X86 Assembly -Procedure II:1

Size: px
Start display at page:

Download "X86 Assembly -Procedure II:1"

Transcription

1 X86 Assembly -Procedure II:1

2 IA32 Object Code Setup Label.L61 becomes address 0x Label.L62 becomes address 0x80488dc Assembly Code switch_eg:... ja.l61 # if > goto default jmp *.L62(,%edx,4) # goto JTab[x] Disassembled Object Code <switch_eg>: : 77 0c ja : ff dc jmp *0x80488dc(,%edx,4) II:3

3 Types of jumps Direct jump Absolute jump je $0x PC relative jump je $14 je $-14 Indirect jump jmp%eax jmp8(%eax) jmp(%eax, %ebx, 4) II:4

4 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack Bottom Increasing Addresses Register contains lowest stack address = address of top element Stack Pointer: Stack Grows Down Stack Top II:5

5 IA32 Stack: Push pushl Src Fetch operand at Src Decrement by 4 Write operand at address given by Stack Bottom Increasing Addresses Stack Grows Down Stack Pointer: -4 Stack Top II:6

6 IA32 Stack: Pop popl Dest Read operand at address Increment by 4 Write operand to Dest Stack Bottom Increasing Addresses Stack Pointer: +4 Stack Grows Down Stack Top II:7

7 Procedure Control Flow Use stack to support procedure call and return Procedure call: call label Push return address on stack Jump to label Return address: Address of instruction beyond call Example from disassembly e: e8 3d call 8048b90 <main> : 50 pushl %eax Return address = 0x Procedure return: ret Pop address from stack Jump to address II:8

8 Procedure Call Example e: e8 3d call 8048b90 <main> : 50 pushl %eax call 8048b90 0x110 0x110 0x10c 0x10c 0x x x104 0x x108 0x108 0x104 %eip 0x804854e %eip 0x804854e 0x8048b90 %eip: program counter II:9

9 Procedure Return Example : c3 ret ret 0x110 0x110 0x10c 0x10c 0x x x104 0x x x104 0x104 0x108 %eip 0x %eip 0x x %eip: program counter II:10

10 Stack-Based Languages Languages that support recursion e.g., C, Pascal, Java Code must be Reentrant Multiple simultaneous instantiations of single procedure Need some place to store state of each instantiation Arguments Local variables Return pointer Stack discipline State for given procedure needed for limited time From when called to when return Callee returns before caller does Stack allocated in Frames State for single procedure instantiation II:11

11 Call Chain Example yoo( ) { who(); } who( ) { (); (); } ( ) { (); } Example Call Chain yoo who Procedure is recursive II:12

12 Stack Frames Contents Local variables Return information Temporary space Frame Pointer: Stack Pointer: Previous Frame Frame for proc Management Space allocated when procedure entered Set-up code Deallocated when return Finish code Stack Top II:13

13 Example Stack yoo( ) { who(); } yoo who yoo II:14

14 Example Stack who( ) { (); (); } yoo who yoo who II:15

15 Example Stack ( ) { (); } yoo who yoo who II:16

16 Example Stack ( ) { (); } yoo who yoo who II:17

17 Example Stack ( ) { (); } yoo who yoo who II:18

18 Example Stack ( ) { (); } yoo who yoo who II:19

19 Example Stack ( ) { (); } yoo who yoo who II:20

20 Example Stack who( ) { (); (); } yoo who yoo who II:21

21 Example Stack ( ) { } yoo who yoo who II:22

22 Example Stack who( ) { (); (); } yoo who yoo who II:23

23 Example Stack yoo( ) { who(); } yoo who yoo II:24

24 IA32/Linux Stack Frame Current Stack Frame ( Top to Bottom) Argument build: Parameters for function about to call Local variables If can t keep in registers Saved register context Old frame pointer Caller Stack Frame Return address Pushed by call instruction Arguments for this call Frame pointer Stack pointer Caller Frame Arguments Return Addr Old Saved Registers + Local Variables Argument Build II:25

25 Revisiting swap int zip1 = 15213; int zip2 = 91125; void call_swap() { swap(&zip1, &zip2); } Calling swap from call_swap call_swap: pushl $zip2 # Global Var pushl $zip1 # Global Var call swap void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } &zip2 &zip1 Rtn adr Resulting Stack II:26

26 Revisiting swap void swap(int *xp, int *yp) { int t0 = *xp; int t1 = *yp; *xp = t1; *yp = t0; } swap: pushl movl, pushl %ebx movl 12(),%ecx movl 8(),%edx movl (%ecx),%eax movl (%edx),%ebx movl %eax,(%edx) movl %ebx,(%ecx) movl -4(),%ebx movl, popl ret Set Up Body Finish II:27

27 swapsetup #1 Entering Stack Resulting Stack &zip2 yp &zip1 xp Rtn adr Rtn adr Old swap: pushl movl, pushl %ebx II:28

28 swapsetup #1 Entering Stack &zip2 yp &zip1 xp Rtn adr Rtn adr Old swap: pushl movl, pushl %ebx II:29

29 swapsetup #1 Entering Stack Resulting Stack &zip2 &zip1 Rtn adr yp xp Rtn adr Old swap: pushl movl, pushl %ebx II:30

30 swapsetup #1 Entering Stack &zip2 &zip1 Rtn adr yp xp Rtn adr Old swap: pushl movl, pushl %ebx II:31

31 swapsetup #1 Entering Stack Resulting Stack &zip2 &zip1 Rtn adr Offset relative to yp xp Rtn adr Old Old %ebx movl 12(),%ecx # get yp movl 8(),%edx # get xp... II:32

32 swapfinish #1 swap s Stack Resulting Stack yp yp xp xp Rtn adr Rtn adr Old Old Old %ebx Old %ebx movl -4(),%ebx movl, popl ret Observation: Saved and restored register %ebx II:33

33 swapfinish #2 swap s Stack yp yp xp xp Rtn adr Rtn adr Old Old Old %ebx Old %ebx movl -4(),%ebx movl, popl ret II:34

34 swapfinish #2 swap s Stack Resulting Stack yp yp xp xp Rtn adr Rtn adr Old Old %ebx Old movl -4(),%ebx movl, popl ret II:35

35 swapfinish #2 swap s Stack yp yp xp xp Rtn adr Rtn adr Old Old %ebx Old movl -4(),%ebx movl, popl ret II:36

36 swapfinish #3 swap s Stack Resulting Stack yp xp Rtn adr Old Old %ebx yp xp Rtn adr movl -4(),%ebx movl, popl ret II:37

37 swapfinish #4 swap s Stack yp xp Rtn adr Old Old %ebx yp xp Rtn adr movl -4(),%ebx movl, popl ret II:38

38 swapfinish #4 swap s Stack Resulting Stack yp xp Rtn adr Old Old %ebx yp xp movl -4(),%ebx movl, popl ret Observation Saved & restored register %ebx Didn t do so for %eax, %ecx, or %edx II:39

39 Register Saving Conventions When procedure yoo calls who: yoois the caller whois the callee Can register be used for temporary storage? yoo: movl $15213, %edx call who addl %edx, %eax ret Contents of register %edx overwritten by who who: movl 8(), %edx addl $91125, %edx ret II:40

40 Register Saving Conventions When procedure yoo calls who: yoois the caller whois the callee Can register be used for temporary storage? Conventions Caller Save Caller saves temporary in its frame before calling Callee Save Callee saves temporary in its frame before using II:41

41 Parents leaving for weekend analogy (1/5) Parents (main) leaving for weekend They (caller) give keys to the house to kid (callee) with the rules (calling conventions): You can trash the temporaryroom(s), like the den and basement (registers) if you want, we don t care about it BUTyou d better leave the rooms (registers) that we want to savefor the guests untouched. these rooms better look the same when we return! Who hasn t heard this in their life? II:42

42 Parents leaving for weekend analogy (2/5) Kid now owns rooms (registers) Kid wants to use the savedrooms for a wild, wild party (computation) What does kid (callee) do? Kid takes what was in these rooms and puts them in the garage (memory) Kid throws the party, trashes everything(except garage, who ever goes in there?) Kid restores the rooms the parents wantedsaved after the partyby replacing the items from the garage (memory) back into those saved rooms II:43

43 Parents leaving for weekend analogy (3/5) Same scenario, except beforeparents return and kid replaces saved rooms Kid (callee) has left valuable stuff (data) all over. Kid s friend (another callee) wants the house for a party when the kidis away Kid knows that friend might trash the place destroying valuable stuff! Kid remembers rule parents taught and now becomes the parent (caller), instructing friend (callee) on good rules (conventions) of house. II:44

44 Parents leaving for weekend analogy (4/5) If kid had data in temporary rooms (which were going to be trashed), there are three options: Move items directly to garage (memory) Move items to saved roomswhose contents have already been moved to the garage (memory) Optimize lifestyle (code) so that the amount you ve got to shlepstuff back and forth from garage (memory) is minimized. Mantra: Minimize register footprint Otherwise: Dude, where s my data?! II:45

45 Parents leaving for weekend analogy (5/5) Friend now owns rooms (registers) Friend wants to use the savedrooms for a wild, wild party (computation) What does friend (callee) do? Friend takes what was in these rooms and puts them in the garage (memory) Friend throws the party, trashes everything (except garage) Friend restores the rooms the kid wantedsaved after the partyby replacing the items from the garage (memory) back into those saved rooms II:46

46 IA32/Linux Register Usage %eax, %edx, %ecx Caller saves prior to call if values are used later %eax Also used to return integer value %ebx, %esi, %edi Calleesaves if wants to use them Caller-Save Temporaries Callee-Save Temporaries Special %eax %edx %ecx %ebx %esi %edi, Special II:47

47 Recursive Factorial int rfact(int x) { int rval; if (x <= 1) return 1; rval = rfact(x-1); return rval * x; } Registers %eax used without first saving %ebxused, but saved at beginning & restored at end rfact: pushl movl, pushl %ebx movl 8(),%ebx cmpl $1,%ebx jle.l78 leal -1(%ebx),%eax pushl %eax call rfact imull %ebx,%eax jmp.l79.align 4.L78: movl $1,%eax.L79: movl -4(),%ebx movl, popl ret II:48

48 Pointer Code Recursive Procedure void s_helper (int x, int *accum) { if (x <= 1) return; else { int z = *accum * x; *accum = z; s_helper(x-1,accum); } } Top-Level Call int sfact(int x) { int val = 1; s_helper(x, &val); return val; } Pass pointer to update location How many copies of val,accumand x? II:49

49 Creating & Initializing Pointer int sfact(int x) { int val = 1; s_helper(x, &val); return val; } Variable val must be stored on stack Need to create pointer to it Compute pointer as -4() Push on stack as second argument Initial part of sfact _sfact: pushl # Save movl, # Set subl $16, # Add 16 bytes movl 8(),%edx # edx = x movl $1,-4() # val = 1 8 x 4 Rtn adr 0 Old -4 val = 1-8 Temp. -12 Unused Space -16 II:50

50 Passing Pointer int sfact(int x) { int val = 1; s_helper(x, &val); return val; } Calling s_helper from sfact leal -4(),%eax # Compute &val pushl %eax # Push on stack pushl %edx # Push x call s_helper # call movl -4(),%eax # Return val # Finish Stack at time of call 8 x 4 Rtn adr 0 Old -4 val=x! = Unused -16 &val x II:51

51 IA 32 Procedure Summary The stack makes recursion work Private storage for each instance of procedure call Instantiations don t clobber each other Addressing of locals + arguments can be relative to stack positions Managed by stack discipline Procedures return in inverse order of calls IA32 procedures combination of instructions + conventions Call / Ret instructions Register usage conventions Caller / Calleesave and Stack frame organization conventions Caller Frame Arguments Return Addr Old Saved Registers + Local Variables Argument Build II:52

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables class07.ppt

More information

Machine-level Programming (3)

Machine-level Programming (3) Machine-level Programming (3) Procedures A: call A call A return Two issues How to return to the correct position? How to pass arguments and return values between callee to caller? 2 Procedure Control

More information

CS213. Machine-Level Programming III: Procedures

CS213. Machine-Level Programming III: Procedures CS213 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows toward

More information

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly III: Procedures Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32 (1) Characteristics Region of memory managed with stack discipline

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element Machine Representa/on of Programs: Procedures Instructors: Sanjeev Se(a 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoGom Increasing Addresses Register

More information

Machine-Level Programming III: Procedures

Machine-Level Programming III: Procedures Machine-Level Programming III: Procedures IA32 Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address address of top element Bottom Increasing

More information

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping Lecture 5 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Machine-Level Programming III: Procedures Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created

More information

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region

More information

Sungkyunkwan University

Sungkyunkwan University Switch statements IA 32 Procedures Stack Structure Calling Conventions Illustrations of Recursion & Pointers long switch_eg (long x, long y, long z) { long w = 1; switch(x) { case 1: w = y*z; break; case

More information

Page 1. IA32 Stack CISC 360. Machine-Level Programming III: Procedures Sept. 22, IA32 Stack Popping Stack Bottom. IA32 Stack Pushing

Page 1. IA32 Stack CISC 360. Machine-Level Programming III: Procedures Sept. 22, IA32 Stack Popping Stack Bottom. IA32 Stack Pushing CISC 36 Machine-Level Programming III: Procedures Sept. 22, 2 IA32 Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address address of top element

More information

Systems I. Machine-Level Programming V: Procedures

Systems I. Machine-Level Programming V: Procedures Systems I Machine-Level Programming V: Procedures Topics abstraction and implementation IA32 stack discipline Procedural Memory Usage void swap(int *xp, int *yp) int t0 = *xp; int t1 = *yp; *xp = t1; *yp

More information

University of Washington

University of Washington Roadmap C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq %rbp movq %rsp, %rbp... popq %rbp

More information

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address IA32 Procedures 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoDom Increasing Addresses Register contains lowest stack address address of top element Stack

More information

Machine Programming 3: Procedures

Machine Programming 3: Procedures Machine Programming 3: Procedures CS61, Lecture 5 Prof. Stephen Chong September 15, 2011 Announcements Assignment 2 (Binary bomb) due next week If you haven t yet please create a VM to make sure the infrastructure

More information

An Experience Like No Other. Stack Discipline Aug. 30, 2006

An Experience Like No Other. Stack Discipline Aug. 30, 2006 15-410 An Experience Like No Other Discipline Aug. 30, 2006 Bruce Maggs Dave Eckhardt Slides originally stolen from 15-213 15-410, F 06 Synchronization Registration If you're here but not registered, please

More information

Stack Discipline Jan. 19, 2018

Stack Discipline Jan. 19, 2018 15-410 An Experience Like No Other Discipline Jan. 19, 2018 Dave Eckhardt Brian Railing Slides originally stolen from 15-213 1 15-410, S 18 Synchronization Registration The wait list will probably be done

More information

Machine- Level Programming III: Switch Statements and IA32 Procedures

Machine- Level Programming III: Switch Statements and IA32 Procedures Machine- Level Programming III: Switch Statements and IA32 Procedures CS 485: Systems Programming Fall 2015 Instructor: James Griffioen Adapted from slides by R. Bryant and D. O Hallaron (hjp://csapp.cs.cmu.edu/public/instructors.html)

More information

211: Computer Architecture Summer 2016

211: Computer Architecture Summer 2016 211: Computer Architecture Summer 2016 Liu Liu Topic: Assembly Programming Storage - Assembly Programming: Recap - project2 - Structure/ Array Representation - Structure Alignment Rutgers University Liu

More information

Machine- Level Programming III: Switch Statements and IA32 Procedures

Machine- Level Programming III: Switch Statements and IA32 Procedures Machine- Level Programming III: Switch Statements and IA32 Procedures 15-213: Introduc;on to Computer Systems 6 th Lecture, Sep. 9, 2010 Instructors: Randy Bryant and Dave O Hallaron Today Switch statements

More information

hnp://

hnp:// The bots face off in a tournament against one another and about an equal number of humans, with each player trying to score points by elimina&ng its opponents. Each player also has a "judging gun" in addi&on

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly III: Procedures Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Mechanisms in Procedures Passing control To beginning of procedure code

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and returning Passing parameters Storing local variables Handling registers without interference

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and returning" Passing parameters" Storing local variables" Handling registers without interference"

More information

This is a medical robot, guided by a skilled surgeon and designed to get to places doctors are unable to reach without opening a pacent up.

This is a medical robot, guided by a skilled surgeon and designed to get to places doctors are unable to reach without opening a pacent up. BBC Headline: Slashdot Headline: Robots join the fight against cancer Robot Snakes To Fight Cancer Via Natural Orifice Surgery This is a medical robot, guided by a skilled surgeon and designed to get to

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and urning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Systems Programming and Computer Architecture ( )

Systems Programming and Computer Architecture ( ) Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-0061-00) Timothy Roscoe Herbstsemester 2016 AS 2016 Compiling C Control Flow 1 8: Compiling C

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and urning Passing parameters Storing local variables Handling registers without interference Returning

More information

University*of*Washington*

University*of*Washington* Roadmap* C:* car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly* language:* Machine* code:* Computer* system:* get_mpg: pushq movq... popq %rbp %rsp,

More information

Assembly I: Basic Operations. Computer Systems Laboratory Sungkyunkwan University

Assembly I: Basic Operations. Computer Systems Laboratory Sungkyunkwan University Assembly I: Basic Operations Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Moving Data (1) Moving data: movl source, dest Move 4-byte ( long )

More information

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

Assembly I: Basic Operations. Jo, Heeseung

Assembly I: Basic Operations. Jo, Heeseung Assembly I: Basic Operations Jo, Heeseung Moving Data (1) Moving data: movl source, dest Move 4-byte ("long") word Lots of these in typical code Operand types Immediate: constant integer data - Like C

More information

ASSEMBLY I: BASIC OPERATIONS. Jo, Heeseung

ASSEMBLY I: BASIC OPERATIONS. Jo, Heeseung ASSEMBLY I: BASIC OPERATIONS Jo, Heeseung MOVING DATA (1) Moving data: movl source, dest Move 4-byte ("long") word Lots of these in typical code Operand types Immediate: constant integer data - Like C

More information

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p

Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p Turning C into Object Code Code in files p1.c p2.c Compile with command: gcc -O p1.c p2.c -o p Use optimizations (-O) Put resulting binary in file p text C program (p1.c p2.c) Compiler (gcc -S) text Asm

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: February 28, 2018 at 06:32 CS429 Slideset 9: 1 Mechanisms in Procedures

More information

CS241 Computer Organization Spring 2015 IA

CS241 Computer Organization Spring 2015 IA CS241 Computer Organization Spring 2015 IA-32 2-10 2015 Outline! Review HW#3 and Quiz#1! More on Assembly (IA32) move instruction (mov) memory address computation arithmetic & logic instructions (add,

More information

Mechanisms in Procedures. CS429: Computer Organization and Architecture. x86-64 Stack. x86-64 Stack Pushing

Mechanisms in Procedures. CS429: Computer Organization and Architecture. x86-64 Stack. x86-64 Stack Pushing CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: February 28, 2018 at 06:32 Mechanisms in Procedures Passing Control

More information

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016 CS 31: Intro to Systems Functions and the Stack Martin Gagne Swarthmore College February 23, 2016 Reminders Late policy: you do not have to send me an email to inform me of a late submission before the

More information

CS241 Computer Organization Spring Addresses & Pointers

CS241 Computer Organization Spring Addresses & Pointers CS241 Computer Organization Spring 2015 Addresses & Pointers 2-24 2015 Outline! Addresses & Pointers! leal - load effective address! Condition Codes & Jumps! conditional statements: if-then-else! conditional

More information

1 /* file cpuid2.s */ 4.asciz "The processor Vendor ID is %s \n" 5.section.bss. 6.lcomm buffer, section.text. 8.globl _start.

1 /* file cpuid2.s */ 4.asciz The processor Vendor ID is %s \n 5.section.bss. 6.lcomm buffer, section.text. 8.globl _start. 1 /* file cpuid2.s */ 2.section.data 3 output: 4.asciz "The processor Vendor ID is %s \n" 5.section.bss 6.lcomm buffer, 12 7.section.text 8.globl _start 9 _start: 10 movl $0, %eax 11 cpuid 12 movl $buffer,

More information

Machine-Level Programming III: Procedures

Machine-Level Programming III: Procedures Machine-Level Programming III: Procedures CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides Mechanisms in Procedures Passing control

More information

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction

Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction Assembly Programmer s View Lecture 4A Machine-Level Programming I: Introduction E I P CPU isters Condition Codes Addresses Data Instructions Memory Object Code Program Data OS Data Topics Assembly Programmer

More information

Machine-Level Programming I: Introduction Jan. 30, 2001

Machine-Level Programming I: Introduction Jan. 30, 2001 15-213 Machine-Level Programming I: Introduction Jan. 30, 2001 Topics Assembly Programmer s Execution Model Accessing Information Registers Memory Arithmetic operations IA32 Processors Totally Dominate

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Machine-Level Programming III: Procedures 15-213/18-213/14-513/15-513: Introduction to Computer Systems 7 th Lecture, September 18, 2018 Today Procedures Mechanisms Stack Structure Calling

More information

Machine Level Programming II: Arithmetic &Control

Machine Level Programming II: Arithmetic &Control Machine Level Programming II: Arithmetic &Control Arithmetic operations Control: Condition codes Conditional branches Loops Switch Kai Shen 1 2 Some Arithmetic Operations Two Operand Instructions: Format

More information

Machine-level Programs Procedure

Machine-level Programs Procedure Computer Systems Machine-level Programs Procedure Han, Hwansoo Mechanisms in Procedures Passing control To beginning of procedure code Back to return point Passing data Procedure arguments Return value

More information

Machine-Level Programming II: Control and Arithmetic

Machine-Level Programming II: Control and Arithmetic Machine-Level Programming II: Control and Arithmetic CSCI 2400: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides 1 Today Complete addressing mode, address

More information

Data Representa/ons: IA32 + x86-64

Data Representa/ons: IA32 + x86-64 X86-64 Instruc/on Set Architecture Instructor: Sanjeev Se(a 1 Data Representa/ons: IA32 + x86-64 Sizes of C Objects (in Bytes) C Data Type Typical 32- bit Intel IA32 x86-64 unsigned 4 4 4 int 4 4 4 long

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View Processor

More information

Machine Programming 1: Introduction

Machine Programming 1: Introduction Machine Programming 1: Introduction CS61, Lecture 3 Prof. Stephen Chong September 8, 2011 Announcements (1/2) Assignment 1 due Tuesday Please fill in survey by 5pm today! Assignment 2 will be released

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant Carnegie Mellon University http://csapp.cs.cmu.edu CS:APP Instruction Set Architecture Assembly Language View! Processor

More information

Bonus slides. Garcia, Spring 2014 UCB. CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (18)

Bonus slides. Garcia, Spring 2014 UCB. CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (18) Bonus slides These are extra slides that used to be included in lecture notes, but have been moved to this, the bonus area to serve as a supplement. The slides will appear in the order they would have

More information

Process Layout and Function Calls

Process Layout and Function Calls Process Layout and Function Calls CS 6 Spring 07 / 8 Process Layout in Memory Stack grows towards decreasing addresses. is initialized at run-time. Heap grow towards increasing addresses. is initialized

More information

CISC 360. Machine-Level Programming I: Introduction Sept. 18, 2008

CISC 360. Machine-Level Programming I: Introduction Sept. 18, 2008 CISC 360 Machine-Level Programming I: Introduction Sept. 18, 2008 Topics Assembly Programmerʼs Execution Model Accessing Information Registers Memory Arithmetic operations IA32 Processors Totally Dominate

More information

Machine Program: Procedure. Zhaoguo Wang

Machine Program: Procedure. Zhaoguo Wang Machine Program: Procedure Zhaoguo Wang Requirements of procedure calls? P() { y = Q(x); y++; 1. Passing control int Q(int i) { int t, z; return z; Requirements of procedure calls? P() { y = Q(x); y++;

More information

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110 Questions 1 Question 4.1 1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a program. Your definition should describe the primary purpose of each phase. Question

More information

Machine Representa/on of Programs: Control Flow cont d. Previous lecture. Do- While loop. While- Do loop CS Instructors: Sanjeev Se(a

Machine Representa/on of Programs: Control Flow cont d. Previous lecture. Do- While loop. While- Do loop CS Instructors: Sanjeev Se(a Machine Representa/on of Programs: Control Flow cont d Instructors: Sanjeev Se(a 1 Previous lecture Do- While loop C Code Goto Version While- Do loop do while (Test); if (Test) goto loop Do- While Version

More information

X86 Stack Calling Function POV

X86 Stack Calling Function POV X86 Stack Calling Function POV Computer Systems Section 3.7 Stack Frame Reg Value ebp xffff FFF0 esp xffff FFE0 eax x0000 000E Memory Address Value xffff FFF8 xffff FFF4 x0000 0004 xffff FFF4 x0000 0003

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Warren Hunt, Jr. and Bill Young Department of Computer Sciences University of Texas at Austin Last updated: October 1, 2014 at 12:03 CS429 Slideset 6: 1 Topics

More information

Control flow. Condition codes Conditional and unconditional jumps Loops Switch statements

Control flow. Condition codes Conditional and unconditional jumps Loops Switch statements Control flow Condition codes Conditional and unconditional jumps Loops Switch statements 1 Conditionals and Control Flow Familiar C constructs l l l l l l if else while do while for break continue Two

More information

The course that gives CMU its Zip! Machine-Level Programming I: Introduction Sept. 10, 2002

The course that gives CMU its Zip! Machine-Level Programming I: Introduction Sept. 10, 2002 15-213 The course that gives CMU its Zip! Machine-Level Programming I: Introduction Sept. 10, 2002 Topics Assembly Programmer s Execution Model Accessing Information Registers Memory Arithmetic operations

More information

CSE 351: Week 4. Tom Bergan, TA

CSE 351: Week 4. Tom Bergan, TA CSE 35 Week 4 Tom Bergan, TA Does this code look okay? int binarysearch(int a[], int length, int key) { int low = 0; int high = length - ; while (low

More information

Machine-Level Programming II: Control Flow

Machine-Level Programming II: Control Flow Machine-Level Programming II: Control Flow Today Condition codes Control flow structures Next time Procedures Fabián E. Bustamante, Spring 2010 Processor state (ia32, partial) Information about currently

More information

Instructor: Alvin R. Lebeck

Instructor: Alvin R. Lebeck X86 Assembly Programming with GNU assembler Lecture 7 Instructor: Alvin R. Lebeck Some Slides based on those from Randy Bryant and Dave O Hallaron Admin Reading: Chapter 3 Note about pointers: You must

More information

CS61 Section Solutions 3

CS61 Section Solutions 3 CS61 Section Solutions 3 (Week of 10/1-10/5) 1. Assembly Operand Specifiers 2. Condition Codes 3. Jumps 4. Control Flow Loops 5. Procedure Calls 1. Assembly Operand Specifiers Q1 Operand Value %eax 0x104

More information

CISC 360 Instruction Set Architecture

CISC 360 Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

Machine-Level Programming II: Arithmetic & Control /18-243: Introduction to Computer Systems 6th Lecture, 5 June 2012

Machine-Level Programming II: Arithmetic & Control /18-243: Introduction to Computer Systems 6th Lecture, 5 June 2012 n Mello Machine-Level Programming II: Arithmetic & Control 15-213/18-243: Introduction to Computer Systems 6th Lecture, 5 June 2012 Instructors: Gregory Kesden The course that gives CMU its Zip! Last Time:

More information

CPEG421/621 Tutorial

CPEG421/621 Tutorial CPEG421/621 Tutorial Compiler data representation system call interface calling convention Assembler object file format object code model Linker program initialization exception handling relocation model

More information

Instruction Set Architecture

Instruction Set Architecture CISC 360 Instruction Set Architecture Michela Taufer October 9, 2008 Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective, R. Bryant and D. O'Hallaron, Prentice Hall, 2003 Chapter

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls"

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls" 1 Lecture Goals! Challenges of supporting functions" Providing information for the called function" Function arguments and local variables" Allowing

More information

CPSC W Term 2 Problem Set #3 - Solution

CPSC W Term 2 Problem Set #3 - Solution 1. (a) int gcd(int a, int b) { if (a == b) urn a; else if (a > b) urn gcd(a - b, b); else urn gcd(a, b - a); CPSC 313 06W Term 2 Problem Set #3 - Solution.file "gcdrec.c".globl gcd.type gcd, @function

More information

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions?

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? exam on Wednesday today s material not on the exam 1 Assembly Assembly is programming

More information

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1

Lecture #16: Introduction to Runtime Organization. Last modified: Fri Mar 19 00:17: CS164: Lecture #16 1 Lecture #16: Introduction to Runtime Organization Last modified: Fri Mar 19 00:17:19 2010 CS164: Lecture #16 1 Status Lexical analysis Produces tokens Detects & eliminates illegal tokens Parsing Produces

More information

Process Layout, Function Calls, and the Heap

Process Layout, Function Calls, and the Heap Process Layout, Function Calls, and the Heap CS 6 Spring 20 Prof. Vern Paxson TAs: Devdatta Akhawe, Mobin Javed, Matthias Vallentin January 9, 20 / 5 2 / 5 Outline Process Layout Function Calls The Heap

More information

Machine-Level Programming (2)

Machine-Level Programming (2) Machine-Level Programming (2) Yanqiao ZHU Introduction to Computer Systems Project Future (Fall 2017) Google Camp, Tongji University Outline Control Condition Codes Conditional Branches and Conditional

More information

Page # CISC 360. Machine-Level Programming I: Introduction Sept. 18, IA32 Processors. X86 Evolution: Programmerʼs View.

Page # CISC 360. Machine-Level Programming I: Introduction Sept. 18, IA32 Processors. X86 Evolution: Programmerʼs View. Machine-Level Programming I: Introduction Sept. 18, 2008 Topics CISC 360 Assembly Programmerʼs Execution Model Accessing Information Registers Memory Arithmetic operations IA32 Processors Totally Dominate

More information

Machine-Level Programming Introduction

Machine-Level Programming Introduction Machine-Level Programming Introduction Today Assembly programmer s exec model Accessing information Arithmetic operations Next time More of the same Fabián E. Bustamante, Spring 2007 IA32 Processors Totally

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

Credits to Randy Bryant & Dave O Hallaron

Credits to Randy Bryant & Dave O Hallaron Mellon Machine Level Programming II: Arithmetic & Control Lecture 4, March 10, 2011 Alexandre David Credits to Randy Bryant & Dave O Hallaron from Carnegie Mellon 1 Today Complete addressing mode, address

More information

System Programming and Computer Architecture (Fall 2009)

System Programming and Computer Architecture (Fall 2009) System Programming and Computer Architecture (Fall 2009) Recitation 2 October 8 th, 2009 Zaheer Chothia Email: zchothia@student.ethz.ch Web: http://n.ethz.ch/~zchothia/ Topics for Today Classroom Exercise

More information

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View

Y86 Processor State. Instruction Example. Encoding Registers. Lecture 7A. Computer Architecture I Instruction Set Architecture Assembly Language View Computer Architecture I Instruction Set Architecture Assembly Language View Processor state Registers, memory, Instructions addl, movl, andl, How instructions are encoded as bytes Layer of Abstraction

More information

Machine- Level Representa2on: Procedure

Machine- Level Representa2on: Procedure Machine- Level Representa2on: Procedure CSCI 2021: Machine Architecture and Organiza2on Pen- Chung Yew Department Computer Science and Engineering University of Minnesota With Slides from Bryant, O Hallaron

More information

Machine-Level Programming II: Arithmetic & Control. Complete Memory Addressing Modes

Machine-Level Programming II: Arithmetic & Control. Complete Memory Addressing Modes Machine-Level Programming II: Arithmetic & Control CS-281: Introduction to Computer Systems Instructor: Thomas C. Bressoud 1 Complete Memory Addressing Modes Most General Form D(Rb,Ri,S)Mem[Reg[Rb]+S*Reg[Ri]+

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 12 Introduction to MIPS Procedures II, Logical and Shift Ops 2004-09-27 Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia Gotta love

More information

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang Project 3 Questions CMSC 313 Lecture 12 How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP

More information

x86 assembly CS449 Fall 2017

x86 assembly CS449 Fall 2017 x86 assembly CS449 Fall 2017 x86 is a CISC CISC (Complex Instruction Set Computer) e.g. x86 Hundreds of (complex) instructions Only a handful of registers RISC (Reduced Instruction Set Computer) e.g. MIPS

More information

Software. Hardware. x86 basics. ISA View. a brief history of x86 10/6/15. Program, Application. Programming Language. Compiler/Interpreter

Software. Hardware. x86 basics. ISA View. a brief history of x86 10/6/15. Program, Application. Programming Language. Compiler/Interpreter x6 basics ISA context and x6 history Translation: Compile C à machine code Disassemble machine code x6 Basics: isters Data movement instructions Memory addressing modes Arithmetic instructions 1 Software

More information

Instruction Set Architecture

Instruction Set Architecture CS:APP Chapter 4 Computer Architecture Instruction Set Architecture Randal E. Bryant adapted by Jason Fritts http://csapp.cs.cmu.edu CS:APP2e Hardware Architecture - using Y86 ISA For learning aspects

More information

Ge-ng at things on the chip you can t easily reach from C

Ge-ng at things on the chip you can t easily reach from C chapter 3 part 2 1 Ge-ng at things on the chip you can t easily reach from C 2 CPUID CPUID example from Blum, Professional Assembly Language. Programmer to Programmer. Very good maybe lidle bit dated Available

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Machine-Level Programming I: Introduction Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created

More information

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G CS 33: Week 3 Discussion x86 Assembly (v1.0) Section 1G Announcements - HW2 due Sunday - MT1 this Thursday! - Lab2 out Info Name: Eric Kim (Section 1G, 2-4 PM, BH 5419) Office Hours (Boelter 2432) - Wed

More information

IA32 Processors The course that gives CMU its Zip! Machine-Level Programming I: Introduction Sept. 10, X86 Evolution: Programmer s View

IA32 Processors The course that gives CMU its Zip! Machine-Level Programming I: Introduction Sept. 10, X86 Evolution: Programmer s View Machine-Level Programming I: Introduction Sept. 10, 2002 class05.ppt 15-213 The course that gives CMU its Zip! Topics Assembly Programmer s Execution Model Accessing Information Registers Memory Arithmetic

More information

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Implementing Threads Operating Systems In Depth II 1 Copyright 2018 Thomas W Doeppner All rights reserved The Unix Address Space stack dynamic bss data text Operating Systems In Depth II 2 Copyright 2018

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

X86 Addressing Modes Chapter 3" Review: Instructions to Recognize"

X86 Addressing Modes Chapter 3 Review: Instructions to Recognize X86 Addressing Modes Chapter 3" Review: Instructions to Recognize" 1 Arithmetic Instructions (1)! Two Operand Instructions" ADD Dest, Src Dest = Dest + Src SUB Dest, Src Dest = Dest - Src MUL Dest, Src

More information

CMSC 313 Fall2009 Midterm Exam 2 Section 01 Nov 11, 2009

CMSC 313 Fall2009 Midterm Exam 2 Section 01 Nov 11, 2009 CMSC 313 Fall2009 Midterm Exam 2 Section 01 Nov 11, 2009 Name Score out of 70 UMBC Username Notes: a. Please write clearly. Unreadable answers receive no credit. b. For TRUE/FALSE questions, write the

More information