Desaulniers, Alain Hertz, Dennis Huisman Giro Inc. Montreal, Canada annsophie.pepin@giro.ca École

More information

Implicit Hitting Set Problems

Implicit Hitting Set Problems Implicit Hitting Set Problems Paul A. Rubin April 15, 2016 Paul A. Rubin Implicit Hitting Set Problems April 15, 2016 1 / 39 Thank you INFORMS Student Chapter at the for the invitation to speak today.

More information

Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications

Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications Implementing Scalable Parallel Search Algorithms for Data-Intensive Applications Ted Ralphs Industrial and Systems Engineering Lehigh University http://www.lehigh.edu/~tkr2 Laszlo Ladanyi IBM T.J. Watson

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Comparison of heuristic approaches for the multiple depot vehicle scheduling problem

Comparison of heuristic approaches for the multiple depot vehicle scheduling problem Comparison of heuristic approaches for the multiple depot vehicle scheduling problem Ann-Sophie Pepin, Guy Desaulniers, Alain Hertz, Dennis Huisman Giro Inc., Montreal, Canada annsophie.pepin@giro.ca École

More information

Large-Scale Optimization and Logical Inference

Large-Scale Optimization and Logical Inference Large-Scale Optimization and Logical Inference John Hooker Carnegie Mellon University October 2014 University College Cork Research Theme Large-scale optimization and logical inference. Optimization on

More information