Programming in Fortran 90 : 2017/2018


 Maurice Hensley
 1 years ago
 Views:
Transcription
1 Programmng n Fortran 90 : 2017/2018 Programmng n Fortran 90 : 2017/2018 Exercse 1 : Evaluaton of functon dependng on nput Wrte a program who evaluate the functon f (x,y) for any two user specfed values x and y, where the functon f (x,y) s defned as follows : x + y f x 0 and y 0 x + y f (x,y) = 2 f x 0 and y < 0 x 2 + y f x < 0 and y 0 x 2 + y 2 f x < 0 and y < 0 Exercse 2 : Crcle and Sphere Wrte a program that read the radus of a crcle at the prompt et gve the area and volume of the correspondng crcle and sphere (πr 2 and 4/3πr 3 ). Exercse 3 : System soluton Wrte a program whch resolve the folowng system of 2 equatons wth 2 unknows x and y : a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 Exercse 4 : Do loops What are the teraton counts of the followng DO loops, the values of the loop varable nsde the loop, and the value of the loop varable after the DO construct? do = 1, 5 do = 5, 0, 1 do = 10, 1, 2 do = 0, 30, 7 do = 3, 2, 1 Wrte a program prntng nsde and outsde the loop to verfy your results. Exercse 5 : Temperature converson Wrte a program n a do loop whch gves a Celsus (T c ) to Fahrenhet (T f ) converson table n unts steps from 50 to 50 Celsus. The converson formula s : T c = 5 9 (T f 32) 1
2 Programmng n Fortran 90 : 2017/2018 Exercse 6 : Seres Wrte a program whch read an nteger value n, then compute and wrte on the screen the n frst terms of the seres u n+1 = 2u n + 3, wth u 0 = 1. Same queston for the Fbonacc seres u n+1 = u n + u n 1, wth u 0 = u 1 = 1. Exercse 7 : π computaton Formula 1 : Wrte a program whch compute π wth followng formula : π/4 = arctan(1) = n= n=0 ( 1) n /(2n + 1) Fnd the number of teratons needed to obtan the followng precson : Formula 2 : Do the same wth ths formula wth : π/4 = 4 arctan(1/5) arctan(1/239) arctan(x) = n= n=0 ( 1) n x2n+1 2n + 1 and compare the number of teratons of the two formulas for the same precson. Exercse 8 : Quadratc equaton solver Wrte a program to calculate the roots of a quadratc equatons of the form ax 2 + bx + c = 0 The algorthm : Read a, b and c. Check that a 0. If a = 0, the equaton s lnear. Compute the soluton. Prnt the soluton. 2
3 Programmng n Fortran 90 : 2017/2018 Test your program for each case : one root, two real roots, two complex roots. Hnt : The program has a sngle root f b 2 4ac = 0 two real roots f and magnary roots f b 2 4ac > 0 b 2 4ac < 0 Exercse 9 : Arrays Gven the followng declaratons: real(4), dmenson(1:10,1:20) :: a real(4), dmenson(10,5:10) :: b real(4), dmenson(0:5,1:3,6:9) :: c real(4), dmenson(1:10,2:15) :: d What s the rank, sze, bounds, and extents of a,b,c and d? Gven the followng declaratons: real(4), dmenson(1:5,3,8) :: alpha real(4), dmenson(3:3,0:2,7:0) :: beta Are the two arrays conformable? Gven the followng array declaraton real(4): a(0:5,3) whch of the followng references are legal? a(2,3), a(6,2), a(0,3), a(5,6), a(0,0) What s the array element order of the followng array? nteger, dmenson(1:1,2,0:1) :: alpha The followng array declaratons are gven: real(4), dmenson(50) :: alpha real(4), dmenson(60) :: beta whch of the followng statements are vald? 3
4 Programmng n Fortran 90 : 2017/2018 alpha=beta alpha(3:32)=beta(1:60:2) alpha(10:50)=beta alpha(10:49)=beta(20:59) alpha=beta(10:59) alpha(1:50:2)=beta beta=alpha beta(1:50)=alpha Exercse 10 : Selecton sortng Sortng a lst s a classcal algorthm. Several methods exsts, some are more effcent than others. The algorthm works as follows: Fnd the mnmum value n the lst Swap t wth the value n the frst poston Repeat the steps above for the remander of the lst (startng at the second poston and advancng each tme) 4
5 Programmng n Fortran 90 : 2017/2018 mn mn mn mn mn mn mn mn mn Wrte a program that create (wth the random_number ntrnsc subroutne) an 1Darray contanng nteger between 0 and 10, sort ths array wth the selecton sortng algorthm and wrte the sorted result on the screen. Exercse 11 : Smple example of a Subroutne Wrte a subroutne wth three parameters, two real numbers a and b as nput and a real number c as output. The subroutne should return c as the sum of a and b. Wrte the program callng the subroutne. Exercse 12 : Smple example of a Functon Wrte a functon wth two parameters, two real numbers a and b. The functon should return c as the sum of a and b. Wrte the program callng the functon. 5
6 Programmng n Fortran 90 : 2017/2018 Exercse 13 : Smple Statstcs Wrte a man program and ths two functons : functon 1 : returns the mean of a sequence of values (x, = 1,n) : m = 1 n n x =1 functon 2 : returns the varance of a sequence of values (x, = 1,n) usng the frst functon to compute the mean. v = 1 n n =1 (x m) 2 Use the random_number ntrnsc subroutne to create the sequence of values. Exercse 14 : Bubble sortng Bubble sort s a smple sortng algorthm that works by repeatedly steppng through the lst to be sorted, comparng each par of adjacent tems and swappng them f they are n the wrong order. The pass through the lst s repeated untl no swaps are needed, whch ndcates that the lst s sorted. The algorthm gets ts name from the way smaller elements "bubble" to the top of the lst. Because t only uses comparsons to operate on elements, t s a comparson sort. Wrte a subroutne bubble_sort(...) wth the array you want to sort and the number of elements as nput. The array should be sorted when you leave the subroutne. Wrte a man program wch create the array and fll t wth the random_number ntrnsc subroutne and sort t wth the bubble_sort(...) subroutne and wrte the sorted result n a fle. Exercse 15 : Sequental search Lnear search or sequental search s a method for fndng a partcular value n a lst, that conssts of checkng every one of ts elements, one at a tme and n sequence, untl the desred one s found. Wrte a subroutne whch mplement ths algorthm. The nputs should be the lst and t length, the outputs beng the answer (yes or no the elements s n the lst) and f the element s n the lst, the poston n the lst. If the element s present more than one tme, only the frst element wll be reported. The man program wll have to read the lst from a fle and output the results. Gve also the number of comparsons needed proportonally to the number of elements of the lst, n order to have an estmate of the effcency of the algorthm. Exercse 16 : Dchotomc search A dchotomc search s a search algorthm that operates by selectng between two dstnct alternatves (dchotomes) at each step. Here, we wll explot the fact that the lst has been already sorted (wth one of the algorthm already done). The frst step s to compare the mddle element of the lst wth the key element. If t s the same, we have found t and we can stop. If not, we repeat ths operaton on half of the lst, dependng f the key element s greater or lower than the mddle element. 6
7 Programmng n Fortran 90 : 2017/2018 Wrte a subroutne whch mplement the algorthm. Gve also the number of comparsons needed proportonally to the number of elements of the lst, n order to have an estmate of the effcency of the algorthm and compare t wth the sequental search. Exercse 17 : Matrx transpose A s a square matrx of real numbers of sze N N. Wrte a subroutne verb transmat whch takes as arguments N and A. The matrx A has to be transposed when gong out of the subroutne. The only array used n verb transmat should be A. Wrte a subroutne read_matrx that read a matrx from a fle and a subroutne wrte_matrx that wrte the result n another fle. Wrte the man program usng the three subroutnes. The fles should be formatted ths way : a 11 a 21 a a 12 a 22 a Exercse 18 : Matrx multplcaton Wrte a subroutne perfomng the matrx multplcaton of two matrx A of sze (m,n) and B of sze (n, p). The subroutne should return the resultng matrx C of sze (m, p). Wrte a subroutne read_matrx that read a matrx from a fle and a subroutne wrte_matrx that wrte the result n another fle. Wrte the man program usng the three subroutnes. The fles should be formatted n the same format that the prevous exercse. 7
Sequential search. Building Java Programs Chapter 13. Sequential search. Sequential search
Sequental search Buldng Java Programs Chapter 13 Searchng and Sortng sequental search: Locates a target value n an array/lst by examnng each element from start to fnsh. How many elements wll t need to
More informationCS1100 Introduction to Programming
Factoral (n) Recursve Program fact(n) = n*fact(n) CS00 Introducton to Programmng Recurson and Sortng Madhu Mutyam Department of Computer Scence and Engneerng Indan Insttute of Technology Madras nt fact
More informationExercises (Part 4) Introduction to R UCLA/CCPR. John Fox, February 2005
Exercses (Part 4) Introducton to R UCLA/CCPR John Fox, February 2005 1. A challengng problem: Iterated weghted least squares (IWLS) s a standard method of fttng generalzed lnear models to data. As descrbed
More informationCMPS 10 Introduction to Computer Science Lecture Notes
CPS 0 Introducton to Computer Scence Lecture Notes Chapter : Algorthm Desgn How should we present algorthms? Natural languages lke Englsh, Spansh, or French whch are rch n nterpretaton and meanng are not
More informationProblem Set 3 Solutions
Introducton to Algorthms October 4, 2002 Massachusetts Insttute of Technology 6046J/18410J Professors Erk Demane and Shaf Goldwasser Handout 14 Problem Set 3 Solutons (Exercses were not to be turned n,
More informationCourse Introduction. Algorithm 8/31/2017. COSC 320 Advanced Data Structures and Algorithms. COSC 320 Advanced Data Structures and Algorithms
Course Introducton Course Topcs Exams, abs, Proects A quc loo at a few algorthms 1 Advanced Data Structures and Algorthms Descrpton: We are gong to dscuss algorthm complexty analyss, algorthm desgn technques
More informationSorting. Sorted Original. index. index
1 Unt 16 Sortng 2 Sortng Sortng requres us to move data around wthn an array Allows users to see and organze data more effcently Behnd the scenes t allows more effectve searchng of data There are MANY
More informationCSCI 104 Sorting Algorithms. Mark Redekopp David Kempe
CSCI 104 Sortng Algorthms Mark Redekopp Davd Kempe Algorthm Effcency SORTING 2 Sortng If we have an unordered lst, sequental search becomes our only choce If we wll perform a lot of searches t may be benefcal
More informationBrave New World Pseudocode Reference
Brave New World Pseudocode Reference Pseudocode s a way to descrbe how to accomplsh tasks usng basc steps lke those a computer mght perform. In ths week s lab, you'll see how a form of pseudocode can be
More informationSupport Vector Machines
/9/207 MIST.6060 Busness Intellgence and Data Mnng What are Support Vector Machnes? Support Vector Machnes Support Vector Machnes (SVMs) are supervsed learnng technques that analyze data and recognze patterns.
More informationSorting. Sorting. Why Sort? Consistent Ordering
Sortng CSE 6 Data Structures Unt 15 Readng: Sectons.1. Bubble and Insert sort,.5 Heap sort, Secton..6 Radx sort, Secton.6 Mergesort, Secton. Qucksort, Secton.8 Lower bound Sortng Input an array A of data
More informationAssignment # 2. Farrukh Jabeen Algorithms 510 Assignment #2 Due Date: June 15, 2009.
Farrukh Jabeen Algorthms 51 Assgnment #2 Due Date: June 15, 29. Assgnment # 2 Chapter 3 Dscrete Fourer Transforms Implement the FFT for the DFT. Descrbed n sectons 3.1 and 3.2. Delverables: 1. Concse descrpton
More informationLife Tables (Times) Summary. Sample StatFolio: lifetable times.sgp
Lfe Tables (Tmes) Summary... 1 Data Input... 2 Analyss Summary... 3 Survval Functon... 5 Log Survval Functon... 6 Cumulatve Hazard Functon... 7 Percentles... 7 Group Comparsons... 8 Summary The Lfe Tables
More informationAn Application of the DulmageMendelsohn Decomposition to Sparse Null Space Bases of Full Row Rank Matrices
Internatonal Mathematcal Forum, Vol 7, 2012, no 52, 25492554 An Applcaton of the DulmageMendelsohn Decomposton to Sparse Null Space Bases of Full Row Rank Matrces Mostafa Khorramzadeh Department of Mathematcal
More informationDesign and Analysis of Algorithms
Desgn and Analyss of Algorthms Heaps and Heapsort Reference: CLRS Chapter 6 Topcs: Heaps Heapsort Prorty queue Huo Hongwe Recap and overvew The story so far... Inserton sort runnng tme of Θ(n 2 ); sorts
More informationGSLM Operations Research II Fall 13/14
GSLM 58 Operatons Research II Fall /4 6. Separable Programmng Consder a general NLP mn f(x) s.t. g j (x) b j j =. m. Defnton 6.. The NLP s a separable program f ts objectve functon and all constrants are
More informationParallelism for Nested Loops with Nonuniform and Flow Dependences
Parallelsm for Nested Loops wth Nonunform and Flow Dependences SamJn Jeong Dept. of Informaton & Communcaton Engneerng, Cheonan Unversty, 5, Anseodong, Cheonan, Chungnam, 33080, Korea. seong@cheonan.ac.kr
More informationOutline. Midterm Review. Declaring Variables. Main Variable Data Types. Symbolic Constants. Arithmetic Operators. Midterm Review March 24, 2014
Mdterm Revew March 4, 4 Mdterm Revew Larry Caretto Mechancal Engneerng 9 Numercal Analyss of Engneerng Systems March 4, 4 Outlne VBA and MATLAB codng Varable types Control structures (Loopng and Choce)
More informationParallel Numerics. 1 Preconditioning & Iterative Solvers (From 2016)
Technsche Unverstät München WSe 6/7 Insttut für Informatk Prof. Dr. Thomas Huckle Dpl.Math. Benjamn Uekermann Parallel Numercs Exercse : Prevous Exam Questons Precondtonng & Iteratve Solvers (From 6)
More informationThe Codesign Challenge
ECE 4530 Codesgn Challenge Fall 2007 Hardware/Software Codesgn The Codesgn Challenge Objectves In the codesgn challenge, your task s to accelerate a gven software reference mplementaton as fast as possble.
More informationPriority queues and heaps Professors Clark F. Olson and Carol Zander
Prorty queues and eaps Professors Clark F. Olson and Carol Zander Prorty queues A common abstract data type (ADT) n computer scence s te prorty queue. As you mgt expect from te name, eac tem n te prorty
More informationComplex Numbers. Now we also saw that if a and b were both positive then ab = a b. For a second let s forget that restriction and do the following.
Complex Numbers The last topc n ths secton s not really related to most of what we ve done n ths chapter, although t s somewhat related to the radcals secton as we wll see. We also won t need the materal
More informationCompiler Design. Spring Register Allocation. Sample Exercises and Solutions. Prof. Pedro C. Diniz
Compler Desgn Sprng 2014 Regster Allocaton Sample Exercses and Solutons Prof. Pedro C. Dnz USC / Informaton Scences Insttute 4676 Admralty Way, Sute 1001 Marna del Rey, Calforna 90292 pedro@s.edu Regster
More informationSorting and Algorithm Analysis
Unt 7 Sortng and Algorthm Analyss Computer Scence S111 Harvard Unversty Davd G. Sullvan, Ph.D. Sortng an Array of Integers 0 1 2 n2 n1 arr 15 7 36 40 12 Ground rules: sort the values n ncreasng order
More informationSorting Review. Sorting. Comparison Sorting. CSE 680 Prof. Roger Crawfis. Assumptions
Sortng Revew Introducton to Algorthms Qucksort CSE 680 Prof. Roger Crawfs Inserton Sort T(n) = Θ(n 2 ) Inplace Merge Sort T(n) = Θ(n lg(n)) Not nplace Selecton Sort (from homework) T(n) = Θ(n 2 ) Inplace
More informationSearching & Sorting. Definitions of Search and Sort. Linear Search in C++ Linear Search. Week 11. index to the item, or 1 if not found.
Searchng & Sortng Wee 11 Gadds: 8, 19.6,19.8 CS 5301 Sprng 2014 Jll Seaman 1 Defntons of Search and Sort Search: fnd a gven tem n a lst, return the ndex to the tem, or 1 f not found. Sort: rearrange the
More informationParallel matrixvector multiplication
Appendx A Parallel matrxvector multplcaton The reduced transton matrx of the threedmensonal cage model for gel electrophoress, descrbed n secton 3.2, becomes excessvely large for polymer lengths more
More informationToday s Outline. Sorting: The Big Picture. Why Sort? Selection Sort: Idea. Insertion Sort: Idea. Sorting Chapter 7 in Weiss.
Today s Outlne Sortng Chapter 7 n Wess CSE 26 Data Structures Ruth Anderson Announcements Wrtten Homework #6 due Frday 2/26 at the begnnng of lecture Proect Code due Mon March 1 by 11pm Today s Topcs:
More informationLecture 5: Multilayer Perceptrons
Lecture 5: Multlayer Perceptrons Roger Grosse 1 Introducton So far, we ve only talked about lnear models: lnear regresson and lnear bnary classfers. We noted that there are functons that can t be represented
More informationSorting: The Big Picture. The steps of QuickSort. QuickSort Example. QuickSort Example. QuickSort Example. Recursive Quicksort
Sortng: The Bg Pcture Gven n comparable elements n an array, sort them n an ncreasng (or decreasng) order. Smple algorthms: O(n ) Inserton sort Selecton sort Bubble sort Shell sort Fancer algorthms: O(n
More information6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour
6.854 Advanced Algorthms Petar Maymounkov Problem Set 11 (November 23, 2005) Wth: Benjamn Rossman, Oren Wemann, and Pouya Kheradpour Problem 1. We reduce vertex cover to MAXSAT wth weghts, such that the
More informationCHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vidyanagar
CHARUTAR VIDYA MANDAL S SEMCOM Vallabh Vdyanagar Faculty Name: Am D. Trved Class: SYBCA Subject: US03CBCA03 (Advanced Data & Fle Structure) *UNIT 1 (ARRAYS AND TREES) **INTRODUCTION TO ARRAYS If we want
More informationNUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS
ARPN Journal of Engneerng and Appled Scences 006017 Asan Research Publshng Network (ARPN). All rghts reserved. NUMERICAL SOLVING OPTIMAL CONTROL PROBLEMS BY THE METHOD OF VARIATIONS Igor Grgoryev, Svetlana
More informationELEC 377 Operating Systems. Week 6 Class 3
ELEC 377 Operatng Systems Week 6 Class 3 Last Class Memory Management Memory Pagng Pagng Structure ELEC 377 Operatng Systems Today Pagng Szes Vrtual Memory Concept Demand Pagng ELEC 377 Operatng Systems
More informationHarvard University CS 101 Fall 2005, Shimon Schocken. Assembler. Elements of Computing Systems 1 Assembler (Ch. 6)
Harvard Unversty CS 101 Fall 2005, Shmon Schocken Assembler Elements of Computng Systems 1 Assembler (Ch. 6) Why care about assemblers? Because Assemblers employ some nfty trcks Assemblers are the frst
More informationX Chart Using ANOM Approach
ISSN 16848403 Journal of Statstcs Volume 17, 010, pp. 33 Abstract X Chart Usng ANOM Approach Gullapall Chakravarth 1 and Chaluvad Venkateswara Rao Control lmts for ndvdual measurements (X) chart are
More informationComputer Animation and Visualisation. Lecture 4. Rigging / Skinning
Computer Anmaton and Vsualsaton Lecture 4. Rggng / Sknnng Taku Komura Overvew Sknnng / Rggng Background knowledge Lnear Blendng How to decde weghts? Examplebased Method Anatomcal models Sknnng Assume
More informationPolyhedral Compilation Foundations
Polyhedral Complaton Foundatons LousNoël Pouchet pouchet@cse.ohostate.edu Dept. of Computer Scence and Engneerng, the Oho State Unversty Feb 8, 200 888., Class # Introducton: Polyhedral Complaton Foundatons
More informationAccounting for the Use of Different Length Scale Factors in x, y and z Directions
1 Accountng for the Use of Dfferent Length Scale Factors n x, y and z Drectons Taha Soch (taha.soch@kcl.ac.uk) Imagng Scences & Bomedcal Engneerng, Kng s College London, The Rayne Insttute, St Thomas Hosptal,
More informationSLAM Summer School 2006 Practical 2: SLAM using Monocular Vision
SLAM Summer School 2006 Practcal 2: SLAM usng Monocular Vson Javer Cvera, Unversty of Zaragoza Andrew J. Davson, Imperal College London J.M.M Montel, Unversty of Zaragoza. josemar@unzar.es, jcvera@unzar.es,
More informationS1 Note. Basis functions.
S1 Note. Bass functons. Contents Types of bass functons...1 The Fourer bass...2 Bsplne bass...3 Power and type I error rates wth dfferent numbers of bass functons...4 Table S1. Smulaton results of type
More informationLecture #15 Lecture Notes
Lecture #15 Lecture Notes The ocean water column s very much a 3D spatal entt and we need to represent that structure n an economcal way to deal wth t n calculatons. We wll dscuss one way to do so, emprcal
More informationEVALUATION OF THE PERFORMANCES OF ARTIFICIAL BEE COLONY AND INVASIVE WEED OPTIMIZATION ALGORITHMS ON THE MODIFIED BENCHMARK FUNCTIONS
Academc Research Internatonal ISSL: 39553, ISS: 39944 Vol., o. 3, May 0 EVALUATIO OF THE PERFORMACES OF ARTIFICIAL BEE COLOY AD IVASIVE WEED OPTIMIZATIO ALGORITHMS O THE MODIFIED BECHMARK FUCTIOS Dlay
More informationy and the total sum of
Lnear regresson Testng for nonlnearty In analytcal chemstry, lnear regresson s commonly used n the constructon of calbraton functons requred for analytcal technques such as gas chromatography, atomc absorpton
More informationCSE 326: Data Structures Quicksort Comparison Sorting Bound
CSE 326: Data Structures Qucksort Comparson Sortng Bound Steve Setz Wnter 2009 Qucksort Qucksort uses a dvde and conquer strategy, but does not requre the O(N) extra space that MergeSort does. Here s the
More informationDijkstra s Single Source Algorithm. AllPairs Shortest Paths. Dynamic Programming Solution. Performance. Decision Sequence.
AllPars Shortest Paths Gven an nvertex drected weghted graph, fnd a shortest path from vertex to vertex for each of the n vertex pars (,). Dstra s Sngle Source Algorthm Use Dstra s algorthm n tmes, once
More informationAn Optimal Algorithm for Prufer Codes *
J. Software Engneerng & Applcatons, 2009, 2: 111115 do:10.4236/jsea.2009.22016 Publshed Onlne July 2009 (www.scrp.org/journal/jsea) An Optmal Algorthm for Prufer Codes * Xaodong Wang 1, 2, Le Wang 3,
More informationConditional Speculative Decimal Addition*
Condtonal Speculatve Decmal Addton Alvaro Vazquez and Elsardo Antelo Dep. of Electronc and Computer Engneerng Unv. of Santago de Compostela, Span Ths work was supported n part by Xunta de Galca under grant
More informationMathematics 256 a course in differential equations for engineering students
Mathematcs 56 a course n dfferental equatons for engneerng students Chapter 5. More effcent methods of numercal soluton Euler s method s qute neffcent. Because the error s essentally proportonal to the
More informationRadial Basis Functions
Radal Bass Functons Mesh Reconstructon Input: pont cloud Output: watertght manfold mesh Explct Connectvty estmaton Implct Sgned dstance functon estmaton Image from: Reconstructon and Representaton of
More informationCSE 326: Data Structures Quicksort Comparison Sorting Bound
CSE 326: Data Structures Qucksort Comparson Sortng Bound Bran Curless Sprng 2008 Announcements (5/14/08) Homework due at begnnng of class on Frday. Secton tomorrow: Graded homeworks returned More dscusson
More informationProblem Definitions and Evaluation Criteria for Computational Expensive Optimization
Problem efntons and Evaluaton Crtera for Computatonal Expensve Optmzaton B. Lu 1, Q. Chen and Q. Zhang 3, J. J. Lang 4, P. N. Suganthan, B. Y. Qu 6 1 epartment of Computng, Glyndwr Unversty, UK Faclty
More informationLU Decomposition Method Jamie Trahan, Autar Kaw, Kevin Martin University of South Florida United States of America
nbm_sle_sm_ludecomp.nb 1 LU Decomposton Method Jame Trahan, Autar Kaw, Kevn Martn Unverst of South Florda Unted States of Amerca aw@eng.usf.edu nbm_sle_sm_ludecomp.nb 2 Introducton When solvng multple
More informationThe Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique
//00 :0 AM Outlne and Readng The Greedy Method The Greedy Method Technque (secton.) Fractonal Knapsack Problem (secton..) Task Schedulng (secton..) Mnmum Spannng Trees (secton.) Change Money Problem Greedy
More informationModule Management Tool in Software Development Organizations
Journal of Computer Scence (5): 8, 7 ISSN 5966 7 Scence Publcatons Management Tool n Software Development Organzatons Ahmad A. AlRababah and Mohammad A. AlRababah Faculty of IT, AlAhlyyah Amman Unversty,
More informationDijkstra s Single Source Algorithm. AllPairs Shortest Paths. Dynamic Programming Solution. Performance
AllPars Shortest Paths Gven an nvertex drected weghted graph, fnd a shortest path from vertex to vertex for each of the n vertex pars (,). Dkstra s Sngle Source Algorthm Use Dkstra s algorthm n tmes,
More informationUNIT 2 : INEQUALITIES AND CONVEX SETS
UNT 2 : NEQUALTES AND CONVEX SETS ' Structure 2. ntroducton Objectves, nequaltes and ther Graphs Convex Sets and ther Geometry Noton of Convex Sets Extreme Ponts of Convex Set Hyper Planes and Half Spaces
More informationInsertion Sort. Divide and Conquer Sorting. Divide and Conquer. Mergesort. Mergesort Example. Auxiliary Array
Inserton Sort Dvde and Conquer Sortng CSE 6 Data Structures Lecture 18 What f frst k elements of array are already sorted? 4, 7, 1, 5, 1, 16 We can shft the tal of the sorted elements lst down and then
More informationVirtual Memory. Background. No. 10. Virtual Memory: concept. Logical Memory Space (review) Demand Paging(1) Virtual Memory
Background EECS. Operatng System Fundamentals No. Vrtual Memory Prof. Hu Jang Department of Electrcal Engneerng and Computer Scence, York Unversty Memorymanagement methods normally requres the entre process
More information2x x l. Module 3: Element Properties Lecture 4: Lagrange and Serendipity Elements
Module 3: Element Propertes Lecture : Lagrange and Serendpty Elements 5 In last lecture note, the nterpolaton functons are derved on the bass of assumed polynomal from Pascal s trangle for the fled varable.
More informationON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE
Yordzhev K., Kostadnova H. Інформаційні технології в освіті ON SOME ENTERTAINING APPLICATIONS OF THE CONCEPT OF SET IN COMPUTER SCIENCE COURSE Yordzhev K., Kostadnova H. Some aspects of programmng educaton
More informationAssembler. Shimon Schocken. Spring Elements of Computing Systems 1 Assembler (Ch. 6) Compiler. abstract interface.
IDC Herzlya Shmon Schocken Assembler Shmon Schocken Sprng 2005 Elements of Computng Systems 1 Assembler (Ch. 6) Where we are at: Human Thought Abstract desgn Chapters 9, 12 abstract nterface H.L. Language
More informationA Facet Generation Procedure. for solving 0/1 integer programs
A Facet Generaton Procedure for solvng 0/ nteger programs by Gyana R. Parja IBM Corporaton, Poughkeepse, NY 260 Radu Gaddov Emery Worldwde Arlnes, Vandala, Oho 45377 and Wlbert E. Wlhelm Teas A&M Unversty,
More informationProgramming Assignment Six. Semester Calendar. 1D Excel Worksheet Arrays. Review VBA Arrays from Excel. Programming Assignment Six May 2, 2017
Programmng Assgnment Sx, 07 Programmng Assgnment Sx Larry Caretto Mechancal Engneerng 09 Computer Programmng for Mechancal Engneers Outlne Practce quz for actual quz on Thursday Revew approach dscussed
More informationGreedy Technique  Definition
Greedy Technque Greedy Technque  Defnton The greedy method s a general algorthm desgn paradgm, bult on the follong elements: confguratons: dfferent choces, collectons, or values to fnd objectve functon:
More information9. BASIC programming: Control and Repetition
Am: In ths lesson, you wll learn: H. 9. BASIC programmng: Control and Repetton Scenaro: Moz s showng how some nterestng patterns can be generated usng math. Jyot [after seeng the nterestng graphcs]: Usng
More informationNAG Fortran Library Chapter Introduction. G10 Smoothing in Statistics
Introducton G10 NAG Fortran Lbrary Chapter Introducton G10 Smoothng n Statstcs Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Smoothng Methods... 2 2.2 Smoothng Splnes and Regresson
More informationOn Some Entertaining Applications of the Concept of Set in Computer Science Course
On Some Entertanng Applcatons of the Concept of Set n Computer Scence Course Krasmr Yordzhev *, Hrstna Kostadnova ** * Assocate Professor Krasmr Yordzhev, Ph.D., Faculty of Mathematcs and Natural Scences,
More informationReading. 14. Subdivision curves. Recommended:
eadng ecommended: Stollntz, Deose, and Salesn. Wavelets for Computer Graphcs: heory and Applcatons, 996, secton 6.6., A.5. 4. Subdvson curves Note: there s an error n Stollntz, et al., secton A.5. Equaton
More informationCHAPTER 10: ALGORITHM DESIGN TECHNIQUES
CHAPTER 10: ALGORITHM DESIGN TECHNIQUES So far, we have been concerned wth the effcent mplementaton of algorthms. We have seen that when an algorthm s gven, the actual data structures need not be specfed.
More informationCS240: Programming in C. Lecture 12: Polymorphic Sorting
CS240: Programmng n C ecture 12: Polymorphc Sortng Sortng Gven a collecton of tems and a total order over them, sort the collecton under ths order. Total order: every tem s ordered wth respect to every
More informationAnalysis of Continuous Beams in General
Analyss of Contnuous Beams n General Contnuous beams consdered here are prsmatc, rgdly connected to each beam segment and supported at varous ponts along the beam. onts are selected at ponts of support,
More informationOutline. SelfOrganizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:
SelfOrganzng Maps (SOM) Turgay İBRİKÇİ, PhD. Outlne Introducton Structures of SOM SOM Archtecture Neghborhoods SOM Algorthm Examples Summary 1 2 Unsupervsed Hebban Learnng US Hebban Learnng, Cntd 3 A
More informationU.C. Berkeley CS294: Beyond WorstCase Analysis Handout 5 Luca Trevisan September 7, 2017
U.C. Bereley CS294: Beyond WorstCase Analyss Handout 5 Luca Trevsan September 7, 207 Scrbed by Haars Khan Last modfed 0/3/207 Lecture 5 In whch we study the SDP relaxaton of Max Cut n random graphs. Quc
More informationEsc101 Lecture 1 st April, 2008 Generating Permutation
Esc101 Lecture 1 Aprl, 2008 Generatng Permutaton In ths class we wll look at a problem to wrte a program that takes as nput 1,2,...,N and prnts out all possble permutatons of the numbers 1,2,...,N. For
More information11. APPROXIMATION ALGORITHMS
Copng wth NPcompleteness 11. APPROXIMATION ALGORITHMS load balancng center selecton prcng method: vertex cover LP roundng: vertex cover generalzed load balancng knapsack problem Q. Suppose I need to solve
More informationKinematics of pantograph masts
Abstract Spacecraft Mechansms Group, ISRO Satellte Centre, Arport Road, Bangalore 560 07, Emal:bpn@sac.ernet.n Flght Dynamcs Dvson, ISRO Satellte Centre, Arport Road, Bangalore 560 07 Emal:pandyan@sac.ernet.n
More informationROBOT KINEMATICS. ME Robotics ME Robotics
ROBOT KINEMATICS Purpose: The purpose of ths chapter s to ntroduce you to robot knematcs, and the concepts related to both open and closed knematcs chans. Forward knematcs s dstngushed from nverse knematcs.
More informationArray transposition in CUDA shared memory
Array transposton n CUDA shared memory Mke Gles February 19, 2014 Abstract Ths short note s nspred by some code wrtten by Jeremy Appleyard for the transposton of data through shared memory. I had some
More informationA SYSTOLIC APPROACH TO LOOP PARTITIONING AND MAPPING INTO FIXED SIZE DISTRIBUTED MEMORY ARCHITECTURES
A SYSOLIC APPROACH O LOOP PARIIONING AND MAPPING INO FIXED SIZE DISRIBUED MEMORY ARCHIECURES Ioanns Drosts, Nektaros Kozrs, George Papakonstantnou and Panayots sanakas Natonal echncal Unversty of Athens
More informationAn Iterative Solution Approach to Process Plant Layout using Mixed Integer Optimisation
17 th European Symposum on Computer Aded Process Engneerng ESCAPE17 V. Plesu and P.S. Agach (Edtors) 2007 Elsever B.V. All rghts reserved. 1 An Iteratve Soluton Approach to Process Plant Layout usng Mxed
More informationChapter 6 Programmng the fnte element method Inow turn to the man subject of ths book: The mplementaton of the fnte element algorthm n computer programs. In order to make my dscusson as straghtforward
More informationMachine Learning: Algorithms and Applications
14/05/1 Machne Learnng: Algorthms and Applcatons Florano Zn Free Unversty of BozenBolzano Faculty of Computer Scence Academc Year 01101 Lecture 10: 14 May 01 Unsupervsed Learnng cont Sldes courtesy of
More informationKent State University CS 4/ Design and Analysis of Algorithms. Dept. of Math & Computer Science LECT16. Dynamic Programming
CS 4/560 Desgn and Analyss of Algorthms Kent State Unversty Dept. of Math & Computer Scence LECT6 Dynamc Programmng 2 Dynamc Programmng Dynamc Programmng, lke the dvdeandconquer method, solves problems
More informationAMath 483/583 Lecture 21 May 13, Notes: Notes: Jacobi iteration. Notes: Jacobi with OpenMP coarse grain
AMath 483/583 Lecture 21 May 13, 2011 Today: OpenMP and MPI versons of Jacob teraton GaussSedel and SOR teratve methods Next week: More MPI Debuggng and totalvew GPU computng Read: Class notes and references
More informationOPL: a modelling language
OPL: a modellng language Carlo Mannno (from OPL reference manual) Unversty of Oslo, INFMAT60  Autumn 00 (Mathematcal optmzaton) ILOG Optmzaton Programmng Language OPL s an Optmzaton Programmng Language
More informationLOOP ANALYSIS. The second systematic technique to determine all currents and voltages in a circuit
LOOP ANALYSS The second systematic technique to determine all currents and voltages in a circuit T S DUAL TO NODE ANALYSS  T FRST DETERMNES ALL CURRENTS N A CRCUT AND THEN T USES OHM S LAW TO COMPUTE
More informationCE 221 Data Structures and Algorithms
CE 1 ata Structures and Algorthms Chapter 4: Trees BST Text: Read Wess, 4.3 Izmr Unversty of Economcs 1 The Search Tree AT Bnary Search Trees An mportant applcaton of bnary trees s n searchng. Let us assume
More information7/12/2016. GROUP ANALYSIS Martin M. Monti UCLA Psychology AGGREGATING MULTIPLE SUBJECTS VARIANCE AT THE GROUP LEVEL
GROUP ANALYSIS Martn M. Mont UCLA Psychology NITP AGGREGATING MULTIPLE SUBJECTS When we conduct multsubject analyss we are tryng to understand whether an effect s sgnfcant across a group of people. Whether
More informationComputer models of motion: Iterative calculations
Computer models o moton: Iteratve calculatons OBJECTIVES In ths actvty you wll learn how to: Create 3D box objects Update the poston o an object teratvely (repeatedly) to anmate ts moton Update the momentum
More informationToday Using FourierMotzkin elimination for code generation Using FourierMotzkin elimination for determining schedule constraints
Fourer Motzkn Elmnaton Logstcs HW10 due Frday Aprl 27 th Today Usng FourerMotzkn elmnaton for code generaton Usng FourerMotzkn elmnaton for determnng schedule constrants Unversty FourerMotzkn Elmnaton
More informationNews. Recap: While Loop Example. Reading. Recap: Do Loop Example. Recap: For Loop Example
Unversty of Brtsh Columba CPSC, Intro to Computaton JanApr Tamara Munzner News Assgnment correctons to ASCIIArtste.java posted defntely read WebCT bboards Arrays Lecture, Tue Feb based on sldes by Kurt
More informationQuadruple Precision Eigenvalue Calculation Library. QPEigen Ver.1.0
Quadruple Precson Egenvalue Calculaton Lbrary QPEgen Ver.1.0 User s Manual Feb, 2015 Japan Atomc Energy Agency Contents 1 Overvew... 1 2 Matrx dagonalzaton... 2 3 Quadruple precson algorthm... 2 4 References...
More informationStorage Binding in RTL synthesis
Storage Bndng n RTL synthess Pe Zhang Danel D. Gajsk Techncal Report ICS037 August 0th, 200 Center for Embedded Computer Systems Department of Informaton and Computer Scence Unersty of Calforna, Irne
More informationFor instance, ; the five basic numbersets are increasingly more n A B & B A A = B (1)
Secton 1.2 Subsets and the Boolean operatons on sets If every element of the set A s an element of the set B, we say that A s a subset of B, or that A s contaned n B, or that B contans A, and we wrte A
More informationVectorization in the Polyhedral Model
Vectorzaton n the Polyhedral Model LousNoël Pouchet pouchet@cse.ohostate.edu Dept. of Computer Scence and Engneerng, the Oho State Unversty October 200 888. Introducton: Overvew Vectorzaton: Detecton
More informationSolutions to Programming Assignment Five Interpolation and Numerical Differentiation
College of Engneerng and Coputer Scence Mechancal Engneerng Departent Mechancal Engneerng 309 Nuercal Analyss of Engneerng Systes Sprng 04 Nuber: 537 Instructor: Larry Caretto Solutons to Prograng Assgnent
More informationIntroduction to Geometrical Optics  a 2D ray tracing Excel model for spherical mirrors  Part 2
Introducton to Geometrcal Optcs  a D ra tracng Ecel model for sphercal mrrors  Part b George ungu  Ths s a tutoral eplanng the creaton of an eact D ra tracng model for both sphercal concave and sphercal
More informationIntro. Iterators. 1. Access
Intro Ths mornng I d lke to talk a lttle bt about s and s. We wll start out wth smlartes and dfferences, then we wll see how to draw them n envronment dagrams, and we wll fnsh wth some examples. Happy
More informationOutline. Third Programming Project TwoDimensional Arrays. Files You Can Download. Exercise 8 Linear Regression. General Regression
Project 3 Twodensonal arras Ma 9, 6 Thrd Prograng Project TwoDensonal Arras Larr Caretto Coputer Scence 6 Coputng n Engneerng and Scence Ma 9, 6 Outlne Quz three on Thursda for full lab perod See saple
More information