# track total function calls using a global variable global fibcallcounter fibcallcounter +=1

Size: px
Start display at page:

Download "# track total function calls using a global variable global fibcallcounter fibcallcounter +=1"

Transcription

1 Math 4242 Fibonacci, Memoization lecture 13 Today we talk about a problem that sometimes occurs when using recursion, and a common way to fix it. Recall the Fibonacci sequence (F 0, F 1, F 2,...) that occurs naturally in many places in nature: F 0 = 0 and F 1 = 1, and for n > 1, F n = F n 1 + F n 2. Because the sequence is defined recursively, it is not surprising we can write a recursive function that computes the sequence: def fib(n): Computes Fibonacci sequence recursively track total function calls using a global variable global fibcallcounter fibcallcounter +=1 Check for the base cases fib(0) and fib(1) first so the recursion eventually ends, otherwhise use recursion if n==1: return 1 elif n==2: return 1 else: val = fib(n-1) + fib(n-2) print "Determined (with help) that fib(",n,") = ",val return val fib(6) see how calls to fib function grows as input n grows for i in range(1,1): print i, fib(i) print "took ", fibcallcounter, "calls to fib function" 1

2 It is instructive to consider a table for n = 10, 20, 30,... to get an idea of the algorithmic complexity ( cost ) of this algorithm. One sees that when n gets around 50 this function slows down quite noticably and then seems to stop working. As you will see on the assignment, using this algorithm to compute the F n requires almost 2 n calls to the fib function (in total counting calls at lower levels of the recursion hierarchy). As a rule of thumb Modern computers can do 2 64 things in a day where each thing is a very simple operation like one of the state transitions we talked about so long ago. So we could never use this algorithm to compute F 100, for example, as that would require = 2 36 = days (188 million years). THE POINT?: Algorithms where the running time is an EXPONENTIAL function of the input can only deal with small inputs. Why is the program taking so long? Thinking about the tree of recursive function calls made by this algorithm is helpful. See the diagram of function calls. Notice how visualizing the recursion highlights the fact that the computer is solving the same subproblem over and over again. In a situation like this there are techniques that can help. It is only useful when the computer is spending most of its time solving the same subproblems over and over again. This can happen somewhat in recursive functions but also in other areas. There are many ways to solve this problem once we recognize it. The simplest is to REMEMBER the results of our previous work! For the Fibonnacci sequence, we can remember results very easily: we ll just create a global array to store the various Fibonacci numbers once we ve computed them. See attached code. This process of remembering is sometimes called Memo-ization (from memo/table ). Also called table lookup. The memo-ized version of the recursive Fibonnacci function has complexity O(n). Again visualizing the recursive call tree makes this clear the tree is still about n levels deep but it doesn t keep branching out like the first time. This keeps the total number of calls to the fib function a small constant times n. Interestingly, most people, if asked to compute the n th Fibonacci number (say n=10) will compute them starting at the smallest and working up, so computing F 0, F 1, F 2, F 3, and so on. In this case they will implicitly be remembering and using their previous work. The algorithmic version of this results in an O(n) algorithm also. So recursion is a beautiful idea and allows for slick little functions to be written (less code) but sometimes important details are hiding underneath. Recursion is essentially the mathematical induction technique. Many problems that can be solved by induction have a nice recursive method associated with it. You may know of another method for finding the n th Fibonnacci number: In particular the algorithm utilizing the closed-form expression formula for the nth Fibonacci number, namely F n = φn (1 φ) n 5, where φ = (1) An algorithm implementing this function requires approximately 4 log 2 (n) multiplications and a small number (independent of n) of other arithmetic operations, and so is a O(log 2 (n)) algorithm and thus is much faster than the above algorithms. However this algorithm is very specific to the Fibonacci numbers and has a lot of knowledge about the numbers built-in to the formula, so not surprisingly it is the fastest. 2

3 3

4 4

5 Example of a recursive function (to compute fibonacci numbers) that uses the technique of memoization MemoFib = [0]*1000 MemoFib[1]=1 MemoFib[2]=1 we ll remember up to 1000 numbers def fibm(n): global fibcallcounter fibcallcounter +=1 needed to change a variable defined globally/out if MemoFib[n]!= 0 : we ve seen this before... return remembered value return MemoFib[n] MemoFib[n] = fibm(n-1) + fibm(n-2) return MemoFib[n] n=300 print( "Fibonnacci number ", n, " is ", fibm(n) ) print( "fibm took ",fibcallcounter, "calls." ) 5

Math 4242 Fibonacci, Memoization lecture 13

Math 4242 Fibonacci, Memoization lecture 13 Math 4242 Fibonacci, Memoization lecture 13 Today we talk about a problem that sometimes occurs when using recursion, and a common way to fix it. Recall the Fibonacci sequence (F 1, F 2,...) that occurs

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 02 Lecture - 45 Memoization Let us continue our discussion of inductive definitions. (Refer Slide Time: 00:05)

More information

Measuring Efficiency

Measuring Efficiency Growth Announcements Measuring Efficiency Recursive Computation of the Fibonacci Sequence Our first example of tree recursion: fib(3) fib(5) fib(4) def fib(n): if n == 0: return 0 elif n == 1: return 1

More information

Algorithm Design and Recursion. Search and Sort Algorithms

Algorithm Design and Recursion. Search and Sort Algorithms Algorithm Design and Recursion Search and Sort Algorithms Objectives To understand the basic techniques for analyzing the efficiency of algorithms. To know what searching is and understand the algorithms

More information

Admin. How's the project coming? After these slides, read chapter 13 in your book. Quizzes will return

Admin. How's the project coming? After these slides, read chapter 13 in your book. Quizzes will return Recursion CS 1 Admin How's the project coming? After these slides, read chapter 13 in your book Yes that is out of order, but we can read it stand alone Quizzes will return Tuesday Nov 29 th see calendar

More information

CS 173, Running Time Analysis, Counting, and Dynamic Programming. Tandy Warnow

CS 173, Running Time Analysis, Counting, and Dynamic Programming. Tandy Warnow CS 173, Running Time Analysis, Counting, and Dynamic Programming Tandy Warnow CS 173 September 25, 2018 Tandy Warnow Today Topics: Results from survey Midterm Very basic counting Analyzing running times

More information

School of Informatics, University of Edinburgh

School of Informatics, University of Edinburgh CS1Bh Lecture Note 4 Dynamic Programming This lecture examines a problem solving technique known as dynamic programming. It is frequently used when a straightforward recursive solution to a problem has

More information

Lecture 12: Dynamic Programming Part 1 10:00 AM, Feb 21, 2018

Lecture 12: Dynamic Programming Part 1 10:00 AM, Feb 21, 2018 CS18 Integrated Introduction to Computer Science Fisler, Nelson Lecture 12: Dynamic Programming Part 1 10:00 AM, Feb 21, 2018 Contents 1 Introduction 1 2 Fibonacci 2 Objectives By the end of these notes,

More information

INTERPRETERS 8. 1 Calculator COMPUTER SCIENCE 61A. November 3, 2016

INTERPRETERS 8. 1 Calculator COMPUTER SCIENCE 61A. November 3, 2016 INTERPRETERS 8 COMPUTER SCIENCE 61A November 3, 2016 1 Calculator We are beginning to dive into the realm of interpreting computer programs that is, writing programs that understand other programs. In

More information

For this chapter, switch languages in DrRacket to Advanced Student Language.

For this chapter, switch languages in DrRacket to Advanced Student Language. Chapter 30 Mutation For this chapter, switch languages in DrRacket to Advanced Student Language. 30.1 Remembering changes Suppose you wanted to keep track of a grocery shopping list. You could easily define

More information

Resources matter. Orders of Growth of Processes. R(n)= (n 2 ) Orders of growth of processes. Partial trace for (ifact 4) Partial trace for (fact 4)

Resources matter. Orders of Growth of Processes. R(n)= (n 2 ) Orders of growth of processes. Partial trace for (ifact 4) Partial trace for (fact 4) Orders of Growth of Processes Today s topics Resources used by a program to solve a problem of size n Time Space Define order of growth Visualizing resources utilization using our model of evaluation Relating

More information

Module 05: Types of recursion

Module 05: Types of recursion Module 05: Types of recursion Topics: Review of purely structural recursion Accumulative recursion Generative recursion Readings:ThinkP 5.8-5.10, 6.5-6.7 1 Review: Structural Recursion Template for code

More information

APCS-AB: Java. Recursion in Java December 12, week14 1

APCS-AB: Java. Recursion in Java December 12, week14 1 APCS-AB: Java Recursion in Java December 12, 2005 week14 1 Check point Double Linked List - extra project grade Must turn in today MBCS - Chapter 1 Installation Exercises Analysis Questions week14 2 Scheme

More information

6.001 Notes: Section 4.1

6.001 Notes: Section 4.1 6.001 Notes: Section 4.1 Slide 4.1.1 In this lecture, we are going to take a careful look at the kinds of procedures we can build. We will first go back to look very carefully at the substitution model,

More information

1 Dynamic Programming

1 Dynamic Programming Recitation 13 Dynamic Programming Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2013) November 20, 2013 1 Dynamic Programming Dynamic programming is a technique to avoid needless

More information

11 and 12 Arithmetic Sequence notes.notebook September 14, 2017

11 and 12 Arithmetic Sequence notes.notebook September 14, 2017 Vocabulary: Arithmetic Sequence a pattern of numbers where the change is adding or subtracting the same number. We call this the common difference "d". Closed/Explicit Formula a formula for a sequence

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/27/17 01.433/33 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Priority Queues / Heaps Date: 9/2/1.1 Introduction In this lecture we ll talk about a useful abstraction, priority queues, which are

More information

Last week: Breadth-First Search

Last week: Breadth-First Search 1 Last week: Breadth-First Search Set L i = [] for i=1,,n L 0 = {w}, where w is the start node For i = 0,, n-1: For u in L i : For each v which is a neighbor of u: If v isn t yet visited: - mark v as visited,

More information

CSC-140 Assignment 4

CSC-140 Assignment 4 CSC-140 Assignment 4 Please do not Google a solution to these problem, cause that won t teach you anything about programming - the only way to get good at it, and understand it, is to do it! 1 Introduction

More information

The Knapsack Problem an Introduction to Dynamic Programming. Slides based on Kevin Wayne / Pearson-Addison Wesley

The Knapsack Problem an Introduction to Dynamic Programming. Slides based on Kevin Wayne / Pearson-Addison Wesley The Knapsack Problem an Introduction to Dynamic Programming Slides based on Kevin Wayne / Pearson-Addison Wesley Different Problem Solving Approaches Greedy Algorithms Build up solutions in small steps

More information

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16

Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16 600.463 Introduction to Algorithms / Algorithms I Lecturer: Michael Dinitz Topic: Dynamic Programming I Date: 10/6/16 11.1 Introduction Dynamic programming can be very confusing until you ve used it a

More information

RECURSION, RECURSION, (TREE) RECURSION! 3

RECURSION, RECURSION, (TREE) RECURSION! 3 RECURSION, RECURSION, (TREE) RECURSION! 3 COMPUTER SCIENCE 61A September 18, 2013 A function is recursive if it calls itself. Below is recursive factorial function. def factorial(n): if n == 0 or n ==

More information

CSE 143. Complexity Analysis. Program Efficiency. Constant Time Statements. Big Oh notation. Analyzing Loops. Constant Time Statements (2) CSE 143 1

CSE 143. Complexity Analysis. Program Efficiency. Constant Time Statements. Big Oh notation. Analyzing Loops. Constant Time Statements (2) CSE 143 1 CSE 1 Complexity Analysis Program Efficiency [Sections 12.1-12., 12., 12.9] Count number of instructions executed by program on inputs of a given size Express run time as a function of the input size Assume

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Sorting lower bound and Linear-time sorting Date: 9/19/17 5.1 Introduction You should all know a few ways of sorting in O(n log n)

More information

RECURSION, RECURSION, (TREE) RECURSION! 2

RECURSION, RECURSION, (TREE) RECURSION! 2 RECURSION, RECURSION, (TREE) RECURSION! 2 COMPUTER SCIENCE 61A February 5, 2015 A function is recursive if it calls itself. Below is a recursive factorial function. def factorial(n): if n == 0 or n ==

More information

MEMOIZATION, RECURSIVE DATA, AND SETS

MEMOIZATION, RECURSIVE DATA, AND SETS MEMOIZATION, RECURSIVE DATA, AND SETS 4b COMPUTER SCIENCE 61A July 18, 2013 1 Memoization Later in this class, you ll learn about orders of growth and how to analyze exactly how efficient (or inefficient)

More information

Lecture 6 CS2110 Spring 2013 RECURSION

Lecture 6 CS2110 Spring 2013 RECURSION Lecture 6 CS2110 Spring 2013 RECURSION Recursion 2 Arises in three forms in computer science Recursion as a mathematical tool for defining a function in terms of its own value in a simpler case Recursion

More information

Lecture #5: Higher-Order Functions. A Simple Recursion. Avoiding Recalculation. Redundant Calculation. Tail Recursion and Repetition

Lecture #5: Higher-Order Functions. A Simple Recursion. Avoiding Recalculation. Redundant Calculation. Tail Recursion and Repetition nnouncements: Lecture #5: Higher-Order Functions Make sure that you have registered electronically with our system (not just TeleBERS). ttend a discussion/lab in which you can fit; don t worry about Tele-

More information

Recursion. Recursion [Bono] 1

Recursion. Recursion [Bono] 1 Recursion Idea A few examples wishful thinking method Recursion in classes Ex: palindromes Helper functions Computational complexity of recursive functions Recursive functions with multiple calls Recursion

More information

UNIT 5B Binary Search

UNIT 5B Binary Search 205/09/30 UNIT 5B Binary Search Course Announcements Written exam next week (Wed. Oct 7 ) Practice exam available on the Resources page Exam reviews: Sunday afternoon; watch Piazza for times and places

More information

ENVIRONMENT DIAGRAMS AND RECURSION 2

ENVIRONMENT DIAGRAMS AND RECURSION 2 ENVIRONMENT DIAGRAMS AND RECURSION 2 COMPUTER SCIENCE 61A February 4, 2016 1 Environment Diagrams An environment diagram keeps track of all the variables that have been defined and the values they are

More information

All about Fibonacci: A python approach

All about Fibonacci: A python approach World Applied Programming, Vol (1), No (1), April 2011. 72-76 ISSN: 2222-2510 2011 WAP journal. www.waprogramming.com All about Fibonacci: A python approach C. Canaan * M. S. Garai M. Daya Information

More information

There are some situations in which recursion can be massively inefficient. For example, the standard Fibonacci recursion Fib(n) = Fib(n-1) + Fib(n-2)

There are some situations in which recursion can be massively inefficient. For example, the standard Fibonacci recursion Fib(n) = Fib(n-1) + Fib(n-2) Dynamic Programming There are some situations in which recursion can be massively inefficient. For example, the standard Fibonacci recursion Fib(n) = Fib(n-1) + Fib(n-2) computes the same values over and

More information

RECURSION 7. 1 Recursion COMPUTER SCIENCE 61A. October 15, 2012

RECURSION 7. 1 Recursion COMPUTER SCIENCE 61A. October 15, 2012 RECURSION 7 COMPUTER SCIENCE 61A October 15, 2012 1 Recursion We say a procedure is recursive if it calls itself in its body. Below is an example of a recursive procedure to find the factorial of a positive

More information

Problem solving paradigms

Problem solving paradigms Problem solving paradigms Bjarki Ágúst Guðmundsson Tómas Ken Magnússon Árangursrík forritun og lausn verkefna School of Computer Science Reykjavík University Today we re going to cover Problem solving

More information

5.1 The String reconstruction problem

5.1 The String reconstruction problem CS125 Lecture 5 Fall 2014 5.1 The String reconstruction problem The greedy approach doesn t always work, as we have seen. It lacks flexibility; if at some point, it makes a wrong choice, it becomes stuck.

More information

CS116 - Module 5 - Accumulative Recursion

CS116 - Module 5 - Accumulative Recursion CS116 - Module 5 - Accumulative Recursion Cameron Morland Winter 2018 1 Cameron Morland CS116 - Module 5 - Accumulative Recursion Types of Recursion Structural Recursion Generative Recursion Accumulative

More information

RECURSION 3. 1 Recursion COMPUTER SCIENCE 61A. June 30, 2016

RECURSION 3. 1 Recursion COMPUTER SCIENCE 61A. June 30, 2016 RECURSION 3 COMPUTER SCIENCE 61A June 30, 2016 A recursive function is a function that calls itself. Here s a recursive function: def factorial(n): if n == 0 or n == 1: return 1 else: return n * factorial(n-1)

More information

Unit #2: Recursion, Induction, and Loop Invariants

Unit #2: Recursion, Induction, and Loop Invariants Unit #2: Recursion, Induction, and Loop Invariants CPSC 221: Algorithms and Data Structures Will Evans 2012W1 Unit Outline Thinking Recursively Recursion Examples Analyzing Recursion: Induction and Recurrences

More information

6.00 Notes On Big-O Notation

6.00 Notes On Big-O Notation 6.00 Notes On Big-O Notation April 13, 2011 Sarina Canelake See also http://en.wikipedia.org/wiki/big O notation We use big-o notation in the analysis of algorithms to describe an algorithm s usage of

More information

Recurrences and Memoization: The Fibonacci Sequence

Recurrences and Memoization: The Fibonacci Sequence Chapter 7 Recurrences and Memoization: The Fibonacci Sequence Copyright Oliver Serang, 208 University of Montana Department of Computer Science The Fibonacci sequence occurs frequently in nature and has

More information

CIS 194: Homework 6. Due Wednesday, 4 March. Fibonacci numbers. It s all about being lazy.

CIS 194: Homework 6. Due Wednesday, 4 March. Fibonacci numbers. It s all about being lazy. CIS 194: Homework 6 Due Wednesday, 4 March It s all about being lazy. Fibonacci numbers The Fibonacci numbers F n are defined as the sequence of integers, beginning with 1 and 1, where every integer in

More information

Getting to places from my house...

Getting to places from my house... Reductions, Self-Similarity, and Recursion Relations between problems Notes for CSC 100 - The Beauty and Joy of Computing The University of North Carolina at Greensboro Getting to places from my house...

More information

Arithmetic Sequences

Arithmetic Sequences Vocabulary: Arithmetic Sequence a pattern of numbers where the change is adding or subtracting the same number. We call this the common difference "d". Closed/Explicit Formula a formula for a sequence

More information

recursive algorithms 1

recursive algorithms 1 COMP 250 Lecture 11 recursive algorithms 1 Oct. 2, 2017 1 Example 1: Factorial (iterative)! = 1 2 3 1 factorial( n ){ // assume n >= 1 result = 1 for (k = 2; k

More information

Introduction to Computer Science and Programming for Astronomers

Introduction to Computer Science and Programming for Astronomers Introduction to Computer Science and Programming for Astronomers Lecture 3. István Szapudi Institute for Astronomy University of Hawaii January 24, 2018 Outline Reminder 1 Reminder 2 3 Where were we last

More information

INTERPRETERS AND TAIL CALLS 9

INTERPRETERS AND TAIL CALLS 9 INTERPRETERS AND TAIL CALLS 9 COMPUTER SCIENCE 61A April 9, 2015 We are beginning to dive into the realm of interpreting computer programs that is, writing programs that understand other programs. In order

More information

Reading 8 : Recursion

Reading 8 : Recursion CS/Math 40: Introduction to Discrete Mathematics Fall 015 Instructors: Beck Hasti, Gautam Prakriya Reading 8 : Recursion 8.1 Recursion Recursion in computer science and mathematics refers to the idea of

More information

RACKET BASICS, ORDER OF EVALUATION, RECURSION 1

RACKET BASICS, ORDER OF EVALUATION, RECURSION 1 RACKET BASICS, ORDER OF EVALUATION, RECURSION 1 COMPUTER SCIENCE 61AS 1. What is functional programming? Give an example of a function below: Functional Programming In functional programming, you do not

More information

Agenda. The worst algorithm in the history of humanity. Asymptotic notations: Big-O, Big-Omega, Theta. An iterative solution

Agenda. The worst algorithm in the history of humanity. Asymptotic notations: Big-O, Big-Omega, Theta. An iterative solution Agenda The worst algorithm in the history of humanity 1 Asymptotic notations: Big-O, Big-Omega, Theta An iterative solution A better iterative solution The repeated squaring trick Fibonacci sequence 2

More information

Unit #3: Recursion, Induction, and Loop Invariants

Unit #3: Recursion, Induction, and Loop Invariants Unit #3: Recursion, Induction, and Loop Invariants CPSC 221: Basic Algorithms and Data Structures Jan Manuch 2017S1: May June 2017 Unit Outline Thinking Recursively Recursion Examples Analyzing Recursion:

More information

Programming Principles

Programming Principles Programming Principles Final Exam Friday, December 21st 2012 First Name: Last Name: Your points are precious, don t let them go to waste! Your Name Work that can t be attributed to you is lost: write your

More information

RECURSION. Many Slides from Ken Birman, Cornell University

RECURSION. Many Slides from Ken Birman, Cornell University RECURSION Many Slides from Ken Birman, Cornell University Iteration Computers are well-suited for executing the same task repeatedly Programs and algorithms use iteration to perform repetitive jobs Programming

More information

Spring 2012 Homework 10

Spring 2012 Homework 10 15-150 Spring 2012 Homework 10 Out: 24 April, 2012 Due: 2 May, 2012, 0900 EST 1 Introduction This homework will give you additional practice with imperative programming in SML. It is slightly short to

More information

Algorithm Analysis CISC4080 CIS, Fordham Univ. Instructor: X. Zhang

Algorithm Analysis CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Algorithm Analysis CISC4080 CIS, Fordham Univ. Instructor: X. Zhang Last class Review some algorithms learned in previous classes idea => pseudocode => implementation Correctness? Three sorting algorithms:

More information

In math, the rate of change is called the slope and is often described by the ratio rise

In math, the rate of change is called the slope and is often described by the ratio rise Chapter 3 Equations of Lines Sec. Slope The idea of slope is used quite often in our lives, however outside of school, it goes by different names. People involved in home construction might talk about

More information

Racket: Macros. Advanced Functional Programming. Jean-Noël Monette. November 2013

Racket: Macros. Advanced Functional Programming. Jean-Noël Monette. November 2013 Racket: Macros Advanced Functional Programming Jean-Noël Monette November 2013 1 Today Macros pattern-based macros Hygiene Syntax objects and general macros Examples 2 Macros (According to the Racket Guide...)

More information

9/16/14. Overview references to sections in text RECURSION. What does generic mean? A little about generics used in A3

9/16/14. Overview references to sections in text RECURSION. What does generic mean? A little about generics used in A3 Overview references to sections in text 2 Note: We ve covered everything in JavaSummary.pptx! What is recursion 7.1-7.39 slide 1-7 Base case 7.1-7.10 slide 13 How Java stack frames work 7.8-7.10 slide

More information

10.4 Linear interpolation method Newton s method

10.4 Linear interpolation method Newton s method 10.4 Linear interpolation method The next best thing one can do is the linear interpolation method, also known as the double false position method. This method works similarly to the bisection method by

More information

CS1 Lecture 15 Feb. 18, 2019

CS1 Lecture 15 Feb. 18, 2019 CS1 Lecture 15 Feb. 18, 2019 HW4 due Wed. 2/20, 5pm Q2 and Q3: it is fine to use a loop as long as the function is also recursive. Exam 1, Thursday evening, 2/21, 6:30-8:00pm, W290 CB You must bring ID

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 16 Dynamic Programming (plus FFT Recap) Adam Smith 9/24/2008 A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne Discrete Fourier Transform

More information

Dijkstra s algorithm for shortest paths when no edges have negative weight.

Dijkstra s algorithm for shortest paths when no edges have negative weight. Lecture 14 Graph Algorithms II 14.1 Overview In this lecture we begin with one more algorithm for the shortest path problem, Dijkstra s algorithm. We then will see how the basic approach of this algorithm

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 03 / 19 / 2018 Instructor: Michael Eckmann Today s Topics Questions? Comments? Change making algorithm Greedy algorithm implementation Divide and conquer recursive

More information

Environment Diagrams and Recursion Fall 2017 Discussion 2: September 6, 2017 Solutions. 1 More Environment Diagrams

Environment Diagrams and Recursion Fall 2017 Discussion 2: September 6, 2017 Solutions. 1 More Environment Diagrams CS 61A Environment Diagrams and Recursion Fall 2017 Discussion 2: September 6, 2017 Solutions 1 More Environment Diagrams Recall that an environment diagram keeps track of all the variables that have been

More information

Dynamic Programming Intro

Dynamic Programming Intro Dynamic Programming Intro Imran Rashid University of Washington February 15, 2008 Dynamic Programming Outline: General Principles Easy Examples Fibonacci, Licking Stamps Meatier examples RNA Structure

More information

Recursive Definitions

Recursive Definitions Recursion Objectives Explain the underlying concepts of recursion Examine recursive methods and unravel their processing steps Explain when recursion should and should not be used Demonstrate the use of

More information

ENVIRONMENT DIAGRAMS AND RECURSION 2

ENVIRONMENT DIAGRAMS AND RECURSION 2 ENVIRONMENT DIAGRAMS AND RECURSION 2 COMPUTER SCIENCE 61A September 8, 2016 1 More Environment Diagrams Recall that an environment diagram keeps track of all the variables that have been defined and the

More information

Horn Formulae. CS124 Course Notes 8 Spring 2018

Horn Formulae. CS124 Course Notes 8 Spring 2018 CS124 Course Notes 8 Spring 2018 In today s lecture we will be looking a bit more closely at the Greedy approach to designing algorithms. As we will see, sometimes it works, and sometimes even when it

More information

MergeSort, Recurrences, Asymptotic Analysis Scribe: Michael P. Kim Date: April 1, 2015

MergeSort, Recurrences, Asymptotic Analysis Scribe: Michael P. Kim Date: April 1, 2015 CS161, Lecture 2 MergeSort, Recurrences, Asymptotic Analysis Scribe: Michael P. Kim Date: April 1, 2015 1 Introduction Today, we will introduce a fundamental algorithm design paradigm, Divide-And-Conquer,

More information

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying.

1. (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying. May 9, 2003 Show all work Name There are 260 points available on this test 1 (15 points) Solve the decanting problem for containers of sizes 199 and 179; that is find integers x and y satisfying where

More information

CMSC 451: Lecture 10 Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct 3, 2017

CMSC 451: Lecture 10 Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct 3, 2017 CMSC 45 CMSC 45: Lecture Dynamic Programming: Weighted Interval Scheduling Tuesday, Oct, Reading: Section. in KT. Dynamic Programming: In this lecture we begin our coverage of an important algorithm design

More information

Lecture 7 CS2110 Fall 2014 RECURSION

Lecture 7 CS2110 Fall 2014 RECURSION Lecture 7 CS2110 Fall 2014 RECURSION Overview references to sections in text 2 Note: We ve covered everything in JavaSummary.pptx! What is recursion? 7.1-7.39 slide 1-7 Base case 7.1-7.10 slide 13 How

More information

Dynamic Programming. See p of the text

Dynamic Programming. See p of the text Dynamic Programming See p. 329-333 of the text Clicker Q: There are some situations in which recursion can be massively inefficient. For example, the standard Fibonacci recursion Fib(n) = Fib(n-1) + Fib(n-2)

More information

61A LECTURE 15 MEMOIZATION, RECURSIVE DATA, SETS

61A LECTURE 15 MEMOIZATION, RECURSIVE DATA, SETS 61A LECTURE 15 MEMOIZATION, RECURSIVE DATA, SETS Steven Tang and Eric Tzeng July 18, 2013 Now in a wider screen format! Who am I? What am I doing here? First two weeks of class (Chapter 1): FUNCTIONS Computational

More information

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion

CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion CSCI-1200 Data Structures Spring 2018 Lecture 7 Order Notation & Basic Recursion Review from Lectures 5 & 6 Arrays and pointers, Pointer arithmetic and dereferencing, Types of memory ( automatic, static,

More information

n! = 1 * 2 * 3 * 4 * * (n-1) * n

n! = 1 * 2 * 3 * 4 * * (n-1) * n The Beauty and Joy of Computing 1 Lab Exercise 9: Problem self-similarity and recursion Objectives By completing this lab exercise, you should learn to Recognize simple self-similar problems which are

More information

CS 380 ALGORITHM DESIGN AND ANALYSIS

CS 380 ALGORITHM DESIGN AND ANALYSIS CS 380 ALGORITHM DESIGN AND ANALYSIS Lecture 14: Dynamic Programming Text Reference: Chapter 15 Dynamic Programming We know that we can use the divide-and-conquer technique to obtain efficient algorithms

More information

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain

I. Recursive Descriptions A phrase like to get the next term you add 2, which tells how to obtain Mathematics 45 Describing Patterns in s Mathematics has been characterized as the science of patterns. From an early age students see patterns in mathematics, including counting by twos, threes, etc.,

More information

RECURSION, RECURSION, (TREE) RECURSION! 3

RECURSION, RECURSION, (TREE) RECURSION! 3 RECURSION, RECURSION, (TREE) RECURSION! 3 COMPUTER SCIENCE 61A September 18, 2013 A function is recursive if it calls itself. Below is recursive factorial function. def factorial(n): if n == 0 or n ==

More information

ITERATION AND RECURSION 3

ITERATION AND RECURSION 3 ITERATION AND RECURSION 3 COMPUTER SCIENCE 61A June 26, 2012 1 Newton s Method Newton s method is an algorithm that is widely used to compute the zeros of functions. It can be used to approximate a root

More information

Class 6: Efficiency in Scheme

Class 6: Efficiency in Scheme Class 6: Efficiency in Scheme SI 413 - Programming Languages and Implementation Dr. Daniel S. Roche United States Naval Academy Fall 2011 Roche (USNA) SI413 - Class 6 Fall 2011 1 / 10 Objects in Scheme

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College October 11, 2017 Outline Outline 1 Chapter 6: Recursion Outline Chapter 6: Recursion 1 Chapter 6: Recursion Measuring Complexity

More information

CS201 Discussion 7 MARKOV AND RECURSION

CS201 Discussion 7 MARKOV AND RECURSION CS201 Discussion 7 MARKOV AND RECURSION Before we begin Any questions about the midterm solutions? Making a Markov Map Recall that in Markov, we re trying to make a map of all k-grams to all k-grams that

More information

CSE : Python Programming

CSE : Python Programming CSE 399-004: Python Programming Lecture 10: Functional programming, Memoization March 26, 2007 http://www.seas.upenn.edu/~cse39904/ Announcements Should have received email about meeting times Length:

More information

CSCI 121: Recursive Functions & Procedures

CSCI 121: Recursive Functions & Procedures CSCI 121: Recursive Functions & Procedures Sorting quizzes Every time I give a quiz, I need to enter grades into my gradebook. My grading sheet is organized alphabetically. So I sort the papers alphabetically,

More information

CS 4349 Lecture September 13th, 2017

CS 4349 Lecture September 13th, 2017 CS 4349 Lecture September 13th, 2017 Main topics for #lecture include #dynamic_programming, #Fibonacci_numbers, and #rod_cutting. Prelude Homework 2 due today in class. Homework 3 released, due next Wednesday

More information

1 Dynamic Programming

1 Dynamic Programming Recitation 13 Dynamic Programming Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2013) April 17, 2013 1 Dynamic Programming Dynamic programming is a technique to avoid needless

More information

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees Computer Science 0 Data Structures Siena College Fall 08 Topic Notes: Trees We ve spent a lot of time looking at a variety of structures where there is a natural linear ordering of the elements in arrays,

More information

Decision-Making and Repetition

Decision-Making and Repetition 2.2 Recursion Introduction A recursive method is a method that call itself. You may already be familiar with the factorial function (N!) in mathematics. For any positive integer N, N! is defined to be

More information

1 Greedy algorithms and dynamic programming

1 Greedy algorithms and dynamic programming TIE-20106 1 1 Greedy algorithms and dynamic programming This chapter covers two malgorithm design principles more: greedy algorithms and dynamic programming A greedy algorithm is often the most natural

More information

Algorithmics. Some information. Programming details: Ruby desuka?

Algorithmics. Some information. Programming details: Ruby desuka? Algorithmics Bruno MARTIN, University of Nice - Sophia Antipolis mailto:bruno.martin@unice.fr http://deptinfo.unice.fr/~bmartin/mathmods.html Analysis of algorithms Some classical data structures Sorting

More information

Recursion(int day){return Recursion(day += 1);} Comp Sci 1575 Data Structures. Recursive design. Convert loops to recursion

Recursion(int day){return Recursion(day += 1);} Comp Sci 1575 Data Structures. Recursive design. Convert loops to recursion Recursion(int day){return Recursion(day += 1);} Comp Sci 1575 Data Structures Outline 1 2 Solution 2: calls 3 Implementation To create recursion, you must create recursion. How to a recursive algorithm

More information

Introduction to Programming I

Introduction to Programming I Still image from YouTube video P vs. NP and the Computational Complexity Zoo BBM 101 Introduction to Programming I Lecture #09 Development Strategies, Algorithmic Speed Erkut Erdem, Aykut Erdem & Aydın

More information

Fruitful Recursion (recursion that returns a value)

Fruitful Recursion (recursion that returns a value) Recall: fruitful functions and side effects Fruitful Recursion (recursion that returns a value) max, min len, int Recursive func,ons today: sumup factorial countdownlist fibrec countuplist upperrightrepeat

More information

CMPSCI 187: Programming With Data Structures. Lecture 5: Analysis of Algorithms Overview 16 September 2011

CMPSCI 187: Programming With Data Structures. Lecture 5: Analysis of Algorithms Overview 16 September 2011 CMPSCI 187: Programming With Data Structures Lecture 5: Analysis of Algorithms Overview 16 September 2011 Analysis of Algorithms Overview What is Analysis of Algorithms? L&C s Dishwashing Example Being

More information

Object-Oriented Programming and Design D0010E. Interactive lecture 2. Overview of the lecture. Writing larger classes Documentation Recursion

Object-Oriented Programming and Design D0010E. Interactive lecture 2. Overview of the lecture. Writing larger classes Documentation Recursion Object-Oriented Programming and Design D0010E Interactive lecture 2 Overview of the lecture Writing larger classes Documentation Recursion Thinking in Java Riley Object-Oriented Programming and Design

More information

Twelve Simple Algorithms to Compute Fibonacci Numbers

Twelve Simple Algorithms to Compute Fibonacci Numbers arxiv:1803.07199v2 [cs.ds] 13 Apr 2018 Twelve Simple Algorithms to Compute Fibonacci Numbers Ali Dasdan KD Consulting Saratoga, CA, USA alidasdan@gmail.com April 16, 2018 Abstract The Fibonacci numbers

More information

6.001 Notes: Section 15.1

6.001 Notes: Section 15.1 6.001 Notes: Section 15.1 Slide 15.1.1 Our goal over the next few lectures is to build an interpreter, which in a very basic sense is the ultimate in programming, since doing so will allow us to define

More information

Decorators in Python

Decorators in Python Decorators in Python Need to measure timing of algorithms Measure execution time Wall-clock timing: Import a clock or time module Save current time Execute function Save current time Difference between

More information

Computer Algorithms. Introduction to Algorithm

Computer Algorithms. Introduction to Algorithm Computer Algorithms Introduction to Algorithm CISC 4080 Yanjun Li 1 What is Algorithm? An Algorithm is a sequence of well-defined computational steps that transform the input into the output. These steps

More information