The Role of Standards in Heterogeneous Programming

Size: px
Start display at page:

Download "The Role of Standards in Heterogeneous Programming"

Transcription

1 The Role of Standards in Heterogeneous Programming Multi-core Challenge Bristol UWE 45 York Place, Edinburgh EH1 3HP June 12th, 2013

2 Codeplay Software Ltd. Incorporated in 1999 Based in Edinburgh, Scotland 30 full-time employees Compilers, optimisation and language development GPU and Heterogeneous Architectures Increasingly Mobile and Embedded CPU/GPU SoCs Commercial partners: Qualcomm, Movidius, AGEIA, Fixstars Many other partners remain confidential Member of two 3-year EU FP7 research projects: Peppher and LPGPU Sony-licensed PS3 TM middleware provider Contributing member of Khronos group since 2006 Working towards latest version of OpenCL

3 C++ AMP Microsoft-backed open standard for heterogeneous compute Announced June 2011 Single-source programming model GPU step-debugging with Visual Studio IDE Use of lambdas emphasises C++11 support Two C++ language extensions: Function qualifier: restrict Storage class: tile static Non-Microsoft implementations? Shevlin Park - Intel prototype Clang patch from Dave McFarland

4 C++ AMP Restrictions - Selected Highlights No volatile members or variables No support for char type No pointers to pointers No virtual base class or member functions No function pointers No exceptions No recursion No goto statements

5 C++ AMP Example - Vector Addition v o i d vec add ( i n t n, i n t pa, i n t pb, i n t pc) { a r r a y v i e w <i n t > a ( n, pa ) ; a r r a y v i e w <c o n s t i n t > b ( n, pb ), c ( n, pc ) ; p a r a l l e l f o r e a c h ( a. e x t e n t, [ & ] ( index <1> i ) r e s t r i c t (amp) { a [ i ] = b [ i ] + c [ i ] ; } ) ; } Second argument to parallel for each is a C++ lambda May be any suitable function object i.e. One with operator: template <int N> operator()(index<n>) The operator[] of array view is overloaded For: template <int N> index<n>

6 C++11 Highlights Lambda expressions auto-typed variables Declared type of an expression (decltype) Static assertions (static assert) Variadic templates Alias templates Generalized constant expressions (constexpr)

7 C++14 Committee Draft (CD) in Public Review auto I d e n t i t y = [ ] ( auto a ) { r e t u r n a ; } ; f o r e a c h ( b e g i n ( v ), end ( v ), [ ] ( auto &x ) { cout << x ; } ) ; Generic (polymorphic) lambda expressions Support for auto as a type name in a lambda

8 C++14 Committee Draft (CD) in Public Review auto sum ( i n t i ) { i f ( i == 0) r e t u r n i ; e l s e r e t u r n i + sum ( i 1); } Return type deduction for normal functions Non-lambdas can now use auto and a trailing return type Restriction on a single return statement relaxed for both

9 OpenMP 4.0 Cross-platform standard for shared memory parallelism Traditionally popular in High Performance Computing (HPC) A single-source approach for C, C++ and Fortran Makes essential use of compiler pragmas Supported by most modern compilers OpenMP in Clang development presented April in Paris Intel OpenMP runtime now BSD licensed: openmprtl.org Release Candidate 2 now available for public comments Summer release target for OpenMP 4.0 Significant new features include: Improved SIMD support User defined reductions Support for accelerators

10 OpenMP Vector Addition on GPU v o i d vec add ( i n t n, f l o a t pa, f l o a t c o n s t pb, f l o a t c o n s t pc) { #pragma omp t a r g e t map( from : pb [ 0 : n ], pc [ 0 : n ] ) \ map( to : pa [ 0 : n ] ) { #pragma omp teams #pragma omp d i s t r i b u t e #pragma omp p a r a l l e l f o r f o r ( i n t i = 0 ; i < n ; ++i ) pa [ i ] = pb [ i ] + pc [ i ] ; } }

11 OpenCL (Open Computing Language) Royalty-free, cross-platform standard governed by Khronos Portable parallel programming of heterogeneous systems Memory and execution model similar to CUDA OpenCL C kernel language based on ISO C99 standard Source distributed with each application Kernel language files compiled at runtime k e r n e l v o i d v e c a d d ( g l o b a l f l o a t a, g l o b a l c o n s t f l o a t b, g l o b a l c o n s t f l o a t c ) { i n t i d = g e t g l o b a l i d ( 0 ) ; a [ i d ] = b [ i d ] + c [ i d ] ; }

12 OpenCL Working Groups OpenCL HLM C/C++ syntax/compiler extensions A High Level Model (HLM) for OpenCL Working group chaired by Codeplay s Andrew Richards

13 OpenCL Working Groups OpenCL HLM C/C++ syntax/compiler extensions A High Level Model (HLM) for OpenCL Working group chaired by Codeplay s Andrew Richards OpenCL SPIR Standard Portable Intermediate Representation (SPIR) A portable LLVM-based compiler IR A binary distribution format: don t ship source Faster compile times Provisional specification version 1.0 public Host API defined in OpenCL Extension Specification 1.2 llvm-as foo.ll -o foo.bc Host calls clcreateprogramfrombinary

14 OpenCL Working Groups OpenCL HLM C/C++ syntax/compiler extensions A High Level Model (HLM) for OpenCL Working group chaired by Codeplay s Andrew Richards OpenCL SPIR Standard Portable Intermediate Representation (SPIR) A portable LLVM-based compiler IR A binary distribution format: don t ship source Faster compile times Provisional specification version 1.0 public Host API defined in OpenCL Extension Specification 1.2 llvm-as foo.ll -o foo.bc Host calls clcreateprogramfrombinary One of many new low-level virtual heterogeneous ISAs Proprietary: NVPTX and AMDIL Cross-platform: HSAIL HSA Programmer s Reference Manual 0.95 now available A new language war!

15 Vector Addition using OpenCL SPIR (1 of 3) d e f i n e s p i r k r n l v o i add ( f l o a t a d d r s p a c e ( 1 ) n o c a p t u r e %a, f l o a t a d d r s p a c e ( 1 ) n o c a p t u r e %b, f l o a t a d d r s p a c e ( 1 ) n o c a p t u r e %c ) nounwind { %1 = c a l l i 3 g e t g l o b a l i d ( i 3 2 0) %2 = g e t e l e m e n t p t r f l o a t a d d r s p a c e ( 1 ) %a, i 3 2 %1 %3 = g e t e l e m e n t p t r f l o a t a d d r s p a c e ( 1 ) %b, i 3 2 %1 %4 = g e t e l e m e n t p t r f l o a t a d d r s p a c e ( 1 ) %c, i 3 2 %1 %5 = l o a d f l o a t a d d r s p a c e ( 1 ) %3, a l i g n 4 %6 = l o a d f l o a t a d d r s p a c e ( 1 ) %4, a l i g n 4 %7 = fadd f l o a t %5, %6 } s t o r e f l o a t %7, f l o a t a d d r s p a c e ( 1 ) %2, a l i g n 4 r e t v o i d

16 Vector Addition using OpenCL SPIR - Header (2 of 3) t a r g e t d a t a l a y o u t = i 1 :8 i 8 :8 i 1 6 :16 i 3 2 :32 i 6 4 :64 f 3 2 :32 f 6 t a r g e t t r i p l e = s p i r d e c l a r e i 3 g e t g l o b a l i d ( i 3 2 ) d e f i n e s p i r k r n l v o i add ( f l o a t a d d r s p a c e ( 1 ) n o c a p t u r e %a, f l o a t a d d r s p a c e ( 1 ) n o c a p t u r e %b, f l o a t a d d r s p a c e ( 1 ) n o c a p t u r e %c ) nounwind { %1 = c a l l i 3 g e t g l o b a l i d ( i 3 2 0) %2 = g e t e l e m e n t p t r f l o a t a d d r s p a c e ( 1 ) %a, i 3 2 %1 %3 = g e t e l e m e n t p t r f l o a t a d d r s p a c e ( 1 ) %b, i 3 2 %1 %4 = g e t e l e m e n t p t r f l o a t a d d r s p a c e ( 1 ) %c, i 3 2 %1 %5 = l o a d f l o a t a d d r s p a c e ( 1 ) %3, a l i g n 4 %6 = l o a d f l o a t a d d r s p a c e ( 1 ) %4, a l i g n 4 %7 = fadd f l o a t %5, %6 s t o r e f l o a t %7, f l o a t a d d r s p a c e ( 1 ) %2, a l i g n 4 r e t v o i d }

17 Vector Addition using OpenCL SPIR - Metadata (3 of 3)! o p e n c l. k e r n e l s =! {! 0 }! 0 = metadata! { v o i d ( f l o a t a d d r s p a c e ( 1 ), f l o a t a d d r s p a c e ( 1 ), f l o a t a d d r s p a c e ( 1 ) add, metadata! 1, metadata! 2, metadata! 3, metadata! 4, metadata!5}! 1 = metadata! { metadata! a d d r e s s q u a l i f i e r, i 3 2 1, i 3 2 1, i 3 2 1}! 2 = metadata! { metadata! a c c e s s q u a l i f i e r, i 3 2 1, i 3 2 0, i 3 2 0}! 3 = metadata! { metadata! a r g t y p e n a m e, metadata! f l o a t, metadata! f l o a t, metadata! f l o a t }! 4 = metadata! { metadata! a r g t y p e q u a l i f i e r, metadata!, metadata!, metadata! }! 5 = metadata! { metadata! arg name, metadata! a, metadata! b, metadata! c }

18 Summary C++ AMP 1.0 specification available Microsoft implementation included with Visual Studio 2012 C++14 Committee Draft (CD) in Public Review OpenMP 4.0 this summer Release Candidate 2 now available for public comments The next OpenCL OpenCL HLM C/C++ syntax/compiler extensions OpenCL SPIR Provisional 1.0 specification on Khronos website HSA Programmer s Reference Manual (HSAIL) now available Includes formal EBNF grammar

19 Summary C++ AMP 1.0 specification available Microsoft implementation included with Visual Studio 2012 C++14 Committee Draft (CD) in Public Review OpenMP 4.0 this summer Release Candidate 2 now available for public comments The next OpenCL OpenCL HLM C/C++ syntax/compiler extensions OpenCL SPIR Provisional 1.0 specification on Khronos website HSA Programmer s Reference Manual (HSAIL) now available Includes formal EBNF grammar Future standard releases Fortran 201x, OpenACC 2.0

Compiler Tools for HighLevel Parallel Languages

Compiler Tools for HighLevel Parallel Languages Compiler Tools for HighLevel Parallel Languages Paul Keir Codeplay Software Ltd. LEAP Conference May 21st 2013 Presentation Outline Introduction EU Framework 7 Project: LPGPU Offload C++ for PS3 Memory

More information

OpenCL: History & Future. November 20, 2017

OpenCL: History & Future. November 20, 2017 Mitglied der Helmholtz-Gemeinschaft OpenCL: History & Future November 20, 2017 OpenCL Portable Heterogeneous Computing 2 APIs and 2 kernel languages C Platform Layer API OpenCL C and C++ kernel language

More information

Colin Riddell GPU Compiler Developer Codeplay Visit us at

Colin Riddell GPU Compiler Developer Codeplay Visit us at OpenCL Colin Riddell GPU Compiler Developer Codeplay Visit us at www.codeplay.com 2 nd Floor 45 York Place Edinburgh EH1 3HP United Kingdom Codeplay Overview of OpenCL Codeplay + OpenCL Our technology

More information

HSA foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room A. Alario! 23 November, 2015!

HSA foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room A. Alario! 23 November, 2015! Advanced Topics on Heterogeneous System Architectures HSA foundation! Politecnico di Milano! Seminar Room A. Alario! 23 November, 2015! Antonio R. Miele! Marco D. Santambrogio! Politecnico di Milano! 2

More information

SYCL for OpenCL in a Nutshell

SYCL for OpenCL in a Nutshell SYCL for OpenCL in a Nutshell Luke Iwanski, Games Technology Programmer @ Codeplay! SIGGRAPH Vancouver 2014 1 2 Copyright Khronos Group 2014 SYCL for OpenCL in a nutshell Copyright Khronos Group 2014 Why?

More information

SIGGRAPH Briefing August 2014

SIGGRAPH Briefing August 2014 Copyright Khronos Group 2014 - Page 1 SIGGRAPH Briefing August 2014 Neil Trevett VP Mobile Ecosystem, NVIDIA President, Khronos Copyright Khronos Group 2014 - Page 2 Significant Khronos API Ecosystem Advances

More information

Copyright Khronos Group, Page 1 SYCL. SG14, February 2016

Copyright Khronos Group, Page 1 SYCL. SG14, February 2016 Copyright Khronos Group, 2014 - Page 1 SYCL SG14, February 2016 BOARD OF PROMOTERS Over 100 members worldwide any company is welcome to join Copyright Khronos Group 2014 SYCL 1. What is SYCL for and what

More information

A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function

A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function A Translation Framework for Automatic Translation of Annotated LLVM IR into OpenCL Kernel Function Chen-Ting Chang, Yu-Sheng Chen, I-Wei Wu, and Jyh-Jiun Shann Dept. of Computer Science, National Chiao

More information

HSA Foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017!

HSA Foundation! Advanced Topics on Heterogeneous System Architectures. Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017! Advanced Topics on Heterogeneous System Architectures HSA Foundation! Politecnico di Milano! Seminar Room (Bld 20)! 15 December, 2017! Antonio R. Miele! Marco D. Santambrogio! Politecnico di Milano! 2

More information

trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell 05/12/2015 IWOCL 2015 SYCL Tutorial Khronos OpenCL SYCL committee

trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell 05/12/2015 IWOCL 2015 SYCL Tutorial Khronos OpenCL SYCL committee trisycl Open Source C++17 & OpenMP-based OpenCL SYCL prototype Ronan Keryell Khronos OpenCL SYCL committee 05/12/2015 IWOCL 2015 SYCL Tutorial OpenCL SYCL committee work... Weekly telephone meeting Define

More information

Khronos Connects Software to Silicon

Khronos Connects Software to Silicon Press Pre-Briefing GDC 2015 Neil Trevett Khronos President NVIDIA Vice President Mobile Ecosystem All Materials Embargoed Until Tuesday 3 rd March, 12:01AM Pacific Time Copyright Khronos Group 2015 - Page

More information

SIMULATOR AMD RESEARCH JUNE 14, 2015

SIMULATOR AMD RESEARCH JUNE 14, 2015 AMD'S gem5apu SIMULATOR AMD RESEARCH JUNE 14, 2015 OVERVIEW Introducing AMD s gem5 APU Simulator Extends gem5 with a GPU timing model Supports Heterogeneous System Architecture in SE mode Includes several

More information

Copyright Khronos Group Page 1. Introduction to SYCL. SYCL Tutorial IWOCL

Copyright Khronos Group Page 1. Introduction to SYCL. SYCL Tutorial IWOCL Copyright Khronos Group 2015 - Page 1 Introduction to SYCL SYCL Tutorial IWOCL 2015-05-12 Copyright Khronos Group 2015 - Page 2 Introduction I am - Lee Howes - Senior staff engineer - GPU systems team

More information

SYCL for OpenCL. in a nutshell. Maria Rovatsou, Codeplay s R&D Product Development Lead & Contributor to SYCL. IWOCL Conference May 2014

SYCL for OpenCL. in a nutshell. Maria Rovatsou, Codeplay s R&D Product Development Lead & Contributor to SYCL. IWOCL Conference May 2014 SYCL for OpenCL in a nutshell Maria Rovatsou, Codeplay s R&D Product Development Lead & Contributor to SYCL! IWOCL Conference May 2014 SYCL for OpenCL in a nutshell SYCL in the OpenCL ecosystem SYCL aims

More information

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant

More information

Copyright Khronos Group Page 1. OpenCL BOF SIGGRAPH 2013

Copyright Khronos Group Page 1. OpenCL BOF SIGGRAPH 2013 Copyright Khronos Group 2013 - Page 1 OpenCL BOF SIGGRAPH 2013 Copyright Khronos Group 2013 - Page 2 OpenCL Roadmap OpenCL-HLM (High Level Model) High-level programming model, unifying host and device

More information

OpenCL C++ kernel language

OpenCL C++ kernel language Copyright Khronos Group 2016 - Page 1 OpenCL C++ kernel language Vienna April 2016 Adam Stański Bartosz Sochacki Copyright Khronos Group 2016 - Page 2 OpenCL 2.2 OpenCL C++ Open source free compiler https://github.com/khronosgroup/libclcxx

More information

OpenCL Overview. Shanghai March Neil Trevett Vice President Mobile Content, NVIDIA President, The Khronos Group

OpenCL Overview. Shanghai March Neil Trevett Vice President Mobile Content, NVIDIA President, The Khronos Group Copyright Khronos Group, 2012 - Page 1 OpenCL Overview Shanghai March 2012 Neil Trevett Vice President Mobile Content, NVIDIA President, The Khronos Group Copyright Khronos Group, 2012 - Page 2 Processor

More information

Copyright Khronos Group 2012 Page 1. OpenCL 1.2. August 2012

Copyright Khronos Group 2012 Page 1. OpenCL 1.2. August 2012 Copyright Khronos Group 2012 Page 1 OpenCL 1.2 August 2012 Copyright Khronos Group 2012 Page 2 Khronos - Connecting Software to Silicon Khronos defines open, royalty-free standards to access graphics,

More information

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU

NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU NVIDIA Think about Computing as Heterogeneous One Leo Liao, 1/29/2106, NTU GPGPU opens the door for co-design HPC, moreover middleware-support embedded system designs to harness the power of GPUaccelerated

More information

OpenACC (Open Accelerators - Introduced in 2012)

OpenACC (Open Accelerators - Introduced in 2012) OpenACC (Open Accelerators - Introduced in 2012) Open, portable standard for parallel computing (Cray, CAPS, Nvidia and PGI); introduced in 2012; GNU has an incomplete implementation. Uses directives in

More information

Parallel STL in today s SYCL Ruymán Reyes

Parallel STL in today s SYCL Ruymán Reyes Parallel STL in today s SYCL Ruymán Reyes ruyman@codeplay.com Codeplay Research 15 th November, 2016 Outline 1 Parallelism TS 2 The SYCL parallel STL 3 Heterogeneous Execution with Parallel STL 4 Conclusions

More information

HSAIL: PORTABLE COMPILER IR FOR HSA

HSAIL: PORTABLE COMPILER IR FOR HSA HSAIL: PORTABLE COMPILER IR FOR HSA HOT CHIPS TUTORIAL - AUGUST 2013 BEN SANDER AMD SENIOR FELLOW STATE OF GPU COMPUTING GPUs are fast and power efficient : high compute density per-mm and per-watt But:

More information

Jose Aliaga (Universitat Jaume I, Castellon, Spain), Ruyman Reyes, Mehdi Goli (Codeplay Software) 2017 Codeplay Software Ltd.

Jose Aliaga (Universitat Jaume I, Castellon, Spain), Ruyman Reyes, Mehdi Goli (Codeplay Software) 2017 Codeplay Software Ltd. SYCL-BLAS: LeveragingSYCL-BLAS Expression Trees for Linear Algebra Jose Aliaga (Universitat Jaume I, Castellon, Spain), Ruyman Reyes, Mehdi Goli (Codeplay Software) 1 About me... Phd in Compilers and Parallel

More information

OpenCL Press Conference

OpenCL Press Conference Copyright Khronos Group, 2011 - Page 1 OpenCL Press Conference Tokyo, November 2011 Neil Trevett Vice President Mobile Content, NVIDIA President, The Khronos Group Copyright Khronos Group, 2011 - Page

More information

IBM. IBM XL C/C++ and XL Fortran compilers on Power architectures overview

IBM. IBM XL C/C++ and XL Fortran compilers on Power architectures overview IBM IBM XL C/C++ and XL Fortran compilers on Power architectures overview December 2017 References in this document to IBM products, programs, or services do not imply that IBM intends to make these available

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

Taipei Embedded Outreach OpenCL DSP Profile Proposals

Taipei Embedded Outreach OpenCL DSP Profile Proposals Copyright 2018 The Khronos Group Inc. Page 1 Taipei Embedded Outreach OpenCL DSP Profile Proposals Prof. Jenq-Kuen Lee, NTHU Taipei, January 2018 Copyright 2018 The Khronos Group Inc. Page 2 Outline Speaker

More information

Copyright Khronos Group Page 1. Vulkan Overview. June 2015

Copyright Khronos Group Page 1. Vulkan Overview. June 2015 Copyright Khronos Group 2015 - Page 1 Vulkan Overview June 2015 Copyright Khronos Group 2015 - Page 2 Khronos Connects Software to Silicon Open Consortium creating OPEN STANDARD APIs for hardware acceleration

More information

The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer

The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer The Design and Implementation of OpenMP 4.5 and OpenACC Backends for the RAJA C++ Performance Portability Layer William Killian Tom Scogland, Adam Kunen John Cavazos Millersville University of Pennsylvania

More information

Copyright Khronos Group Page 1

Copyright Khronos Group Page 1 OpenCL A State of the Union Neil Trevett Khronos President NVIDIA Vice President Developer Ecosystem OpenCL Working Group Chair ntrevett@nvidia.com @neilt3d Vienna, April 2016 Copyright Khronos Group 2016

More information

Domain Specific Languages for Financial Payoffs. Matthew Leslie Bank of America Merrill Lynch

Domain Specific Languages for Financial Payoffs. Matthew Leslie Bank of America Merrill Lynch Domain Specific Languages for Financial Payoffs Matthew Leslie Bank of America Merrill Lynch Outline Introduction What, How, and Why do we use DSLs in Finance? Implementation Interpreting, Compiling Performance

More information

Standards for Building Autonomy

Standards for Building Autonomy Standards for Building Autonomy Andrew Richards, CEO, Codeplay BSI Standards Matter, Edinburgh, 22 nd June 2017 How do we get from here Level 2 Level 3 Limited overall control Level 4 Deep self control

More information

OpenMP 4.0 implementation in GCC. Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat

OpenMP 4.0 implementation in GCC. Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat OpenMP 4.0 implementation in GCC Jakub Jelínek Consulting Engineer, Platform Tools Engineering, Red Hat OpenMP 4.0 implementation in GCC Work started in April 2013, C/C++ support with host fallback only

More information

Accelerating Vision Processing

Accelerating Vision Processing Accelerating Vision Processing Neil Trevett Vice President Mobile Ecosystem at NVIDIA President of Khronos and Chair of the OpenCL Working Group SIGGRAPH, July 2016 Copyright Khronos Group 2016 - Page

More information

SkePU 2 User Guide For the preview release

SkePU 2 User Guide For the preview release SkePU 2 User Guide For the preview release August Ernstsson October 20, 2016 Contents 1 Introduction 3 2 License 3 3 Authors and Maintainers 3 3.1 Acknowledgements............................... 3 4 Dependencies

More information

OpenACC 2.6 Proposed Features

OpenACC 2.6 Proposed Features OpenACC 2.6 Proposed Features OpenACC.org June, 2017 1 Introduction This document summarizes features and changes being proposed for the next version of the OpenACC Application Programming Interface, tentatively

More information

Single-source SYCL C++ on Xilinx FPGA. Xilinx Research Labs Khronos 2017/11/12 19

Single-source SYCL C++ on Xilinx FPGA. Xilinx Research Labs Khronos 2017/11/12 19 Single-source SYCL C++ on Xilinx FPGA Xilinx Research Labs Khronos booth @SC17 2017/11/12 19 Khronos standards for heterogeneous systems 3D for the Web - Real-time apps and games in-browser - Efficiently

More information

Compiling for HSA accelerators with GCC

Compiling for HSA accelerators with GCC Compiling for HSA accelerators with GCC Martin Jambor SUSE Labs 8th August 2015 Outline HSA branch: svn://gcc.gnu.org/svn/gcc/branches/hsa Table of contents: Very Brief Overview of HSA Generating HSAIL

More information

Heterogeneous Computing

Heterogeneous Computing Heterogeneous Computing Featured Speaker Ben Sander Senior Fellow Advanced Micro Devices (AMD) DR. DOBB S: GPU AND CPU PROGRAMMING WITH HETEROGENEOUS SYSTEM ARCHITECTURE Ben Sander AMD Senior Fellow APU:

More information

Mapping C++ AMP to OpenCL / HSA Wen-Heng Jack Chung

Mapping C++ AMP to OpenCL / HSA Wen-Heng Jack Chung Mapping C++ AMP to OpenCL / HSA Wen-Heng Jack Chung 1 MulticoreWare Founded in 2009 Largest Independent OpenCL Team Locations Changchun Champaign Beijing St. Louis Taiwan Sunnyvale

More information

S Comparing OpenACC 2.5 and OpenMP 4.5

S Comparing OpenACC 2.5 and OpenMP 4.5 April 4-7, 2016 Silicon Valley S6410 - Comparing OpenACC 2.5 and OpenMP 4.5 James Beyer, NVIDIA Jeff Larkin, NVIDIA GTC16 April 7, 2016 History of OpenMP & OpenACC AGENDA Philosophical Differences Technical

More information

x Welcome to the jungle. The free lunch is so over

x Welcome to the jungle. The free lunch is so over Herb Sutter 1975-2005 Put a computer on every desk, in every home, in every pocket. The free lunch is so over 2005-2011 Put a parallel supercomputer on every desk, in every home, in every pocket. Welcome

More information

Navigating the Vision API Jungle: Which API Should You Use and Why? Embedded Vision Summit, May 2015

Navigating the Vision API Jungle: Which API Should You Use and Why? Embedded Vision Summit, May 2015 Copyright Khronos Group 2015 - Page 1 Navigating the Vision API Jungle: Which API Should You Use and Why? Embedded Vision Summit, May 2015 Neil Trevett Khronos President NVIDIA Vice President Mobile Ecosystem

More information

VisionCPP Mehdi Goli

VisionCPP Mehdi Goli VisionCPP Mehdi Goli Motivation Computer vision Different areas Medical imaging, film industry, industrial manufacturing, weather forecasting, etc. Operations Large size of data Sequence of operations

More information

An innovative compilation tool-chain for embedded multi-core architectures M. Torquati, Computer Science Departmente, Univ.

An innovative compilation tool-chain for embedded multi-core architectures M. Torquati, Computer Science Departmente, Univ. An innovative compilation tool-chain for embedded multi-core architectures M. Torquati, Computer Science Departmente, Univ. Of Pisa Italy 29/02/2012, Nuremberg, Germany ARTEMIS ARTEMIS Joint Joint Undertaking

More information

HETEROGENEOUS SYSTEM ARCHITECTURE: PLATFORM FOR THE FUTURE

HETEROGENEOUS SYSTEM ARCHITECTURE: PLATFORM FOR THE FUTURE HETEROGENEOUS SYSTEM ARCHITECTURE: PLATFORM FOR THE FUTURE Haibo Xie, Ph.D. Chief HSA Evangelist AMD China OUTLINE: The Challenges with Computing Today Introducing Heterogeneous System Architecture (HSA)

More information

Compiling CUDA and Other Languages for GPUs. Vinod Grover and Yuan Lin

Compiling CUDA and Other Languages for GPUs. Vinod Grover and Yuan Lin Compiling CUDA and Other Languages for GPUs Vinod Grover and Yuan Lin Agenda Vision Compiler Architecture Scenarios SDK Components Roadmap Deep Dive SDK Samples Demos Vision Build a platform for GPU computing

More information

Going to cover; - Why we have SPIR-V - Brief history of SPIR-V - Some of the core required features we wanted - How OpenCL will use SPIR-V - How

Going to cover; - Why we have SPIR-V - Brief history of SPIR-V - Some of the core required features we wanted - How OpenCL will use SPIR-V - How 1 Going to cover; - Why we have SPIR-V - Brief history of SPIR-V - Some of the core required features we wanted - How OpenCL will use SPIR-V - How Vulkan will use SPIR-V - The differences between compute/graphics

More information

CS691/SC791: Parallel & Distributed Computing

CS691/SC791: Parallel & Distributed Computing CS691/SC791: Parallel & Distributed Computing Introduction to OpenMP 1 Contents Introduction OpenMP Programming Model and Examples OpenMP programming examples Task parallelism. Explicit thread synchronization.

More information

More performance options

More performance options More performance options OpenCL, streaming media, and native coding options with INDE April 8, 2014 2014, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Inside, Intel Xeon, and Intel

More information

OpenMP Device Offloading to FPGA Accelerators. Lukas Sommer, Jens Korinth, Andreas Koch

OpenMP Device Offloading to FPGA Accelerators. Lukas Sommer, Jens Korinth, Andreas Koch OpenMP Device Offloading to FPGA Accelerators Lukas Sommer, Jens Korinth, Andreas Koch Motivation Increasing use of heterogeneous systems to overcome CPU power limitations 2017-07-12 OpenMP FPGA Device

More information

THE HETEROGENEOUS SYSTEM ARCHITECTURE IT S BEYOND THE GPU

THE HETEROGENEOUS SYSTEM ARCHITECTURE IT S BEYOND THE GPU THE HETEROGENEOUS SYSTEM ARCHITECTURE IT S BEYOND THE GPU PAUL BLINZER AMD INC, FELLOW, SYSTEM SOFTWARE SYSTEM ARCHITECTURE WORKGROUP CHAIR HSA FOUNDATION THE HSA VISION MAKE HETEROGENEOUS PROGRAMMING

More information

Enabling a Richer Multimedia Experience with GPU Compute. Roberto Mijat Visual Computing Marketing Manager

Enabling a Richer Multimedia Experience with GPU Compute. Roberto Mijat Visual Computing Marketing Manager Enabling a Richer Multimedia Experience with GPU Compute Roberto Mijat Visual Computing Marketing Manager 1 What is GPU Compute Operating System and most application processing continue to reside on the

More information

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing

Programming Models for Multi- Threading. Brian Marshall, Advanced Research Computing Programming Models for Multi- Threading Brian Marshall, Advanced Research Computing Why Do Parallel Computing? Limits of single CPU computing performance available memory I/O rates Parallel computing allows

More information

RAD Studio XE3 The Developer Force Multiplier

RAD Studio XE3 The Developer Force Multiplier RAD Studio XE3 The Developer Force Multiplier Windows 8 Mac OS X Mountain Lion C++11 64-bit Metropolis UI C99 Boost Visual LiveBindings C++ Bjarne Stroustrup C with Objects (1979) Modeled OO after Simula

More information

Open API Standards for Mobile Graphics, Compute and Vision Processing GTC, March 2014

Open API Standards for Mobile Graphics, Compute and Vision Processing GTC, March 2014 Open API Standards for Mobile Graphics, Compute and Vision Processing GTC, March 2014 Neil Trevett Vice President Mobile Ecosystem, NVIDIA President Khronos Copyright Khronos Group 2014 - Page 1 Khronos

More information

Parallel Programming. Libraries and Implementations

Parallel Programming. Libraries and Implementations Parallel Programming Libraries and Implementations Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

OpenACC Course. Office Hour #2 Q&A

OpenACC Course. Office Hour #2 Q&A OpenACC Course Office Hour #2 Q&A Q1: How many threads does each GPU core have? A: GPU cores execute arithmetic instructions. Each core can execute one single precision floating point instruction per cycle

More information

cuda-on-cl A compiler and runtime for running NVIDIA CUDA C++11 applications on OpenCL 1.2 devices Hugh Perkins (ASAPP)

cuda-on-cl A compiler and runtime for running NVIDIA CUDA C++11 applications on OpenCL 1.2 devices Hugh Perkins (ASAPP) cuda-on-cl A compiler and runtime for running NVIDIA CUDA C++11 applications on OpenCL 1.2 devices Hugh Perkins (ASAPP) Demo: CUDA on Intel HD5500 global void setvalue(float *data, int idx, float value)

More information

CLU: Open Source API for OpenCL Prototyping

CLU: Open Source API for OpenCL Prototyping CLU: Open Source API for OpenCL Prototyping Presenter: Adam Lake@Intel Lead Developer: Allen Hux@Intel Contributors: Benedict Gaster@AMD, Lee Howes@AMD, Tim Mattson@Intel, Andrew Brownsword@Intel, others

More information

Polly Polyhedral Optimizations for LLVM

Polly Polyhedral Optimizations for LLVM Polly Polyhedral Optimizations for LLVM Tobias Grosser - Hongbin Zheng - Raghesh Aloor Andreas Simbürger - Armin Grösslinger - Louis-Noël Pouchet April 03, 2011 Polly - Polyhedral Optimizations for LLVM

More information

Programming GPUs with C++14 and Just-In-Time Compilation

Programming GPUs with C++14 and Just-In-Time Compilation Programming GPUs with C++14 and Just-In-Time Compilation Michael Haidl, Bastian Hagedorn, and Sergei Gorlatch University of Muenster {m.haidl, b.hagedorn, gorlatch}@uni-muenster.de Abstract. Systems that

More information

Parallel Programming. Libraries and implementations

Parallel Programming. Libraries and implementations Parallel Programming Libraries and implementations Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

OpenMP 4.0/4.5. Mark Bull, EPCC

OpenMP 4.0/4.5. Mark Bull, EPCC OpenMP 4.0/4.5 Mark Bull, EPCC OpenMP 4.0/4.5 Version 4.0 was released in July 2013 Now available in most production version compilers support for device offloading not in all compilers, and not for all

More information

Distributed & Heterogeneous Programming in C++ for HPC at SC17

Distributed & Heterogeneous Programming in C++ for HPC at SC17 Distributed & Heterogeneous Programming in C++ for HPC at SC17 Michael Wong (Codeplay), Hal Finkel DHPCC++ 2018 1 The Panel 2 Ben Sanders (AMD, HCC, HiP, HSA) Carter Edwards (SNL, Kokkos, ISO C++) CJ Newburn

More information

Parallel Programming Libraries and implementations

Parallel Programming Libraries and implementations Parallel Programming Libraries and implementations Partners Funding Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License.

More information

LLVM for the future of Supercomputing

LLVM for the future of Supercomputing LLVM for the future of Supercomputing Hal Finkel hfinkel@anl.gov 2017-03-27 2017 European LLVM Developers' Meeting What is Supercomputing? Computing for large, tightly-coupled problems. Lots of computational

More information

Directive-based Programming for Highly-scalable Nodes

Directive-based Programming for Highly-scalable Nodes Directive-based Programming for Highly-scalable Nodes Doug Miles Michael Wolfe PGI Compilers & Tools NVIDIA Cray User Group Meeting May 2016 Talk Outline Increasingly Parallel Nodes Exposing Parallelism

More information

GPU Programming with Ateji PX June 8 th Ateji All rights reserved.

GPU Programming with Ateji PX June 8 th Ateji All rights reserved. GPU Programming with Ateji PX June 8 th 2010 Ateji All rights reserved. Goals Write once, run everywhere, even on a GPU Target heterogeneous architectures from Java GPU accelerators OpenCL standard Get

More information

OpenMP 4.0. Mark Bull, EPCC

OpenMP 4.0. Mark Bull, EPCC OpenMP 4.0 Mark Bull, EPCC OpenMP 4.0 Version 4.0 was released in July 2013 Now available in most production version compilers support for device offloading not in all compilers, and not for all devices!

More information

Expansion statements. Version history. Introduction. Basic usage

Expansion statements. Version history. Introduction. Basic usage Expansion statements Version history Document: P1306R0 Revises: P0589R0 Date: 08 10 2018 Audience: EWG Authors: Andrew Sutton (asutton@uakron.edu) Sam Goodrick (sgoodrick@lock3software.com) Daveed Vandevoorde

More information

Copyright Khronos Group Page 1

Copyright Khronos Group Page 1 OpenCL State of the Nation Neil Trevett Khronos President NVIDIA Vice President Developer Ecosystem OpenCL Working Group Chair ntrevett@nvidia.com @neilt3d Toronto, May 2017 Copyright Khronos Group 2017

More information

Copyright Khronos Group Page 1

Copyright Khronos Group Page 1 OpenCL State of the Nation Neil Trevett Khronos President NVIDIA Vice President Developer Ecosystem OpenCL Working Group Chair ntrevett@nvidia.com @neilt3d Toronto, May 2017 Copyright Khronos Group 2017

More information

Vulkan 1.1 March Copyright Khronos Group Page 1

Vulkan 1.1 March Copyright Khronos Group Page 1 Vulkan 1.1 March 2018 Copyright Khronos Group 2018 - Page 1 Vulkan 1.1 Launch and Ongoing Momentum Strengthening the Ecosystem Improved developer tools (SDK, validation/debug layers) More rigorous conformance

More information

Evaluating OpenMP s Effectiveness in the Many-Core Era

Evaluating OpenMP s Effectiveness in the Many-Core Era Evaluating OpenMP s Effectiveness in the Many-Core Era Prof Simon McIntosh-Smith HPC Research Group simonm@cs.bris.ac.uk 1 Bristol, UK 10 th largest city in UK Aero, finance, chip design HQ for Cray EMEA

More information

C++11: 10 Features You Should be Using. Gordon R&D Runtime Engineer Codeplay Software Ltd.

C++11: 10 Features You Should be Using. Gordon R&D Runtime Engineer Codeplay Software Ltd. C++11: 10 Features You Should be Using Gordon Brown @AerialMantis R&D Runtime Engineer Codeplay Software Ltd. Agenda Default and Deleted Methods Static Assertions Delegated and Inherited Constructors Null

More information

reinven&ng the compiler

reinven&ng the compiler clang reinven&ng the compiler C OCL C++ OMP Obj-C Alp Toker h3p://www.nuan&.com 1 Overview What can we achieve going beyond compilation? Why are we compelled to invent a better wheel? How can we make everyday

More information

C++11/14 Rocks. Clang Edition. Alex Korban

C++11/14 Rocks. Clang Edition. Alex Korban C++11/14 Rocks Clang Edition Alex Korban 1 Contents Introduction 9 C++11 guiding principles... 9 Type Inference 11 auto... 11 Some things are still manual... 12 More than syntactic sugar... 12 Why else

More information

Parallel Programming with OpenMP

Parallel Programming with OpenMP Advanced Practical Programming for Scientists Parallel Programming with OpenMP Robert Gottwald, Thorsten Koch Zuse Institute Berlin June 9 th, 2017 Sequential program From programmers perspective: Statements

More information

OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors

OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors OpenCL TM & OpenMP Offload on Sitara TM AM57x Processors 1 Agenda OpenCL Overview of Platform, Execution and Memory models Mapping these models to AM57x Overview of OpenMP Offload Model Compare and contrast

More information

Comparing OpenACC 2.5 and OpenMP 4.1 James C Beyer PhD, Sept 29 th 2015

Comparing OpenACC 2.5 and OpenMP 4.1 James C Beyer PhD, Sept 29 th 2015 Comparing OpenACC 2.5 and OpenMP 4.1 James C Beyer PhD, Sept 29 th 2015 Abstract As both an OpenMP and OpenACC insider I will present my opinion of the current status of these two directive sets for programming

More information

CLICK TO EDIT MASTER TITLE STYLE. Click to edit Master text styles. Second level Third level Fourth level Fifth level

CLICK TO EDIT MASTER TITLE STYLE. Click to edit Master text styles. Second level Third level Fourth level Fifth level CLICK TO EDIT MASTER TITLE STYLE Second level THE HETEROGENEOUS SYSTEM ARCHITECTURE ITS (NOT) ALL ABOUT THE GPU PAUL BLINZER, FELLOW, HSA SYSTEM SOFTWARE, AMD SYSTEM ARCHITECTURE WORKGROUP CHAIR, HSA FOUNDATION

More information

OpenMP 4.0: A Significant Paradigm Shift in Parallelism

OpenMP 4.0: A Significant Paradigm Shift in Parallelism OpenMP 4.0: A Significant Paradigm Shift in Parallelism Michael Wong OpenMP CEO michaelw@ca.ibm.com http://bit.ly/sc13-eval SC13 OpenMP 4.0 released 2 Agenda The OpenMP ARB History of OpenMP OpenMP 4.0

More information

HKG OpenCL Support by NNVM & TVM. Jammy Zhou - Linaro

HKG OpenCL Support by NNVM & TVM. Jammy Zhou - Linaro HKG18-417 OpenCL Support by NNVM & TVM Jammy Zhou - Linaro Agenda OpenCL Overview OpenCL in NNVM & TVM Current Status OpenCL Introduction Open Computing Language Open standard maintained by Khronos with

More information

A simple tutorial on generating PTX assembler out of Ada source code using LLVM NVPTX backend

A simple tutorial on generating PTX assembler out of Ada source code using LLVM NVPTX backend Institute of Computational Science A simple tutorial on generating PTX assembler out of Ada source code using LLVM NVPTX backend Dmitry Mikushin dmitrymikushin@usich September 14, 2012 Dmitry Mikushin

More information

Update on Khronos Open Standard APIs for Vision Processing Neil Trevett Khronos President NVIDIA Vice President Mobile Ecosystem

Update on Khronos Open Standard APIs for Vision Processing Neil Trevett Khronos President NVIDIA Vice President Mobile Ecosystem Update on Khronos Open Standard APIs for Vision Processing Neil Trevett Khronos President NVIDIA Vice President Mobile Ecosystem Copyright Khronos Group 2015 - Page 1 Copyright Khronos Group 2015 - Page

More information

General Purpose GPU Programming (1) Advanced Operating Systems Lecture 14

General Purpose GPU Programming (1) Advanced Operating Systems Lecture 14 General Purpose GPU Programming (1) Advanced Operating Systems Lecture 14 Lecture Outline Heterogenous multi-core systems and general purpose GPU programming Programming models Heterogenous multi-kernels

More information

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing

Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing Shared memory programming model OpenMP TMA4280 Introduction to Supercomputing NTNU, IMF February 16. 2018 1 Recap: Distributed memory programming model Parallelism with MPI. An MPI execution is started

More information

Productive Performance on the Cray XK System Using OpenACC Compilers and Tools

Productive Performance on the Cray XK System Using OpenACC Compilers and Tools Productive Performance on the Cray XK System Using OpenACC Compilers and Tools Luiz DeRose Sr. Principal Engineer Programming Environments Director Cray Inc. 1 The New Generation of Supercomputers Hybrid

More information

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today

CS 553: Algorithmic Language Compilers (PLDI) Graduate Students and Super Undergraduates... Logistics. Plan for Today Graduate Students and Super Undergraduates... CS 553: Algorithmic Language Compilers (PLDI) look for other sources of information make decisions, because all research problems are under-specified evaluate

More information

Graphics Technology Update

Graphics Technology Update Graphics Technology Update Presented by: Erik Noreke, Khronos Group Vice President of Business Development November 2013 Copyright Khronos Group, 2013 - Page 1 Copyright Khronos Group, 2013 - Page 2 Khronos

More information

OpenACC. Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer

OpenACC. Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer OpenACC Introduction and Evolutions Sebastien Deldon, GPU Compiler engineer 3 WAYS TO ACCELERATE APPLICATIONS Applications Libraries Compiler Directives Programming Languages Easy to use Most Performance

More information

Daniel Moth, Parallel Computing Platform, Microsoft

Daniel Moth, Parallel Computing Platform, Microsoft Daniel Moth, Parallel Computing Platform, Microsoft Heterogeneous platform support in Visual Studio Context Code Closing thoughts 146X 36X 19X 17X 100X Interactive visualization of volumetric white matter

More information

Parallel programming languages:

Parallel programming languages: Parallel programming languages: A new renaissance or a return to the dark ages? Simon McIntosh-Smith University of Bristol Microelectronics Research Group simonm@cs.bris.ac.uk 1 The Microelectronics Group

More information

COMP Parallel Computing. Programming Accelerators using Directives

COMP Parallel Computing. Programming Accelerators using Directives COMP 633 - Parallel Computing Lecture 15 October 30, 2018 Programming Accelerators using Directives Credits: Introduction to OpenACC and toolkit Jeff Larkin, Nvidia COMP 633 - Prins Directives for Accelerator

More information

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems Ed Hinkel Senior Sales Engineer Agenda Overview - Rogue Wave & TotalView GPU Debugging with TotalView Nvdia CUDA Intel Phi 2

More information

OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel

OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel OpenMP * 4 Support in Clang * / LLVM * Andrey Bokhanko, Intel Clang * : An Excellent C++ Compiler LLVM * : Collection of modular and reusable compiler and toolchain technologies Created by Chris Lattner

More information

COMP528: Multi-core and Multi-Processor Computing

COMP528: Multi-core and Multi-Processor Computing COMP528: Multi-core and Multi-Processor Computing Dr Michael K Bane, G14, Computer Science, University of Liverpool m.k.bane@liverpool.ac.uk https://cgi.csc.liv.ac.uk/~mkbane/comp528 2X So far Why and

More information