Data Structures CSci 1200 Test 2 Questions

Size: px
Start display at page:

Download "Data Structures CSci 1200 Test 2 Questions"

Transcription

1 Overview Data Structures CSci 1200 Test 2 Questions Test 2 will be held Thursday, March 10, 2010, 12:00-1:30pm, Darrin 308. No make-ups will be given except for emergency situations, and even then a written excuse from the Dean of Students office will be required. Purpose: Check your understanding of the basics of (a) classes, (b) pointers and dynamic memory, (c) vector and string class implementation, (d) lists and iterators, and (e) programming problems associated with each of these. Coverage: Lectures 6-11, Labs 4-6, HW 3-4. Coverage of the material in Lecture 11 will be relatively minor if you can write Checkpoint 3 of Lab 6 you will be fine! Closed-book and closed-notes. At the start of the test, we will provide a handout summary of important C++ syntax, including standard library classes. Below are sample questions. Solutions will be posted on-line. These questions cover material that may not have been as well covered in labs and homeworks. The test questions will be closely tied to these questions, and to the lecture, homework and lab problems. How to study? Work through the sample questions, writing out solutions! You are encouraged to work with other students. Review and re-do lecture exercises, lab and homework problems. Identify the problems that cause you difficulty and review lecture notes and background reading on these topic areas. Note that the questions on classes from the test 1 practice are still relevant and should be reviewed. Questions 1. Given an array of integers, intarray, and a number of array elements, n, write a short code segment that uses pointer arithmetic and dereferencing to add every second entry in the array. For example, when intarray is and n==9, the segment should add to get 22. Store the result in a variable called sum. sum = 0; for ( int *p = intarray; p < intarray+n; p+=2 ) sum += *p; 2. Show the output from the following code segment. int x = 45; int y = 30; int *p = &x; *p = 20;

2 cout << "a: x = " << x << endl; int *q = &y; int temp = *p; *p = *q; *q = temp; cout << "b: x = " << x << ", y = " << y << endl; int * r = p; p = q; q = r; cout << "c: cout << "d: *p = " << *p << ", *q = " << *q << endl; x = " << x << ", y = " << y << endl; a: x = 20 b: x = 30, y = 20 c: *p = 20, *q = 30 d: x = 30, y = Write a function that takes an array of ints and copies the even integers into a dynamically-allocated array of ints, storing the values in in reverse order. For example, given an array containing the 12 values 5, -1, 4, 0, 13, 27, 98, 17, 97, 24, 98, 89 the resulting array should contain the values (in order) 98, 24, 98, 0, 4 after the function is completed. When doing dynamic allocation, you may only allocate enough space to store the actual numbers, and no more. Also, you may only allocate the array once, not in a loop. The return type of the function must be. Start by specifying the function prototype. Think carefully about the parameters needed and their types. Repeat the problem using pointers instead of array subscripting. Give an O estimate for both of your solutions. One challenge here is how to pass the resulting array. Two reference parameters are needed. One is a pointer to the dynamically-allocated array and the second is an integer giving the size of the array. Here is the result: even_integers_reversed( int a[], int n, int* & b, int & m ) m = 0; for ( unsigned int i=0; i<n; ++i ) // count even values if ( a[i] % 2 == 0 ) ++m; b = new int[m]; int i=0; // index into array pointed to by b for ( int j=n-1; j>=0; j-- ) // go backwards through a if ( a[j] % 2 == 0 ) b[i] = a[j]; ++ i; 2

3 Here is the pointer version even_integers_reversed( int a[], int n, int* & b, int & m ) m = 0; for ( int* p = a; p < a+n; ++p ) // count even values if ( *p % 2 == 0 ) ++m; b = new int[m]; int * q = b; // index into array pointed to by b for ( int* p = a+n-1; p>=a; p-- ) // go backwards through a if ( *p % 2 == 0 ) *q = *p; ++ q; Both versions are O(n). In both cases separate (non-nested) loops through array a. In each loop, a constant amount of work is done per iteration and there are n loop iterations. This gives O(n) per loop, but since they are in sequence, the total cost is O(n) overall. 4. Write code that (a) uses pointers to dynamically allocate an array of n doubles, (b) reads n doubles into the array from cin, and (c) then, in a separate loop, outputs the differences between consecutive doubles, all on one line. For example, if n==5 and the input is then the output should have the 4 values In the loop for part (b) you may use subscripting. In the loop for part (c) no subscripting may be used and no integer counting variables may be employed; in this part everything must be done using pointers. double * arr = new double[n]; for ( unsigned int i=0; i<n; ++i ) cin >> arr[i]; for ( double *p = arr; p<arr+n-1; ++p ) cout << *(p+1) - *p << ; cout << \n ; 5. Write a Vec<T> class member function that creates a new Vec<T> from the current Vec<T> that stores the same values as the original vector but in reverse order. The function prototype is Vec<T> Vec<T>::reverse() const; Recall that Vec<T> class objects have three member variables: 3

4 T* m_data; // Pointer to first location in the allocated array size_type m_size; // Number of elements stored in the vector size_type m_alloc; // Number of array locations allocated, m_size <= m_alloc The confusing part of the problem is that the new vector being created is not the current object the object the member function is called on. Instead it is created as a local variable. Still, since we are inside the Vec class, we have direct access to its member variables. The solution uses pointers, but subscripting would work just as well. Vec<T> Vec<T>::reverse( ) const Vec<T> new_vec; new_vec.m_size = new_vec.m_alloc = m_size; new_vec.m_data = new T[new_vec.m_size]; for ( T * p = new_vec.m_data, *q = m_data+m_size-1; q >= m_data; p++, q-- ) *p = *q; return new_vec; 6. Write a code segment that copies the contents of a string into a list of char in reverse order. // assume the string is s and s has been initialized list<char> result; for ( int i=0; i<s.size(); ++i ) result.push_front( s[i] ); 7. Recall that each container class has its own associated erase function, which accepts an iterator as an argument, erases the contents of the container referenced by the iterator, and returns a new iterator that references the next location in the container. Is erase more efficient for std::list or std::vector or is the efficiency the same? Briefly justify your answer. The function is more efficient for a list because it just requires a view pointer manipulations and therefore is a constant time operation. On the other hand, the vector operation is O(n) because all values above the iterator location need to be copied down. 8. Write a templated function that determines whether or not the values in a std::list are in increasing order. The function prototype is bool is_increasing( std::list<t> const& t ) You must assume that operator< is defined for type T. bool is_increasing( std::list<t> const& t ) if ( t.size() <= 1 ) return true; 4

5 std::list<t>::const_iterator p, q; p = q = t.begin(); // refers to current value q ++; // refers to next value while ( q!= t.end() ) if ( *p > *q ) return false; p ++; q ++; return true; // no misordering found // misordering found 9. Write a function named filter that takes in a single argument, words, that is a list of strings that are lowercase three-letter words. Your function will remove words from the list as necessary such that in the end, no words have any common characters. For example, given the input sequence of strings: cat bat dog too use zoo won you ace zip bin leg The words bat, too, and ace are removed because they have a common character with cat. The words zoo, won, you, and leg are removed because they have a common character with dog. And the word bin is removed because it has a common character with zip. Then after calling filter the variable words contains these strings: cat dog use zip bool common_char(const string &a, const string &b) for (int i = 0; i < a.size(); i++) for (int j = 0; j < b.size(); j++) if (a[i] == b[j]) return true; return false; filter(list<string>& words) list<string>::iterator i,j; i = words.begin(); while (i!= words.end()) j = i; j++; while (j!= words.end()) if (common_char(*i,*j)) cout << *i << " removes " << *j << endl; j = words.erase(j); else j++; 5

6 i++; 10. Write a function that takes an array of ints and copies the even integers into a dynamically-allocated array of ints, storing the values in in reverse order. For example, given an array containing the 12 values 5, -1, 4, 0, 13, 27, 98, 17, 97, 24, 98, 89 the resulting array should contain the values (in order) 98, 24, 98, 0, 4 after the function is completed. When doing dynamic allocation, you may only allocate enough space to store the actual numbers, and no more. Also, you may only allocate the array once, not in a loop. The return type of the function must be. Start by specifying the function prototype. Think carefully about the parameters needed and their types. Repeat the problem using (a) pointers instead of array subscripting and (b) returning the even integers in a vector instead of an array. Give an O estimate for each. One challenge here is how to pass the resulting array. Two reference parameters are needed. One is a pointer to the dynamically-allocated array and the second is an integer giving the size of the array. Here is the result: even_integers_reversed( int a[], int n, int* & b, int & m ) m = 0; for ( unsigned int i=0; i<n; ++i ) // count even values if ( a[i] % 2 == 0 ) ++m; b = new int[m]; int i=0; // index into array pointed to by b for ( int j=n-1; j>=0; j-- ) // go backwards through a if ( a[j] % 2 == 0 ) b[i] = a[j]; ++ i; Here is the pointer version even_integers_reversed( int a[], int n, int* & b, int & m ) m = 0; for ( int* p = a; p < a+n; ++p ) // count even values if ( *p % 2 == 0 ) ++m; b = new int[m]; int * q = b; // index into array pointed to by b for ( int* p = a+n-1; p>=a; p-- ) // go backwards through a if ( *p % 2 == 0 ) 6

7 *q = *p; ++ q; The vector version requires that we go backward through a, but only one time. even_integers_reversed( int a[], int n, vector<int> & b ) b.clear(); for ( int j=n-1; j>=0; j-- ) // go backwards through a if ( a[j] % 2 == 0 ) b.push_back( a[j] ); All versions are O(n). In the first two cases there are two separate (non-nested) loops through array a. In each loop, a constant amount of work is done per iteration and there are n loop iterations. This gives O(n) per loop, but since they are in sequence, the total cost is O(n) overall. The argument is even simpler for the vector version as long as we can assume push_back is constant time, which it is on average. 11. Write a function that rearranges a list of doubles so that all the negative values come before all the non-negative values AND the order of the negative values is preserved AND the order of the positive values is preserved. For example, if the list contains -1.3, 5.2, 8.7, 0.0, -4.5, 7.8, -9.1, 3.5, 6.6 Then the modified list should contain -1.3, -4.5, -9.1, 5.2, 8.7, 0.0, 7.8, 3.5, 6.6 Solve it in four different ways: (a) Assume the values are in a std::list<double>. scratch space. Rearrange the values using an extra list as (b) Assume the values are in a std::list<double>. Rearrange the values without using an extra list (or any other extra container). Here s an in-place solution which does not use an extra list. Whenever a non-negative number is seen it is removed and placed on the back of the list. Negative numbers are skipped. The trick to ensuring this works is using a separate counter to ensure that all items in the list are tested exactly once. Otherwise, some will be examined multiple times. rearrange( list<double>& dbl ) unsigned int sz = dbl.size(); unsigned int i; list<double>::iterator itr = dbl.begin(); for ( i=0; i<sz; ++i ) if ( *itr < 0 ) ++ itr; else 7

8 dbl.push_back( *itr ); itr = dbl.erase( itr ); Here s a second solution which uses an extra list and two passes through the list. The first pass puts the negative numbers on the front and the second pass puts the positive numbers on the back. rearrange( list<double>& dbl ) list<double> temp; list<double>::iterator i; for ( i = dbl.begin(); i!= dbl.end(); ++i ) if ( *i < 0 ) temp.push_back( *i ); for ( i = dbl.begin(); i!= dbl.end(); ++i ) if ( *i >= 0 ) temp.push_back( *i ); dbl = temp; 12. Using the following Node<T> class class Node public Node * next; T value; Node( const T & v ) : value(v), next(0) ; write a function that takes a pointer to the head of a singly-linked list and returns a pointer to the head of a new linked list that is a copy of the linked list. Here is the prototype Node<T>* copy_list( Node<T>* head ) Node<T>* copy_list( Node<T>* head ) if (!head) return 0; // empty list Node<T> * nh = new Node<T>( head->value ); Node<T> * nt = nh; // Go through the existing list front to back, copying nodes, // adding them to the tail and updating the tail. 8

9 Node<T> * q = head->next; while ( q ) Node<T> * p = new Node<T>(q->value); nt->next = p; nt = p; return nh; 9

Computer Science II CSci 1200 Test 2 Overview and Practice

Computer Science II CSci 1200 Test 2 Overview and Practice Computer Science II CSci 1200 Test 2 Overview and Practice Overview Test 2 will be held Friday, March 21, 2008 2:00-3:45pm, Darrin 308. No make-ups will be given except for emergency situations, and even

More information

Computer Science II CSci 1200 Test 1 Overview and Practice

Computer Science II CSci 1200 Test 1 Overview and Practice Computer Science II CSci 1200 Test 1 Overview and Practice Overview Test 1 will be held Tuesday, February 13, 2007, 2:00-3:30pm, West Hall Auditorium. No make-ups will be given except for emergency situations,

More information

CSCI-1200 Computer Science II Spring 2006 Test 3 Practice Problem Solutions

CSCI-1200 Computer Science II Spring 2006 Test 3 Practice Problem Solutions CSCI-1200 Computer Science II Spring 2006 Test 3 Practice Problem Solutions 1. You are given a map that associates strings with lists of strings. The definition is: map words; Write

More information

Data Structures CSci 1200 Test 1 Questions

Data Structures CSci 1200 Test 1 Questions Overview Data Structures CSci 1200 Test 1 Questions Test 1 will be held Monday, February 14, 2011, 12:00-1:30pm, Darrin 308. No make-ups will be given except for emergency situations, and even then a written

More information

CSCI-1200 Data Structures Fall 2017 Lecture 10 Vector Iterators & Linked Lists

CSCI-1200 Data Structures Fall 2017 Lecture 10 Vector Iterators & Linked Lists CSCI-1200 Data Structures Fall 2017 Lecture 10 Vector Iterators & Linked Lists Review from Lecture 9 Explored a program to maintain a class enrollment list and an associated waiting list. Unfortunately,

More information

CSCI-1200 Data Structures Fall 2017 Lecture 7 Order Notation & Basic Recursion

CSCI-1200 Data Structures Fall 2017 Lecture 7 Order Notation & Basic Recursion CSCI-1200 Data Structures Fall 2017 Lecture 7 Order Notation & Basic Recursion Announcements: Test 1 Information Test 1 will be held Monday, Sept 25th, 2017 from 6-7:50pm Students will be randomly assigned

More information

CSCI-1200 Data Structures Fall 2018 Lecture 5 Pointers, Arrays, & Pointer Arithmetic

CSCI-1200 Data Structures Fall 2018 Lecture 5 Pointers, Arrays, & Pointer Arithmetic CSCI-1200 Data Structures Fall 2018 Lecture 5 Pointers, Arrays, & Pointer Arithmetic Announcements: Test 1 Information Test 1 will be held Thursday, Sept 20th, 2018 from 6-7:50pm Students will be randomly

More information

CSCI-1200 Data Structures Spring 2014 Lecture 5 Pointers, Arrays, Pointer Arithmetic

CSCI-1200 Data Structures Spring 2014 Lecture 5 Pointers, Arrays, Pointer Arithmetic CSCI-1200 Data Structures Spring 2014 Lecture 5 Pointers, Arrays, Pointer Arithmetic Announcements: Test 1 Information Test 1 will be held Monday, February 10th, 2014 from 6-7:50pm, Lab sections 1-5 and

More information

CSCI-1200 Data Structures Fall 2012 Lecture 5 Pointers, Arrays, Pointer Arithmetic

CSCI-1200 Data Structures Fall 2012 Lecture 5 Pointers, Arrays, Pointer Arithmetic CSCI-1200 Data Structures Fall 2012 Lecture 5 Pointers, Arrays, Pointer Arithmetic Announcements: Test 1 Information Test 1 will be held Tuesday, September 18th, 2012 from 2-3:50pm in West Hall Auditorium.

More information

CSCI-1200 Data Structures Fall 2017 Lecture 9 Iterators & STL Lists

CSCI-1200 Data Structures Fall 2017 Lecture 9 Iterators & STL Lists Review from Lecture 8 CSCI-1200 Data Structures Fall 2017 Lecture 9 Iterators & STL Lists Designing our own container classes Dynamically allocated memory in classes Copy constructors, assignment operators,

More information

CSCI-1200 Data Structures Fall 2013 Lecture 9 Iterators & Lists

CSCI-1200 Data Structures Fall 2013 Lecture 9 Iterators & Lists Review from Lecture 8 CSCI-1200 Data Structures Fall 2013 Lecture 9 Iterators & Lists Explored a program to maintain a class enrollment list and an associated waiting list. Unfortunately, erasing items

More information

CSCI-1200 Data Structures Spring 2017 Lecture 5 Pointers, Arrays, Pointer Arithmetic

CSCI-1200 Data Structures Spring 2017 Lecture 5 Pointers, Arrays, Pointer Arithmetic CSCI-1200 Data Structures Spring 2017 Lecture 5 Pointers, Arrays, Pointer Arithmetic Announcements Submitty iclicker registration is still open. Even if you already registered on the iclicker website,

More information

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion Review from Lectures 5 & 6 Arrays and pointers, Pointer arithmetic and dereferencing, Types of memory ( automatic, static,

More information

CSCI-1200 Data Structures Spring 2018 Lecture 10 Vector Iterators & Linked Lists

CSCI-1200 Data Structures Spring 2018 Lecture 10 Vector Iterators & Linked Lists CSCI-1200 Data Structures Spring 2018 Lecture 10 Vector Iterators & Linked Lists Review from Lecture 9 Explored a program to maintain a class enrollment list and an associated waiting list. Unfortunately,

More information

CSCI-1200 Data Structures Fall 2014 Lecture 8 Iterators

CSCI-1200 Data Structures Fall 2014 Lecture 8 Iterators Review from Lecture 7 CSCI-1200 Data Structures Fall 2014 Lecture 8 Iterators Designing our own container classes Dynamically allocated memory in classes Copy constructors, assignment operators, and destructors

More information

CSCI-1200 Data Structures Fall 2010 Lecture 8 Iterators

CSCI-1200 Data Structures Fall 2010 Lecture 8 Iterators CSCI-1200 Data Structures Fall 2010 Lecture 8 Iterators Review from Lecture 7 Designing our own container classes Dynamically allocated memory in classes Copy constructors, assignment operators, and destructors

More information

CSCI-1200 Data Structures Spring 2018 Lecture 5 Pointers, Arrays, & Pointer Arithmetic

CSCI-1200 Data Structures Spring 2018 Lecture 5 Pointers, Arrays, & Pointer Arithmetic CSCI-1200 Data Structures Spring 2018 Lecture 5 Pointers, Arrays, & Pointer Arithmetic Announcements: Test 1 Information Test 1 will be held Monday, February 5th, 2017 from 6-7:50pm Students will be randomly

More information

CSCI-1200 Data Structures Fall 2018 Lecture 7 Templated Classes & Vector Implementation

CSCI-1200 Data Structures Fall 2018 Lecture 7 Templated Classes & Vector Implementation CSCI-1200 Data Structures Fall 2018 Lecture 7 Templated Classes & Vector Implementation Announcements Lab 3 was a Frankenstein assembly of a new group exercise with part of a gdb lab. I hear many of you

More information

Pointers Pointer Variables. Pointer Variables Getting the Address of a Variable. Each variable in program is stored at a

Pointers Pointer Variables. Pointer Variables Getting the Address of a Variable. Each variable in program is stored at a 3.1. Getting the Address of a Variable Pointers (read Chapter 9. Starting Out with C++: From Control Structures through Objects, Tony Gaddis.) Le Thanh Huong School of Information and Communication Technology

More information

PIC 10A. Review for Midterm I

PIC 10A. Review for Midterm I PIC 10A Review for Midterm I Midterm I Friday, May 1, 2.00-2.50pm. Try to show up 5 min early so we can start on time. Exam will cover all material up to and including todays lecture. (Only topics that

More information

Exercise 1.1 Hello world

Exercise 1.1 Hello world Exercise 1.1 Hello world The goal of this exercise is to verify that computer and compiler setup are functioning correctly. To verify that your setup runs fine, compile and run the hello world example

More information

CSCI-1200 Data Structures Spring 2015 Lecture 2 STL Strings & Vectors

CSCI-1200 Data Structures Spring 2015 Lecture 2 STL Strings & Vectors Announcements CSCI-1200 Data Structures Spring 2015 Lecture 2 STL Strings & Vectors HW 1 is available on-line through the website (on the Calendar ). Be sure to read through this information as you start

More information

CSCI-1200 Data Structures Spring 2018 Lecture 8 Templated Classes & Vector Implementation

CSCI-1200 Data Structures Spring 2018 Lecture 8 Templated Classes & Vector Implementation CSCI-1200 Data Structures Spring 2018 Lecture 8 Templated Classes & Vector Implementation Review from Lectures 7 Algorithm Analysis, Formal Definition of Order Notation Simple recursion, Visualization

More information

CSCI-1200 Data Structures Spring 2018 Lecture 15 Associative Containers (Maps), Part 2

CSCI-1200 Data Structures Spring 2018 Lecture 15 Associative Containers (Maps), Part 2 CSCI-1200 Data Structures Spring 2018 Lecture 15 Associative Containers (Maps), Part 2 Review of Lecture 14 Maps are associations between keys and values. Maps have fast insert, access and remove operations:

More information

Arrays. Arizona State University 1

Arrays. Arizona State University 1 Arrays CSE100 Principles of Programming with C++, Fall 2018 (based off Chapter 8 slides by Pearson) Ryan Dougherty Arizona State University http://www.public.asu.edu/~redoughe/ Arizona State University

More information

vector<int> second (4,100); // four ints with value 100 vector<int> third (second.begin(),second.end()); // iterating through second

vector<int> second (4,100); // four ints with value 100 vector<int> third (second.begin(),second.end()); // iterating through second C++ Vector Constructors explicit vector ( const Allocator& = Allocator() ); explicit vector ( size_type n, const T& value= T(), const Allocator& = Allocator() ); template vector (

More information

Chapter 01 Arrays Prepared By: Dr. Murad Magableh 2013

Chapter 01 Arrays Prepared By: Dr. Murad Magableh 2013 Chapter 01 Arrays Prepared By: Dr. Murad Magableh 2013 One Dimensional Q1: Write a program that declares two arrays of integers and fills them from the user. Then exchanges their values and display the

More information

C++ Programming. Pointers and Memory Management. M1 Math Michail Lampis

C++ Programming. Pointers and Memory Management. M1 Math Michail Lampis C++ Programming Pointers and Memory Management M1 Math Michail Lampis michail.lampis@dauphine.fr Dynamic Memory Allocation Data in your program lives (mostly) in two areas The stack The heap So far, we

More information

1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol.

1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol. 1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol. B. Outputs to the console a floating point number f1 in scientific format

More information

CSCI-1200 Data Structures Test 3 Practice Problem Solutions

CSCI-1200 Data Structures Test 3 Practice Problem Solutions 1 Short Answer [ /21] CSCI-1200 Data Structures Test 3 Practice Problem Solutions 1.1 TreeNode Parent Pointers [ /5] In our initial version of the ds set class, the TreeNode object had 3 member variables:

More information

CSCI-1200 Data Structures Spring 2016 Lecture 7 Iterators, STL Lists & Order Notation

CSCI-1200 Data Structures Spring 2016 Lecture 7 Iterators, STL Lists & Order Notation Today CSCI-1200 Data Structures Spring 2016 Lecture 7 Iterators, STL Lists & Order Notation Another vector operation: pop back Erasing items from vectors is inefficient! Iterators and iterator operations

More information

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive)

l Determine if a number is odd or even l Determine if a number/character is in a range - 1 to 10 (inclusive) - between a and z (inclusive) Final Exam Exercises Chapters 1-7 + 11 Write C++ code to: l Determine if a number is odd or even CS 2308 Fall 2016 Jill Seaman l Determine if a number/character is in a range - 1 to 10 (inclusive) - between

More information

CSCI-1200 Computer Science II Fall 2008 Lecture 15 Associative Containers (Maps), Part 2

CSCI-1200 Computer Science II Fall 2008 Lecture 15 Associative Containers (Maps), Part 2 CSCI-1200 Computer Science II Fall 2008 Lecture 15 Associative Containers (Maps), Part 2 Review of Lecture 14 Maps are associations between keys and values. Maps have fast insert, access and remove operations:

More information

Computer Science II CSci 1200 Lecture 8 Iterators; Programming Examples

Computer Science II CSci 1200 Lecture 8 Iterators; Programming Examples Computer Science II CSci 1200 Lecture 8 Iterators; Programming Examples Test 1 102 total points on the test. Therefore, your score is out of 102. Class average: 89.6 / 102 Distribution: Solutions are posted

More information

CSCI Compiler Design

CSCI Compiler Design CSCI 565 - Compiler Design Spring 2010 Final Exam - Solution May 07, 2010 at 1.30 PM in Room RTH 115 Duration: 2h 30 min. Please label all pages you turn in with your name and student number. Name: Number:

More information

Computer Science II Lecture 1 Introduction and Background

Computer Science II Lecture 1 Introduction and Background Computer Science II Lecture 1 Introduction and Background Discussion of Syllabus Instructor, TAs, office hours Course web site, http://www.cs.rpi.edu/courses/fall04/cs2, will be up soon Course emphasis,

More information

Purpose of Review. Review some basic C++ Familiarize us with Weiss s style Introduce specific constructs useful for implementing data structures

Purpose of Review. Review some basic C++ Familiarize us with Weiss s style Introduce specific constructs useful for implementing data structures C++ Review 1 Purpose of Review Review some basic C++ Familiarize us with Weiss s style Introduce specific constructs useful for implementing data structures 2 Class The Class defines the data structure

More information

Sol. Sol. a. void remove_items_less_than(int arr[], int size, int value) #include <iostream> #include <ctime> using namespace std;

Sol. Sol. a. void remove_items_less_than(int arr[], int size, int value) #include <iostream> #include <ctime> using namespace std; r6.14 For the operations on partially filled arrays below, provide the header of a func tion. d. Remove all elements that are less than a given value. Sol a. void remove_items_less_than(int arr[], int

More information

Programming with Arrays Intro to Pointers CS 16: Solving Problems with Computers I Lecture #11

Programming with Arrays Intro to Pointers CS 16: Solving Problems with Computers I Lecture #11 Programming with Arrays Intro to Pointers CS 16: Solving Problems with Computers I Lecture #11 Ziad Matni Dept. of Computer Science, UCSB Thursday, 5/17 in this classroom Starts at 2:00 PM **SHARP** Please

More information

CSCI-1200 Data Structures Fall 2016 Lecture 17 Associative Containers (Maps), Part 2

CSCI-1200 Data Structures Fall 2016 Lecture 17 Associative Containers (Maps), Part 2 CSCI-1200 Data Structures Fall 2016 Lecture 17 Associative Containers (Maps), Part 2 Review of Lecture 16 Maps are associations between keys and values. Maps have fast insert, access and remove operations:

More information

CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic

CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic CSCI-1200 Data Structures Fall 2017 Lecture 5 Pointers, Arrays, & Pointer Arithmetic Review from Letctures 3 & 4 C++ class syntax, designing classes, classes vs. structs; Passing comparison functions to

More information

Arrays - Vectors. Arrays: ordered sequence of values of the same type. Structures: named components of various types

Arrays - Vectors. Arrays: ordered sequence of values of the same type. Structures: named components of various types Arrays - Vectors Data Types Data Type: I. set of values II. set of operations over those values Example: Integer I. whole numbers, -32768 to 32767 II. +, -, *, /, %, ==,!=, , =,... Which operation

More information

FORM 2 (Please put your name and form # on the scantron!!!!)

FORM 2 (Please put your name and form # on the scantron!!!!) CS 161 Exam 2: FORM 2 (Please put your name and form # on the scantron!!!!) True (A)/False(B) (2 pts each): 1. Recursive algorithms tend to be less efficient than iterative algorithms. 2. A recursive function

More information

University of Illinois at Urbana-Champaign Department of Computer Science. First Examination

University of Illinois at Urbana-Champaign Department of Computer Science. First Examination University of Illinois at Urbana-Champaign Department of Computer Science First Examination CS 225 Data Structures and Software Principles Spring 2007 7p-9p, Thursday, March 1 Name: NetID: Lab Section

More information

CSCI-1200 Data Structures Fall 2014 Lecture 12 Recursion

CSCI-1200 Data Structures Fall 2014 Lecture 12 Recursion CSCI-1200 Data Structures Fall 2014 Lecture 12 Recursion Announcements: Test 2 Information Test 2 will be held Tuesday, October 14th, 2014 from 6-7:50pm in DCC 308 (Sections 1-5) and DCC 324 (Sections

More information

Lecture on pointers, references, and arrays and vectors

Lecture on pointers, references, and arrays and vectors Lecture on pointers, references, and arrays and vectors pointers for example, check out: http://www.programiz.com/cpp-programming/pointers [the following text is an excerpt of this website] #include

More information

CSCI-1200 Data Structures Fall 2009 Lecture 12 Advanced Recursion

CSCI-1200 Data Structures Fall 2009 Lecture 12 Advanced Recursion CSCI-1200 Data Structures Fall 2009 Lecture 12 Advanced Recursion Announcements: Test 2 Information Test 2 will be held Tuesday, October 20th, 2009 from 2-3:50pm in West Hall Auditorium. No makeups will

More information

Arrays 2 CS 16: Solving Problems with Computers I Lecture #12

Arrays 2 CS 16: Solving Problems with Computers I Lecture #12 Arrays 2 CS 16: Solving Problems with Computers I Lecture #12 Ziad Matni Dept. of Computer Science, UCSB Material: Post- Midterm #1 Lecture 7 thru 12 Homework, Labs, Lectures, Textbook Tuesday, 11/14 in

More information

BITG 1113: Array (Part 1) LECTURE 8

BITG 1113: Array (Part 1) LECTURE 8 BITG 1113: Array (Part 1) LECTURE 8 1 1 LEARNING OUTCOMES At the end of this lecture, you should be able to: 1. Describe the fundamentals of arrays 2. Describe the types of array: One Dimensional (1 D)

More information

Data Structures Lecture 3 Order Notation and Recursion

Data Structures Lecture 3 Order Notation and Recursion Data Structures Lecture 3 Order Notation and Recursion 1 Overview The median grade.cpp program from Lecture 2 and background on constructing and using vectors. Algorithm analysis; order notation Recursion

More information

Pointers and Arrays CS 201. This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book.

Pointers and Arrays CS 201. This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book. Pointers and Arrays CS 201 This slide set covers pointers and arrays in C++. You should read Chapter 8 from your Deitel & Deitel book. Pointers Powerful but difficult to master Used to simulate pass-by-reference

More information

Review Questions for Final Exam

Review Questions for Final Exam CS 102 / ECE 206 Spring 11 Review Questions for Final Exam The following review questions are similar to the kinds of questions you will be expected to answer on the Final Exam, which will cover LCR, chs.

More information

CS201 Latest Solved MCQs

CS201 Latest Solved MCQs Quiz Start Time: 09:34 PM Time Left 82 sec(s) Question # 1 of 10 ( Start time: 09:34:54 PM ) Total Marks: 1 While developing a program; should we think about the user interface? //handouts main reusability

More information

pointers + memory double x; string a; int x; main overhead int y; main overhead

pointers + memory double x; string a; int x; main overhead int y; main overhead pointers + memory computer have memory to store data. every program gets a piece of it to use as we create and use more variables, more space is allocated to a program memory int x; double x; string a;

More information

BITG 1233: Array (Part 1) LECTURE 8 (Sem 2, 17/18)

BITG 1233: Array (Part 1) LECTURE 8 (Sem 2, 17/18) BITG 1233: Array (Part 1) LECTURE 8 (Sem 2, 17/18) 1 LEARNING OUTCOMES At the end of this lecture, you should be able to: 1. Describe the fundamentals of arrays 2. Describe the types of array: One Dimensional

More information

3/12/2018. Structures. Programming in C++ Sequential Branching Repeating. Loops (Repetition)

3/12/2018. Structures. Programming in C++ Sequential Branching Repeating. Loops (Repetition) Structures Programming in C++ Sequential Branching Repeating Loops (Repetition) 2 1 Loops Repetition is referred to the ability of repeating a statement or a set of statements as many times this is necessary.

More information

Introduction to the C++ Programming Language

Introduction to the C++ Programming Language LESSON SET 2 Introduction to the C++ Programming Language OBJECTIVES FOR STUDENT Lesson 2A: 1. To learn the basic components of a C++ program 2. To gain a basic knowledge of how memory is used in programming

More information

University of Illinois at Urbana-Champaign Department of Computer Science. First Examination

University of Illinois at Urbana-Champaign Department of Computer Science. First Examination University of Illinois at Urbana-Champaign Department of Computer Science First Examination CS 225 Data Structures and Software Principles Spring 2007 7p-9p, Thursday, March 1 Name: NetID: Lab Section

More information

CSCI 2212: Intermediate Programming / C Review, Chapters 10 and 11

CSCI 2212: Intermediate Programming / C Review, Chapters 10 and 11 ... 1/16 CSCI 2212: Intermediate Programming / C Review, Chapters 10 and 11 Alice E. Fischer February 3, 2016 ... 2/16 Outline Basic Types and Diagrams ... 3/16 Basic Types and Diagrams Types in C C has

More information

Computer Science II Lecture 2 Strings, Vectors and Recursion

Computer Science II Lecture 2 Strings, Vectors and Recursion 1 Overview of Lecture 2 Computer Science II Lecture 2 Strings, Vectors and Recursion The following topics will be covered quickly strings vectors as smart arrays Basic recursion Mostly, these are assumed

More information

CSCI 102L - Data Structures Midterm Exam #2 Spring 2011

CSCI 102L - Data Structures Midterm Exam #2 Spring 2011 CSCI 102L - Data Structures Midterm Exam #2 Spring 2011 (12:30pm - 1:50pm, Thursday, March 24) Instructor: Bill Cheng ( This exam is closed book, closed notes, closed everything. No cheat sheet allowed.

More information

Exam 3 Chapters 7 & 9

Exam 3 Chapters 7 & 9 Exam 3 Chapters 7 & 9 CSC 2100-002/003 29 Mar 2017 Read through the entire test first BEFORE starting Put your name at the TOP of every page The test has 4 sections worth a total of 100 points o True/False

More information

Computer Programming : C++

Computer Programming : C++ The Islamic University of Gaza Engineering Faculty Department of Computer Engineering Fall 2017 ECOM 2003 Muath i.alnabris Computer Programming : C++ Experiment #1 Basics Contents Structure of a program

More information

Sixth lecture; classes, objects, reference operator.

Sixth lecture; classes, objects, reference operator. Sixth lecture; classes, objects, reference operator. 1 Some notes on the administration of the class: From here on out, homework assignments should be a bit shorter, and labs a bit longer. My office hours

More information

a data type is Types

a data type is Types Pointers Class 2 a data type is Types Types a data type is a set of values a set of operations defined on those values in C++ (and most languages) there are two flavors of types primitive or fundamental

More information

Discussion 2C Notes (Week 3, January 21) TA: Brian Choi Section Webpage:

Discussion 2C Notes (Week 3, January 21) TA: Brian Choi Section Webpage: Discussion 2C Notes (Week 3, January 21) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs32 Abstraction In Homework 1, you were asked to build a class called Bag. Let

More information

Introduction to C++ 2. A Simple C++ Program. A C++ program consists of: a set of data & function definitions, and the main function (or driver)

Introduction to C++ 2. A Simple C++ Program. A C++ program consists of: a set of data & function definitions, and the main function (or driver) Introduction to C++ 1. General C++ is an Object oriented extension of C which was derived from B (BCPL) Developed by Bjarne Stroustrup (AT&T Bell Labs) in early 1980 s 2. A Simple C++ Program A C++ program

More information

Computer Science II CSci 1200 Lecture 24 C++ Inheritance and Polymorphism

Computer Science II CSci 1200 Lecture 24 C++ Inheritance and Polymorphism Computer Science II CSci 1200 Lecture 24 C++ Inheritance and Polymorphism Review from Lecture 23 cs2set operations: insert, destroy, printing, erase Tree height calculation illustrates the use of recursion

More information

REPETITION CONTROL STRUCTURE LOGO

REPETITION CONTROL STRUCTURE LOGO CSC 128: FUNDAMENTALS OF COMPUTER PROBLEM SOLVING REPETITION CONTROL STRUCTURE 1 Contents 1 Introduction 2 for loop 3 while loop 4 do while loop 2 Introduction It is used when a statement or a block of

More information

CSCI-1200 Data Structures Spring 2018 Lecture 16 Trees, Part I

CSCI-1200 Data Structures Spring 2018 Lecture 16 Trees, Part I CSCI-1200 Data Structures Spring 2018 Lecture 16 Trees, Part I Review from Lecture 15 Maps containing more complicated values. Example: index mapping words to the text line numbers on which they appear.

More information

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions?

Lecture 14. No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Lecture 14 No in-class files today. Homework 7 (due on Wednesday) and Project 3 (due in 10 days) posted. Questions? Friday, February 11 CS 215 Fundamentals of Programming II - Lecture 14 1 Outline Static

More information

Working with Batches of Data

Working with Batches of Data Hartmut Kaiser hkaiser@cct.lsu.edu http://www.cct.lsu.edu/ hkaiser/fall_2012/csc1254.html 2 Abstract So far we looked at simple read a string print a string problems. Now we will look at more complex problems

More information

C++: Overview and Features

C++: Overview and Features C++: Overview and Features Richard Newman r.newman@rdg.ac.uk Room CS127 2003-12-11 Programming & Design, 2003 1 Introduction You have: used streams seen how classes are used seen some C++ code Today: good

More information

Structured Data. CIS 15 : Spring 2007

Structured Data. CIS 15 : Spring 2007 Structured Data CIS 15 : Spring 2007 Functionalia HW4 Part A due this SUNDAY April 1st: 11:59pm Reminder: I do NOT accept LATE HOMEWORK. Today: Dynamic Memory Allocation Allocating Arrays Returning Pointers

More information

CS 211 Winter 2004 Sample Final Exam (Solutions)

CS 211 Winter 2004 Sample Final Exam (Solutions) CS 211 Winter 2004 Sample Final Exam (Solutions) Instructor: Brian Dennis, Assistant Professor TAs: Tom Lechner, Rachel Goldsborough, Bin Lin March 16, 2004 Your Name: There are 6 problems on this exam.

More information

Quiz Start Time: 09:34 PM Time Left 82 sec(s)

Quiz Start Time: 09:34 PM Time Left 82 sec(s) Quiz Start Time: 09:34 PM Time Left 82 sec(s) Question # 1 of 10 ( Start time: 09:34:54 PM ) Total Marks: 1 While developing a program; should we think about the user interface? //handouts main reusability

More information

CSCE 206: Structured Programming in C++

CSCE 206: Structured Programming in C++ CSCE 206: Structured Programming in C++ 2017 Spring Exam 3 Monday, April 17, 2017 Total - 100 Points B Instructions: Total of 11 pages, including this cover and the last page. Before starting the exam,

More information

CSCE 206: Structured Programming in C++

CSCE 206: Structured Programming in C++ CSCE 206: Structured Programming in C++ 2017 Spring Exam 3 Monday, April 17, 2017 Total - 100 Points A Instructions: Total of 11 pages, including this cover and the last page. Before starting the exam,

More information

CSCI-1200 Data Structures Fall 2015 Lecture 6 Pointers & Dynamic Memory

CSCI-1200 Data Structures Fall 2015 Lecture 6 Pointers & Dynamic Memory CSCI-1200 Data Structures Fall 2015 Lecture 6 Pointers & Dynamic Memory Announcements: Test 1 Information Test 1 will be held Monday, September 21st, 2015 from 6-:50pm. Students have been randomly assigned

More information

Computer Science & Engineering 150A Problem Solving Using Computers

Computer Science & Engineering 150A Problem Solving Using Computers Computer Science & Engineering 150A Problem Solving Using Computers Lecture 06 - Stephen Scott Adapted from Christopher M. Bourke 1 / 30 Fall 2009 Chapter 8 8.1 Declaring and 8.2 Array Subscripts 8.3 Using

More information

CSCI-1200 Data Structures Fall 2017 Lecture 2 STL Strings & Vectors

CSCI-1200 Data Structures Fall 2017 Lecture 2 STL Strings & Vectors Announcements CSCI-1200 Data Structures Fall 2017 Lecture 2 STL Strings & Vectors HW 1 is available on-line through the website (on the Calendar ). Be sure to read through this information as you start

More information

QUIZ. 1. Explain the meaning of the angle brackets in the declaration of v below:

QUIZ. 1. Explain the meaning of the angle brackets in the declaration of v below: QUIZ 1. Explain the meaning of the angle brackets in the declaration of v below: This is a template, used for generic programming! QUIZ 2. Why is the vector class called a container? 3. Explain how the

More information

Chapter 5. Repetition. Contents. Introduction. Three Types of Program Control. Two Types of Repetition. Three Syntax Structures for Looping in C++

Chapter 5. Repetition. Contents. Introduction. Three Types of Program Control. Two Types of Repetition. Three Syntax Structures for Looping in C++ Repetition Contents 1 Repetition 1.1 Introduction 1.2 Three Types of Program Control Chapter 5 Introduction 1.3 Two Types of Repetition 1.4 Three Structures for Looping in C++ 1.5 The while Control Structure

More information

Templates and Vectors

Templates and Vectors Templates and Vectors 1 Generic Programming function templates class templates 2 the STL vector class a vector of strings enumerating elements with an iterator inserting and erasing 3 Writing our own vector

More information

Pointers (part 1) What are pointers? EECS We have seen pointers before. scanf( %f, &inches );! 25 September 2017

Pointers (part 1) What are pointers? EECS We have seen pointers before. scanf( %f, &inches );! 25 September 2017 Pointers (part 1) EECS 2031 25 September 2017 1 What are pointers? We have seen pointers before. scanf( %f, &inches );! 2 1 Example char c; c = getchar(); printf( %c, c); char c; char *p; c = getchar();

More information

CHAPTER 4 FUNCTIONS. 4.1 Introduction

CHAPTER 4 FUNCTIONS. 4.1 Introduction CHAPTER 4 FUNCTIONS 4.1 Introduction Functions are the building blocks of C++ programs. Functions are also the executable segments in a program. The starting point for the execution of a program is main

More information

C++ for Java Programmers

C++ for Java Programmers Basics all Finished! Everything we have covered so far: Lecture 5 Operators Variables Arrays Null Terminated Strings Structs Functions 1 2 45 mins of pure fun Introduction Today: Pointers Pointers Even

More information

CSCI-1200 Data Structures Spring 2017 Lecture 13 Advanced Recursion

CSCI-1200 Data Structures Spring 2017 Lecture 13 Advanced Recursion CSCI-1200 Data Structures Spring 2017 Lecture 13 Advanced Recursion Announcements: Test 2 Information Test 2 will be held Monday, Mar. 6th from 6-8pm. Your test room & zone assignment is posted on the

More information

Homework #3 CS2255 Fall 2012

Homework #3 CS2255 Fall 2012 Homework #3 CS2255 Fall 2012 MULTIPLE CHOICE 1. The, also known as the address operator, returns the memory address of a variable. a. asterisk ( * ) b. ampersand ( & ) c. percent sign (%) d. exclamation

More information

Concurrent Data Structures in C++ CSInParallel Project

Concurrent Data Structures in C++ CSInParallel Project Concurrent Data Structures in C++ CSInParallel Project July 26, 2012 CONTENTS 1 Concurrent Data Structures in C++: Web crawler lab 1 1.1 Your goals................................................ 1 1.2

More information

CSCI-1200 Data Structures Fall 2009 Lecture 20 Hash Tables, Part II

CSCI-1200 Data Structures Fall 2009 Lecture 20 Hash Tables, Part II Review from Lecture 19 CSCI-1200 Data Structures Fall 2009 Lecture 20 Hash Tables, Part II Operators as non-member functions, as member functions, and as friend functions. A hash table is a table implementation

More information

Pointers II. Class 31

Pointers II. Class 31 Pointers II Class 31 Compile Time all of the variables we have seen so far have been declared at compile time they are written into the program code you can see by looking at the program how many variables

More information

Review Questions II KEY

Review Questions II KEY CS 102 / ECE 206 Spring 2011 Review Questions II KEY The following review questions are similar to the kinds of questions you will be expected to answer on Exam II (April 7), which will focus on LCR, chs.

More information

Chapter 4. Computation. Bjarne Stroustrup.

Chapter 4. Computation. Bjarne Stroustrup. Chapter 4 Computation Bjarne Stroustrup www.stroustrup.com/programming Abstract Today, I ll present the basics of computation. In particular, we ll discuss expressions, how to iterate over a series of

More information

Welcome Back. CSCI 262 Data Structures. Hello, Let s Review. Hello, Let s Review. How to Review 1/9/ Review. Here s a simple C++ program:

Welcome Back. CSCI 262 Data Structures. Hello, Let s Review. Hello, Let s Review. How to Review 1/9/ Review. Here s a simple C++ program: Welcome Back CSCI 262 Data Structures 2 - Review What you learned in CSCI 261 (or equivalent): Variables Types Arrays Expressions Conditionals Branches & Loops Functions Recursion Classes & Objects Streams

More information

Welcome Back. CSCI 262 Data Structures. Hello, Let s Review. Hello, Let s Review. How to Review 8/19/ Review. Here s a simple C++ program:

Welcome Back. CSCI 262 Data Structures. Hello, Let s Review. Hello, Let s Review. How to Review 8/19/ Review. Here s a simple C++ program: Welcome Back CSCI 262 Data Structures 2 - Review What you learned in CSCI 261 (or equivalent): Variables Types Arrays Expressions Conditionals Branches & Loops Functions Recursion Classes & Objects Streams

More information

primitive arrays v. vectors (1)

primitive arrays v. vectors (1) Arrays 1 primitive arrays v. vectors (1) 2 int a[10]; allocate new, 10 elements vector v(10); // or: vector v; v.resize(10); primitive arrays v. vectors (1) 2 int a[10]; allocate new, 10 elements

More information

University of Illinois at Urbana-Champaign Department of Computer Science. First Examination

University of Illinois at Urbana-Champaign Department of Computer Science. First Examination University of Illinois at Urbana-Champaign Department of Computer Science First Examination CS 225 Data Structures and Software Principles Sample Exam 2 75 minutes permitted Print your name, netid, and

More information

Fundamentals of Programming CS-110. Lecture 2

Fundamentals of Programming CS-110. Lecture 2 Fundamentals of Programming CS-110 Lecture 2 Last Lab // Example program #include using namespace std; int main() { cout

More information

Consider the above code. This code compiles and runs, but has an error. Can you tell what the error is?

Consider the above code. This code compiles and runs, but has an error. Can you tell what the error is? Discussion 1H Notes (Week 8, May 20) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs31 Dynamic Allocation of Memory Recall that when you create an array, you must know

More information