Intermediate Programming, Spring 2017*

Size: px
Start display at page:

Download "Intermediate Programming, Spring 2017*"

Transcription

1 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general and you should not follow my lead on this.

2 *ptr = *ptr++; In terms of precedence: *ptr = *(ptr++); ptr++ increments the pointer but returns the old value, so the RHS side becomes This gives *(ptr++) ra[0]; ptr ra+1 ra[1]=ra[0]; int ra[5] = 1, 2, 3, 4, 5 ; int *ptr = ra; for( int i=0 ; i<5 ; i++ ) *ptr = *ptr++; printf( "array is: [ ); for( int i=0 ; i<5 ; i++ ) printf( "%d ", ra[i] ); printf( "]\n ); >>./a.out array is: [ ] >>

3 In addition to *ptr giving = *ptr++; the wrong result, In terms this is of bad precedence: code because in the last iteration *ptr we = *(ptr++); are setting ptr++ ra[5] increments = ra[4]; the pointer which but is returns an out-of-bounds the old value, access! so the RHS side becomes *(ptr++) ra[0]; ptr ra+1 This gives ra[1]=ra[0]; int ra[5] = 1, 2, 3, 4, 5 ; int *ptr = ra; for( int i=0 ; i<5 ; i++ ) *ptr = *ptr++; printf( "array is: [ ); for( int i=0 ; i<5 ; i++ ) printf( "%d ", ra[i] ); printf( "]\n ); >>./a.out array is: [ ] >>

4 with copies of the pointers and Swapping the addresses stored in list1 and list2 happens with the stack frame of swap and is not visible when the function returns void swap( char * list1, char * list2 ) char * temp = list1; list1 = list2; list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap(, ); >>./a.out >>

5 with copies of the pointers and Swapping the addresses stored in list1 and list2 happens with the stack frame of swap and is not visible when the function returns void swap( char * list1, char * list2 ) char * temp = list1; list1 = list2; list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap(, );

6 with copies of the pointers and Swapping the addresses stored in list1 and list2 happens with the stack frame of swap and is not visible when the function returns void swap( char * list1, char * list2 ) char * temp = list1; list1 = list2; list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap(, ); list1 list2

7 with copies of the pointers and Swapping the addresses stored in list1 and list2 happens with the stack frame of swap and is not visible when the function returns void swap( char * list1, char * list2 ) char * temp = list1; list1 = list2; list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap(, ); list1 list2

8 with copies of the pointers and Swapping the addresses stored in list1 and list2 happens with the stack frame of swap and is not visible when the function returns void swap( char * list1, char * list2 ) char * temp = list1; list1 = list2; list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap(, );

9 with the addresses of the pointers and Swapping the contents of data pointed to by list1 and list2 changes what and point to The effects are visible even after the function returns void swap( char ** list1, char ** list2 ) char * temp = *list1; *list1 = *list2; *list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap( &, &); >>./a.out >>

10 with the addresses of the pointers and Swapping the contents of data pointed to by list1 and list2 changes what and point to The effects are visible even after the function returns void swap( char ** list1, char ** list2 ) char * temp = *list1; *list1 = *list2; *list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap( &, &);

11 with the addresses of the pointers and Swapping the contents of data pointed to by list1 and list2 changes what and point to The effects are visible even after the function returns void swap( char ** list1, char ** list2 ) char * temp = *list1; *list1 = *list2; *list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap( &, &); list1 list2

12 with the addresses of the pointers and Swapping the contents of data pointed to by list1 and list2 changes what and point to The effects are visible even after the function returns void swap( char ** list1, char ** list2 ) char * temp = *list1; *list1 = *list2; *list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap( &, &); list1 list2

13 with the addresses of the pointers and Swapping the contents of data pointed to by list1 and list2 changes what and point to The effects are visible even after the function returns void swap( char ** list1, char ** list2 ) char * temp = *list1; *list1 = *list2; *list2 = temp; char ar1[] = 'a', 'b', 'c', 'd', 'e' ; char ar2[] = 'f', 'g', 'h', 'i', 'j' ; swap( &, &);

14 Piazza Resources section Resources tab Exercise 5-1

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

a) (5 points) What is the output of the following code sequence? int *ptr = 0x1050; printf ("%x\n", ptr--); printf ("%x\n", ptr);

a) (5 points) What is the output of the following code sequence? int *ptr = 0x1050; printf (%x\n, ptr--); printf (%x\n, ptr); Problem 1: Short Answers (25 points) a) (5 points) What is the output of the following code sequence? int *ptr = 0x1050; printf ("%x\n", ptr--); printf ("%x\n", ptr); b) (5 points) What are the three basic

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

CS113: Lecture 5. Topics: Pointers. Pointers and Activation Records

CS113: Lecture 5. Topics: Pointers. Pointers and Activation Records CS113: Lecture 5 Topics: Pointers Pointers and Activation Records 1 From Last Time: A Useless Function #include void get_age( int age ); int age; get_age( age ); printf( "Your age is: %d\n",

More information

Pointers as Arguments

Pointers as Arguments Introduction as Arguments How it Works called program on start of execution xw = &i xf = &d after excution xw = &i xf = &d caller program i? d? i 3 d.14159 x 3.14159 x 3.14159 R. K. Ghosh (IIT-Kanpur)

More information

Lab 3. Pointers Programming Lab (Using C) XU Silei

Lab 3. Pointers Programming Lab (Using C) XU Silei Lab 3. Pointers Programming Lab (Using C) XU Silei slxu@cse.cuhk.edu.hk Outline What is Pointer Memory Address & Pointers How to use Pointers Pointers Assignments Call-by-Value & Call-by-Address Functions

More information

Intermediate Programming, Spring Misha Kazhdan

Intermediate Programming, Spring Misha Kazhdan 600.120 Intermediate Programming, Spring 2017 Misha Kazhdan Outline Unix/Linux command line Basics of the Emacs editor Compiling and running a simple C program Cloning a repository Connecting to ugrad

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

o Code, executable, and process o Main memory vs. virtual memory

o Code, executable, and process o Main memory vs. virtual memory Goals for Today s Lecture Memory Allocation Prof. David August COS 217 Behind the scenes of running a program o Code, executable, and process o Main memory vs. virtual memory Memory layout for UNIX processes,

More information

Memory, Data, & Addressing II CSE 351 Spring

Memory, Data, & Addressing II CSE 351 Spring Memory, Data, & Addressing II CSE 351 Spring 2018 http://xkcd.com/138/ Review Questions 1) If the word size of a machine is 64-bits, which of the following is usually true? (pick all that apply) a) 64

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Lecture 2: C Programm

Lecture 2: C Programm 0 3 E CS 1 Lecture 2: C Programm ing C Programming Procedural thought process No built in object abstractions data separate from methods/functions Low memory overhead compared to Java No overhead of classes

More information

Programming Studio #9 ECE 190

Programming Studio #9 ECE 190 Programming Studio #9 ECE 190 Programming Studio #9 Concepts: Functions review 2D Arrays GDB Announcements EXAM 3 CONFLICT REQUESTS, ON COMPASS, DUE THIS MONDAY 5PM. NO EXTENSIONS, NO EXCEPTIONS. Functions

More information

Arrays, Pointers and Memory Management

Arrays, Pointers and Memory Management Arrays, Pointers and Memory Management EECS 2031 Summer 2014 Przemyslaw Pawluk May 20, 2014 Answer to the question from last week strct->field Returns the value of field in the structure pointed to by

More information

Language comparison. C has pointers. Java has references. C++ has pointers and references

Language comparison. C has pointers. Java has references. C++ has pointers and references Pointers CSE 2451 Language comparison C has pointers Java has references C++ has pointers and references Pointers Values of variables are stored in memory, at a particular location A location is identified

More information

Lecture 8: Pointer Arithmetic (review) Endianness Functions and pointers

Lecture 8: Pointer Arithmetic (review) Endianness Functions and pointers CSE 30: Computer Organization and Systems Programming Lecture 8: Pointer Arithmetic (review) Endianness Functions and pointers Diba Mirza University of California, San Diego 1 Q: Which of the assignment

More information

Course organization. Course introduction ( Week 1)

Course organization. Course introduction ( Week 1) Course organization Course introduction ( Week 1) Code editor: Emacs Part I: Introduction to C programming language (Week 2-9) Chapter 1: Overall Introduction (Week 1-3) Chapter 2: Types, operators and

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Introduction to C. Systems Programming Concepts

Introduction to C. Systems Programming Concepts Introduction to C Systems Programming Concepts Introduction to C A simple C Program Variable Declarations printf ( ) Compiling and Running a C Program Sizeof Program #include What is True in C? if example

More information

Slides adopted from T. Ferguson Spring 2016

Slides adopted from T. Ferguson Spring 2016 CSE3 Introduction to Programming for Science & Engineering Students Mostafa Parchami, Ph.D. Dept. of Comp. Science and Eng., Univ. of Texas at Arlington, USA Slides adopted from T. Ferguson Spring 06 Pointers

More information

Variation of Pointers

Variation of Pointers Variation of Pointers A pointer is a variable whose value is the address of another variable, i.e., direct address of the memory location. Like any variable or constant, you must declare a pointer before

More information

CSC 1600 Memory Layout for Unix Processes"

CSC 1600 Memory Layout for Unix Processes CSC 16 Memory Layout for Unix Processes" 1 Lecture Goals" Behind the scenes of running a program" Code, executable, and process" Memory layout for UNIX processes, and relationship to C" : code and constant

More information

Pointers (part 1) What are pointers? EECS We have seen pointers before. scanf( %f, &inches );! 25 September 2017

Pointers (part 1) What are pointers? EECS We have seen pointers before. scanf( %f, &inches );! 25 September 2017 Pointers (part 1) EECS 2031 25 September 2017 1 What are pointers? We have seen pointers before. scanf( %f, &inches );! 2 1 Example char c; c = getchar(); printf( %c, c); char c; char *p; c = getchar();

More information

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018

Pointer Basics. Lecture 13 COP 3014 Spring March 28, 2018 Pointer Basics Lecture 13 COP 3014 Spring 2018 March 28, 2018 What is a Pointer? A pointer is a variable that stores a memory address. Pointers are used to store the addresses of other variables or memory

More information

C BOOTCAMP DAY 2. CS3600, Northeastern University. Alan Mislove. Slides adapted from Anandha Gopalan s CS132 course at Univ.

C BOOTCAMP DAY 2. CS3600, Northeastern University. Alan Mislove. Slides adapted from Anandha Gopalan s CS132 course at Univ. C BOOTCAMP DAY 2 CS3600, Northeastern University Slides adapted from Anandha Gopalan s CS132 course at Univ. of Pittsburgh Pointers 2 Pointers Pointers are an address in memory Includes variable addresses,

More information

DECLARAING AND INITIALIZING POINTERS

DECLARAING AND INITIALIZING POINTERS DECLARAING AND INITIALIZING POINTERS Passing arguments Call by Address Introduction to Pointers Within the computer s memory, every stored data item occupies one or more contiguous memory cells (i.e.,

More information

Intermediate Programming, Spring 2017*

Intermediate Programming, Spring 2017* 600.120 Intermediate Programming, Spring 2017* Misha Kazhdan *Much of the code in these examples is not commented because it would otherwise not fit on the slides. This is bad coding practice in general

More information

Pointers. 10/5/07 Pointers 1

Pointers. 10/5/07 Pointers 1 Pointers 10/5/07 Pointers 1 10/5/07 Pointers 2 Variables Essentially, the computer's memory is made up of bytes. Each byte has an address, associated with it. 10/5/07 Pointers 3 Variable For example 1:#include

More information

Under the Hood: Data Representations, Memory and Bit Operations. Computer Science 104 Lecture 3

Under the Hood: Data Representations, Memory and Bit Operations. Computer Science 104 Lecture 3 Under the Hood: Data Representations, Memory and Bit Operations Computer Science 104 Lecture 3 Homework #1 Due Feb 6 Reading TAs Finish Chapter 1 Start Chapter 2 Admin +1 UTA: Michael Zhou Lindsay is Head

More information

Day02 A. Young W. Lim Sat. Young W. Lim Day02 A Sat 1 / 12

Day02 A. Young W. Lim Sat. Young W. Lim Day02 A Sat 1 / 12 Day02 A Young W. Lim 2017-10-07 Sat Young W. Lim Day02 A 2017-10-07 Sat 1 / 12 Outline 1 Based on 2 Introduction (2) - Basic Elements Basic Elements in C Programming Young W. Lim Day02 A 2017-10-07 Sat

More information

Lecture 4: Outline. Arrays. I. Pointers II. III. Pointer arithmetic IV. Strings

Lecture 4: Outline. Arrays. I. Pointers II. III. Pointer arithmetic IV. Strings Lecture 4: Outline I. Pointers A. Accessing data objects using pointers B. Type casting with pointers C. Difference with Java references D. Pointer pitfalls E. Use case II. Arrays A. Representation in

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering Accessing and Addressing Memory James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania Based on Computer Organization and Design, 5th Edition by Patterson & Hennessy American

More information

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #34. Function with pointer Argument

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #34. Function with pointer Argument Introduction to Programming in C Department of Computer Science and Engineering Lecture No. #34 Function with pointer Argument (Refer Slide Time: 00:05) So, here is the stuff that we have seen about pointers.

More information

[0569] p 0318 garbage

[0569] p 0318 garbage A Pointer is a variable which contains the address of another variable. Declaration syntax: Pointer_type *pointer_name; This declaration will create a pointer of the pointer_name which will point to the

More information

Linked List. April 2, 2007 Programming and Data Structure 1

Linked List. April 2, 2007 Programming and Data Structure 1 Linked List April 2, 2007 Programming and Data Structure 1 Introduction head A linked list is a data structure which can change during execution. Successive elements are connected by pointers. Last element

More information

Code Generation II. Code generation for OO languages. Object layout Dynamic dispatch. Parameter-passing mechanisms Allocating temporaries in the AR

Code Generation II. Code generation for OO languages. Object layout Dynamic dispatch. Parameter-passing mechanisms Allocating temporaries in the AR Code Generation II Code generation for OO languages Object layout Dynamic dispatch Parameter-passing mechanisms Allocating temporaries in the AR Object Layout OO implementation = Stuff from last lecture

More information

ECE 15B COMPUTER ORGANIZATION

ECE 15B COMPUTER ORGANIZATION ECE 15B COMPUTER ORGANIZATION Lecture 13 Strings, Lists & Stacks Announcements HW #3 Due next Friday, May 15 at 5:00 PM in HFH Project #2 Due May 29 at 5:00 PM Project #3 Assigned next Thursday, May 19

More information

Arrays and Pointers (part 1)

Arrays and Pointers (part 1) Arrays and Pointers (part 1) CSE 2031 Fall 2012 Arrays Grouping of data of the same type. Loops commonly used for manipulation. Programmers set array sizes explicitly. Arrays: Example Syntax type name[size];

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 30 Introduction to Computer Engineering Study Problems, Set #3 Spring 2015 Use the MIPS assembly instructions listed below to solve the following problems. arithmetic add add sub subtract addi add

More information

Pointers. Part VI. 1) Introduction. 2) Declaring Pointer Variables. 3) Using Pointers. 4) Pointer Arithmetic. 5) Pointers and Arrays

Pointers. Part VI. 1) Introduction. 2) Declaring Pointer Variables. 3) Using Pointers. 4) Pointer Arithmetic. 5) Pointers and Arrays EE105: Software Engineering II Part 6 Pointers page 1 of 19 Part VI Pointers 1) Introduction 2) Declaring Pointer Variables 3) Using Pointers 4) Pointer Arithmetic 5) Pointers and Arrays 6) Pointers and

More information

EM108 Software Development for Engineers

EM108 Software Development for Engineers EE108 Section 6 Pointers page 1 of 20 EM108 Software Development for Engineers Section 6 - Pointers 1) Introduction 2) Declaring Pointer Variables 3) Using Pointers 4) Pointer Arithmetic 5) Pointers and

More information

Gabriel Hugh Elkaim Spring CMPE 013/L: C Programming. CMPE 013/L: C Programming

Gabriel Hugh Elkaim Spring CMPE 013/L: C Programming. CMPE 013/L: C Programming 1 2 3 4 CMPE 013/L Pointers and Functions Gabriel Hugh Elkaim Spring 2013 Pointers and Functions Passing Pointers to Functions Normally, functions operate on copies of the data passed to them (pass by

More information

Using pointers with functions

Using pointers with functions Using pointers with functions Recall that our basic use of functions so fare provides for several possibilities. A function can 1. take one or more individual variables as inputs and return a single variable

More information

Low-Level C Programming. Memory map Pointers Arrays Structures

Low-Level C Programming. Memory map Pointers Arrays Structures Low-Level C Programming Memory map Pointers Arrays Structures Memory Map 0x7FFF_FFFF Binaries load at 0x20000 by default Stack start set by binary when started Stack grows downwards You will need one stack

More information

Pointers, Dynamic Data, and Reference Types

Pointers, Dynamic Data, and Reference Types Pointers, Dynamic Data, and Reference Types Review on Pointers Reference Variables Dynamic Memory Allocation The new operator The delete operator Dynamic Memory Allocation for Arrays 1 C++ Data Types simple

More information

Arrays and Pointers. CSE 2031 Fall November 11, 2013

Arrays and Pointers. CSE 2031 Fall November 11, 2013 Arrays and Pointers CSE 2031 Fall 2013 November 11, 2013 1 Arrays l Grouping of data of the same type. l Loops commonly used for manipulation. l Programmers set array sizes explicitly. 2 Arrays: Example

More information

BBM 201 DATA STRUCTURES

BBM 201 DATA STRUCTURES BBM 201 DATA STRUCTURES Lecture 8: Dynamically Allocated Linked Lists 2017-2018 Fall int x; x = 8; int A[4]; An array is stored as one contiguous block of memory. How can we add a fifth element to the

More information

Variables, Pointers, and Arrays

Variables, Pointers, and Arrays Variables, Pointers, and Arrays Prof. David August COS 217 http://www.cs.princeton.edu/courses/archive/fall06/cos217/ 1 Overview of Today s Lecture Pointers o Differences between value, variable, and pointer

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer. See P&H 2.8 and 2.12, and

More information

CSCI2467: Systems Programming Concepts

CSCI2467: Systems Programming Concepts CSCI2467: Systems Programming Concepts In Class: alignment activity followup Instructor: Matthew Toups Fall 2017 Today 1 2 Array question Identifier address (hex) type value (decimal) value (hex) myclasses

More information

Common Misunderstandings from Exam 1 Material

Common Misunderstandings from Exam 1 Material Common Misunderstandings from Exam 1 Material Kyle Dewey Stack and Heap Allocation with Pointers char c = c ; char* p1 = malloc(sizeof(char)); char** p2 = &p1; Where is c allocated? Where is p1 itself

More information

C'Programming' data'separate'from'methods/functions' Low'memory'overhead'compared'to'Java'

C'Programming' data'separate'from'methods/functions' Low'memory'overhead'compared'to'Java' ' 0 3 ' CSE 1 Lecture'3:''' ''''''''''''' C'Programm ing'' C'Programming' 'Procedural'thought'process' 'No'built'in'object'abstractions' data'separate'from'methods/functions' Low'memory'overhead'compared'to'Java'

More information

CS2351 Data Structures. Lecture 7: A Brief Review of Pointers in C

CS2351 Data Structures. Lecture 7: A Brief Review of Pointers in C CS2351 Data Structures Lecture 7: A Brief Review of Pointers in C 1 About this lecture Pointer is a useful object that allows us to access different places in our memory We will review the basic use of

More information

Arrays and Pointers. Arrays. Arrays: Example. Arrays: Definition and Access. Arrays Stored in Memory. Initialization. EECS 2031 Fall 2014.

Arrays and Pointers. Arrays. Arrays: Example. Arrays: Definition and Access. Arrays Stored in Memory. Initialization. EECS 2031 Fall 2014. Arrays Arrays and Pointers l Grouping of data of the same type. l Loops commonly used for manipulation. l Programmers set array sizes explicitly. EECS 2031 Fall 2014 November 11, 2013 1 2 Arrays: Example

More information

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays

CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays CS107 Handout 08 Spring 2007 April 9, 2007 The Ins and Outs of C Arrays C Arrays This handout was written by Nick Parlante and Julie Zelenski. As you recall, a C array is formed by laying out all the elements

More information

Self-referential Structures and Linked List. Programming and Data Structure 1

Self-referential Structures and Linked List. Programming and Data Structure 1 Self-referential Structures and Linked List Programming and Data Structure 1 Linked List :: Basic Concepts A list refers to a set of items organized sequentially. An array is an example of a list. The

More information

C Language Part 1 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee

C Language Part 1 Digital Computer Concept and Practice Copyright 2012 by Jaejin Lee C Language Part 1 (Minor modifications by the instructor) References C for Python Programmers, by Carl Burch, 2011. http://www.toves.org/books/cpy/ The C Programming Language. 2nd ed., Kernighan, Brian,

More information

04-17 Discussion Notes

04-17 Discussion Notes 04-17 Discussion Notes PIC 10B Spring 2018 1 RAII RAII is an acronym for the idiom Resource Acquisition is Initialization. What is meant by resource acquisition is initialization is that a resource should

More information

Pointers, Arrays and Parameters

Pointers, Arrays and Parameters Pointers, Arrays and Parameters This exercise is different from our usual exercises. You don t have so much a problem to solve by creating a program but rather some things to understand about the programming

More information

CS 222: Pointers and Manual Memory Management

CS 222: Pointers and Manual Memory Management CS 222: Pointers and Manual Memory Management Chris Kauffman Week 4-1 Logistics Reading Ch 8 (pointers) Review 6-7 as well Exam 1 Back Today Get it in class or during office hours later HW 3 due tonight

More information

ECE264 Fall 2013 Exam 1, September 24, 2013

ECE264 Fall 2013 Exam 1, September 24, 2013 ECE264 Fall 2013 Exam 1, September 24, 2013 In signing this statement, I hereby certify that the work on this exam is my own and that I have not copied the work of any other student while completing it.

More information

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21

C: Pointers. C: Pointers. Department of Computer Science College of Engineering Boise State University. September 11, /21 Department of Computer Science College of Engineering Boise State University September 11, 2017 1/21 Pointers A pointer is a variable that stores the address of another variable. Pointers are similar to

More information

Sorting. Quicksort analysis Bubble sort. November 20, 2017 Hassan Khosravi / Geoffrey Tien 1

Sorting. Quicksort analysis Bubble sort. November 20, 2017 Hassan Khosravi / Geoffrey Tien 1 Sorting Quicksort analysis Bubble sort November 20, 2017 Hassan Khosravi / Geoffrey Tien 1 Quicksort analysis How long does Quicksort take to run? Let's consider the best and the worst case These differ

More information

Pointers and Arrays 1

Pointers and Arrays 1 Pointers and Arrays 1 Pointers and Arrays When an array is declared, The compiler allocates sufficient amount of storage to contain all the elements of the array in contiguous memory locations The base

More information

Arrays and Pointers (part 1)

Arrays and Pointers (part 1) Arrays and Pointers (part 1) CSE 2031 Fall 2010 17 October 2010 1 Arrays Grouping of data of the same type. Loops commonly used for manipulation. Programmers set array sizes explicitly. 2 1 Arrays: Example

More information

Generic Swap. void swap (void *ap, void *bp, int size) { char temp[size]; memcpy (temp, ap, size); memcpy (ap, bp, size); memcpy (bp, temp, size); }

Generic Swap. void swap (void *ap, void *bp, int size) { char temp[size]; memcpy (temp, ap, size); memcpy (ap, bp, size); memcpy (bp, temp, size); } Slide: 1 Generics void swap (void *ap, void *bp, int size) { char temp[size]; memcpy (temp, ap, size); memcpy (ap, bp, size); memcpy (bp, temp, size); int main () { int i = 15; int j = 61; swap1 (&i, &j,

More information

Solution for Data Structure

Solution for Data Structure Solution for Data Structure May 2016 INDEX Q1 a 2-3 b 4 c. 4-6 d 7 Q2- a 8-12 b 12-14 Q3 a 15-18 b 18-22 Q4- a 22-35 B..N.A Q5 a 36-38 b N.A Q6- a 39-42 b 43 1 www.brainheaters.in Q1) Ans: (a) Define ADT

More information

Introduction to C Language (M3-R )

Introduction to C Language (M3-R ) Introduction to C Language (M3-R4-01-18) 1. Each question below gives a multiple choice of answers. Choose the most appropriate one and enter in OMR answer sheet supplied with the question paper, following

More information

SYSC 2006 C Winter 2012

SYSC 2006 C Winter 2012 SYSC 2006 C Winter 2012 Pointers and Arrays Copyright D. Bailey, Systems and Computer Engineering, Carleton University updated Sept. 21, 2011, Oct.18, 2011,Oct. 28, 2011, Feb. 25, 2011 Memory Organization

More information

Chapter 16. Pointers and Arrays. Address vs. Value. Another Need for Addresses

Chapter 16. Pointers and Arrays. Address vs. Value. Another Need for Addresses Chapter 16 Pointers and Arrays Based on slides McGraw-Hill Additional material 200/2005 Lewis/Martin Pointers and Arrays We've seen examples of both of these in our LC- programs; now we'll see them in

More information

First of all, it is a variable, just like other variables you studied

First of all, it is a variable, just like other variables you studied Pointers: Basics What is a pointer? First of all, it is a variable, just like other variables you studied So it has type, storage etc. Difference: it can only store the address (rather than the value)

More information

A Fast Review of C Essentials Part II

A Fast Review of C Essentials Part II A Fast Review of C Essentials Part II Structural Programming by Z. Cihan TAYSI Outline Fixed vs. Automatic duration Scope Global variables The register specifier Storage classes Dynamic memory allocation

More information

Understanding Pointers

Understanding Pointers Division of Mathematics and Computer Science Maryville College Pointers and Addresses Memory is organized into a big array. Every data item occupies one or more cells. A pointer stores an address. A pointer

More information

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University

See P&H 2.8 and 2.12, and A.5-6. Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University See P&H 2.8 and 2.12, and A.5-6 Prof. Hakim Weatherspoon CS 3410, Spring 2015 Computer Science Cornell University Upcoming agenda PA1 due yesterday PA2 available and discussed during lab section this week

More information

CS 2461: Computer Architecture I

CS 2461: Computer Architecture I Next: Pointers, Arrays, Structs... : Computer Architecture I The real fun stuff in C.. Pointers and Arrays Read Chapters 16, 18 of text Functions, Arrays, Pointers Dynamic data structures Allocating space

More information

What have we learned about when we learned about function parameters? 1-1

What have we learned about when we learned about function parameters? 1-1 What have we learned about when we learned about function parameters? 1-1 What have we learned about when we learned about function parameters? Call-by-Value also known as scalars (eg. int, double, char,

More information

At the end of this module, the student should be able to:

At the end of this module, the student should be able to: INTRODUCTION One feature of the C language which can t be found in some other languages is the ability to manipulate pointers. Simply stated, pointers are variables that store memory addresses. This is

More information

Advanced Systems Programming

Advanced Systems Programming Advanced Systems Programming Introduction to C++ Martin Küttler September 19, 2017 1 / 18 About this presentation This presentation is not about learning programming or every C++ feature. It is a short

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 13, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 13, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 13, SPRING 2013 TOPICS TODAY Reminder: MIDTERM EXAM on THURSDAY Pointer Basics Pointers & Arrays Pointers & Strings Pointers & Structs

More information

CS113: Lecture 4. Topics: Functions. Function Activation Records

CS113: Lecture 4. Topics: Functions. Function Activation Records CS113: Lecture 4 Topics: Functions Function Activation Records 1 Why functions? Functions add no expressive power to the C language in a formal sense. Why have them? Breaking tasks into smaller ones make

More information

CS 261: Data Structures. Dynamic Arrays. Introduction

CS 261: Data Structures. Dynamic Arrays. Introduction CS 261: Data Structures Dynamic Arrays Introduction Arrays Core data structure Example: double arraybag[100]; struct Students{ int count; }; char initials[2]; 2 Positives: Arrays -- Pros and Cons Simple

More information

UNIT V Sub u P b ro r g o r g a r m a s

UNIT V Sub u P b ro r g o r g a r m a s UNIT V SubPrograms Outline Subprograms Parameter Passing Parameter correspondence Main Issues when designing subroutine in programming languages Parameter passing techniques Characteristics of Subprogram

More information

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011

Agenda. Peer Instruction Question 1. Peer Instruction Answer 1. Peer Instruction Question 2 6/22/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Introduction to C (Part II) Instructors: Randy H. Katz David A. Patterson http://inst.eecs.berkeley.edu/~cs61c/sp11 Spring 2011 -- Lecture

More information

C++ ARRAYS POINTERS POINTER ARITHMETIC. Problem Solving with Computers-I

C++ ARRAYS POINTERS POINTER ARITHMETIC. Problem Solving with Computers-I C++ ARRAYS POINTERS POINTER ARITHMETIC Problem Solving with Computers-I General model of memory Sequence of adjacent cells Each cell has 1-byte stored in it Each cell has an address (memory location) Memory

More information

What is an algorithm?

What is an algorithm? Announcements CS 142 C++ Pointers Reminder Program 6 due Sunday, Nov. 9 th by 11:55pm 11/3/2014 2 Pointers and the Address Operator Pointer Variables Each variable in a program is stored at a unique address

More information

Algorithms & Data Structures

Algorithms & Data Structures GATE- 2016-17 Postal Correspondence 1 Algorithms & Data Structures Computer Science & Information Technology (CS) 20 Rank under AIR 100 Postal Correspondence Examination Oriented Theory, Practice Set Key

More information

Lecture 04 Introduction to pointers

Lecture 04 Introduction to pointers Lecture 04 Introduction to pointers A pointer is an address in the memory. One of the unique advantages of using C is that it provides direct access to a memory location through its address. A variable

More information

Anne Bracy CS 3410 Computer Science Cornell University

Anne Bracy CS 3410 Computer Science Cornell University Anne Bracy CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer. compute jump/branch targets

More information

3/22/2016. Pointer Basics. What is a pointer? C Language III. CMSC 313 Sections 01, 02. pointer = memory address + type

3/22/2016. Pointer Basics. What is a pointer? C Language III. CMSC 313 Sections 01, 02. pointer = memory address + type Pointer Basics What is a pointer? pointer = memory address + type C Language III CMSC 313 Sections 01, 02 A pointer can contain the memory address of any variable type A primitive (int, char, float) An

More information

CSE Lecture In Class Example Handout

CSE Lecture In Class Example Handout CSE 30321 Lecture 07-09 In Class Example Handout Part A: A Simple, MIPS-based Procedure: Swap Procedure Example: Let s write the MIPS code for the following statement (and function call): if (A[i] > A

More information

Scheme G. Sample Test Paper-I. Course Name : Computer Engineering Group Course Code : CO/CD/CM/CW/IF Semester : Second Subject Tile : Programming in C

Scheme G. Sample Test Paper-I. Course Name : Computer Engineering Group Course Code : CO/CD/CM/CW/IF Semester : Second Subject Tile : Programming in C Sample Test Paper-I Marks : 25 Time:1 Hrs. Q1. Attempt any THREE 09 Marks a) State four relational operators with meaning. b) State the use of break statement. c) What is constant? Give any two examples.

More information

10/20/2015. Midterm Topic Review. Pointer Basics. C Language III. CMSC 313 Sections 01, 02. Adapted from Richard Chang, CMSC 313 Spring 2013

10/20/2015. Midterm Topic Review. Pointer Basics. C Language III. CMSC 313 Sections 01, 02. Adapted from Richard Chang, CMSC 313 Spring 2013 Midterm Topic Review Pointer Basics C Language III CMSC 313 Sections 01, 02 1 What is a pointer? Why Pointers? Pointer Caution pointer = memory address + type A pointer can contain the memory address of

More information

Dynamic Memory Allocation

Dynamic Memory Allocation Dynamic Memory Allocation The process of allocating memory at run time is known as dynamic memory allocation. C does not Inherently have this facility, there are four library routines known as memory management

More information

BITG 1113: POINTER LECTURE 12

BITG 1113: POINTER LECTURE 12 BITG 1113: POINTER LECTURE 12 1 LEARNING OUTCOMES At the end of this lecture, you should be able to: 1. Describe the concept of pointer. 2. Write declaration and initialization of a pointer. 3. Do arithmetic

More information