MiniTriangle. G52CMP: Lecture 6 Defining Programming Languages II. This Lecture. A MiniTriangle Program

Size: px
Start display at page:

Download "MiniTriangle. G52CMP: Lecture 6 Defining Programming Languages II. This Lecture. A MiniTriangle Program"

Transcription

1 MiniTriangle G52CMP: Lecture 6 Defining Programming Languages II Henrik Nilsson Universit of Nottingham, UK In part II of the coursework, we are going to use a language called MiniTriangle: Originates from Watt & Brown (defined at pp. 6 20). Our version has evolved and is now quite different in some respects. We use MiniTriangle in this lecture to: - Illustrate the ideas of concrete and abstract sntax - Introduce ou to the language G52CMP: Lecture 6 p.1/30 G52CMP: Lecture 6 p.2/30 This Lecture Concrete Sntax - Lexical sntax for MiniTriangle - Context-free sntax for MiniTriangle Abstract Sntax - Abstract sntax for MiniTriangle Representing Abstract Sntax Trees (ASTs) A MiniTriangle Program This is an example of a valid MiniTriangle program: let in var : Integer := 0 begin := + 1 ; putint() end G52CMP: Lecture 6 p.3/30 G52CMP: Lecture 6 p.4/30

2 Concrete Sntax The Concrete Sntax, or surface sntax, of a language is usuall defined at two levels: The Lexical sntax: the sntax of - language smbols or tokens - white space - comments The Context-Free sntax. Regular Grammars Lexical sntax is usuall defined as a Regular Language (RL). A regular language can be described b - a Regular Expression - a Context-Free Grammar (as the RLs are a proper subset of the CFLs) If a grammar G is left-linear or right-linear, then G is a regular grammar and L(G) is a regular language. Regular languages are eas to recognise (DFA). G52CMP: Lecture 6 p.5/30 G52CMP: Lecture 6 p.6/30 Right-linear Grammar A CFG G = (N,T,P,S) is right-linear if all its productions are of the forms A wb A w where A,B N and w T. Example: The regular language 0(10) is generated b the right-linear grammar S 0A A 10A ǫ Left-linear Grammar A CFG G = (N,T,P,S) is left-linear if all its productions are of the forms A Bw A w where A,B N and w T. Example: The regular language 0(10) is generated b the left-linear grammar S S10 0 G52CMP: Lecture 6 p.7/30 G52CMP: Lecture 6 p.8/30

3 MiniTriangle Lexical Sntax (1) Program (Token Separator) Token Keword Identifier IntegerLiteral Operator, ; : := = ( ) eot Keword begin const do else end if in let then var while Identifier Letter Identifier Letter Identifier Digit except Keword IntegerLiteral Digit IntegerLiteral Digit Operator + - * / < <= ==!= >= > &&! Separator Comment space eol Comment // (an character except eol) eol G52CMP: Lecture 6 p.9/30 MiniTriangle Lexical Sntax (2) Notes: Essentiall a left-linear grammar. Not completel formal (e.g. the use of except for excluding kewords from identifiers). Note! Each individual character of a terminal is actuall a terminal smbol! I.e., reall: Keword b e g i n c o n s t... Special characters are written like this. Note! The are single terminal smbols! G52CMP: Lecture 6 p.10/30 MiniTriangle: Tokens Some valid MiniTriangle tokens: const3 (Identifier) const (Keword) 42 (Integer-Literal) + (Operator) Q: Is const3 reall a single token? The grammar is ambiguous! A: An implicit maximal munch rule used to disambiguate! MiniTriangle: Non Tokens Some non tokens: 123abc (two tokens: Integer-Literal 123 and Identifier abc) put_x (Identifier put, illegal character _, Identifier x) 3.14 (Integer-Literal 3, illegal character., Integer-Literal 14) 3e8 (two tokens: Integer-Literal 3 and Identifier e8) G52CMP: Lecture 6 p.11/30 G52CMP: Lecture 6 p.12/30

4 MiniTriangle Context-Free Sntax (1) MiniTriangle Context-Free Sntax (2) Program Command Commands Command Command ; Commands Command VarExpression := Expression VarExpression ( Expressions ) if Expression then Command else Command while Expression do Command let Declarations in Command begin Commands end Expressions Expression Expression, Expressions Expression PrimarExpression Expression Operator PrimarExpression PrimarExpression IntegerLiteral VarExpression Operator PrimarExpression ( Expression ) VarExpression Identifier G52CMP: Lecture 6 p.13/30 G52CMP: Lecture 6 p.14/30 MiniTriangle Context-Free Sntax (3) Another MiniTriangle Program Declarations Declaration Declaration ; Declarations Declaration const Identifier : TpeDenoter = Expression var Identifier : TpeDenoter var Identifier : TpeDenoter := Expression TpeDenoter Identifier The following is a sntacticall valid MiniTriangle program (slightl changed from earlier to save some space): let in var : Integer begin := + 1 ; putint() end G52CMP: Lecture 6 p.15/30 G52CMP: Lecture 6 p.16/30

5 Parse Tree for the Program Exercise 1 Program Command let Declarations in Command Draw the parse tree for the following MiniTriangle program: Declaration begin Commands end var Identifier : TpeDenoter Command Identifier VarExpression := Expression ; Commands Command while b do n := 0 Integer Identifier Expression Operator PrimarExpression VarExpression ( Expressions ) PrimarExpression + IntegerLiteral Identifier Expression VarExpression 1 putint PrimarExpression Identifier VarExpression Identifier G52CMP: Lecture 6 p.17/30 G52CMP: Lecture 6 p.18/30 Wh a Lexical Grammar? (1) Together, the lexical grammar and the context-free grammar specif the concrete sntax. In our case, both grammars are expressed in (E)BNF and looks similar. So... Wh not join them? Wh not do awa with scanning, and just do parsing? G52CMP: Lecture 6 p.19/30 Wh a Lexical Grammar? (2) Answer: Simplicit: dealing with white space and comments in the context free grammar becomes extremel complicated. (Tr it!) Efficienc: - Working on classified groups of characters (tokens) facilitates parsing: ma be possible to use a simpler parsing algorithm. - Grouping and classifing characters b as simple means as possible increases efficienc. G52CMP: Lecture 6 p.20/30

6 MiniTriangle Abstract Sntax (1) This grammar specifies the phrase structure of MiniTriangle. In addition, it gives node labels to be used when drawing Abstract Sntax Trees. Program Command Program Command Expression := Expression CmdAssign Expression ( Expression ) CmdCall Command CmdSeq if Expression then Command CmdIf else Command while Expression do Command CmdWhile let Declaration in Command CmdLet G52CMP: Lecture 6 p.21/30 MiniTriangle Abstract Sntax (2) Expression IntegerLiteral ExpLitInt ExpVar Expression ( Expression ) ExpApp Declaration const : TpeDenoter DeclConst = Expression var : TpeDenoter DeclVar (:= Expression ǫ) TpeDenoter TDBaseTpe Note: Kewords and other fixed-spelling terminals serve onl to make the connection with the concrete sntax clear. Identifier, Operator G52CMP: Lecture 6 p.22/30 Abstract Sntax Tree for the Program Exercise 2 Program CmdLet DeclVar TDBaseTpe ExpVar CmdAssign ExpApp CmdSeq ExpVar CmdCall ExpVar Draw the Abstract Sntax Tree for the following MiniTriangle program: while b do n := 0 Integer ExpVar ExpVar ExpLitInt IntegerLiteral putint + Note: fixed-spelling terminals are omitted because the are implied b the node labels. 1 G52CMP: Lecture 6 p.23/30 G52CMP: Lecture 6 p.24/30

7 Concrete AST Representation Mapping of abstract sntax to algebraic datatpes : Each non-terminal is mapped to a tpe. Each label is mapped to a constructor for the corresponding tpe. The constructors get one argument for each non-terminal and variable terminal in the RHS of the production. Sequences are represented b lists. Concrete AST Representation (2) data Command = CmdAssign Expression Expression CmdCall Expression [Expression] CmdSeq [Command] CmdIf Expression Command Command CmdWhile Expression Command CmdLet [Declaration] Command Options are represented b values of tpe Mabe. Literal terminals are ignored. G52CMP: Lecture 6 p.25/30 G52CMP: Lecture 6 p.26/30 Concrete AST Representation (3) data Expression = ExpLitInt Integer ExpVar ExpApp Expression [Expression] data Declaration = DeclConst TpeDenoter Expression DeclVar TpeDenoter (Mabe Expression) Concrete AST Representation (4) In fact, the lab code uses labelled fields: data Command = CmdAssign { cavar :: Expression, caval :: Expression, cmdsrcpos :: SrcPos } CmdCall { ccproc :: Expression, } ccargs :: [Expression], cmdsrcpos :: SrcPos G52CMP: Lecture 6 p.27/30... G52CMP: Lecture 6 p.28/30

8 Haskell Representation of the Program Exercise 3 CmdLet (DeclVar "" (TDBase "Integer") Nothing) (CmdSeq [CmdAssign (ExpVar "") Assumption: tpe = String (ExpApp (ExpVar "+") [ExpVar "", CmdCall (ExpVar "putint") [ExpVar ""]]) ExpLitInt 1]), Provide the Haskell representation of the following MiniTriangle fragment: while b do n := 0 G52CMP: Lecture 6 p.29/30 G52CMP: Lecture 6 p.30/30

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER COMPILERS ANSWERS. Time allowed TWO hours

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER COMPILERS ANSWERS. Time allowed TWO hours The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER 2009 2010 COMPILERS ANSWERS Time allowed TWO hours Candidates may complete the front cover of their answer book

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 3 MODULE, AUTUMN SEMESTER COMPILERS ANSWERS. Time allowed TWO hours

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 3 MODULE, AUTUMN SEMESTER COMPILERS ANSWERS. Time allowed TWO hours The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 3 MODULE, AUTUMN SEMESTER 2017 2018 COMPILERS ANSWERS Time allowed TWO hours Candidates may complete the front cover of their answer book

More information

G53CMP: Lecture 4. Syntactic Analysis: Parser Generators. Henrik Nilsson. University of Nottingham, UK. G53CMP: Lecture 4 p.1/32

G53CMP: Lecture 4. Syntactic Analysis: Parser Generators. Henrik Nilsson. University of Nottingham, UK. G53CMP: Lecture 4 p.1/32 G53CMP: Lecture 4 Syntactic Analysis: Parser Generators Henrik Nilsson University of Nottingham, UK G53CMP: Lecture 4 p.1/32 This Lecture Parser generators ( compiler compilers ) The parser generator Happy

More information

Recap: Typical Compiler Structure. G53CMP: Lecture 2 A Complete (Albeit Small) Compiler. This Lecture (2) This Lecture (1)

Recap: Typical Compiler Structure. G53CMP: Lecture 2 A Complete (Albeit Small) Compiler. This Lecture (2) This Lecture (1) Recap: Typical Compiler Structure G53CMP: Lecture 2 A Complete (Albeit Small) Compiler Henrik Nilsson Front End sequence of characters scanner Lexical Analysis sequence of tokens parser Syntactic Analysis/Parsing

More information

The Phases of a Compiler. Course Overview. In Chapter 4. Syntax Analysis. Syntax Analysis. Multi Pass Compiler. PART I: overview material

The Phases of a Compiler. Course Overview. In Chapter 4. Syntax Analysis. Syntax Analysis. Multi Pass Compiler. PART I: overview material Course Overview The Phases of a Compiler PART I: overview material Introduction 2 Language processors (tombstone diagrams, bootstrappg) 3 Architecture of a compiler PART II: side a compiler 4 Sntax analsis

More information

Chapter 3: Describing Syntax and Semantics. Introduction Formal methods of describing syntax (BNF)

Chapter 3: Describing Syntax and Semantics. Introduction Formal methods of describing syntax (BNF) Chapter 3: Describing Syntax and Semantics Introduction Formal methods of describing syntax (BNF) We can analyze syntax of a computer program on two levels: 1. Lexical level 2. Syntactic level Lexical

More information

Part 5 Program Analysis Principles and Techniques

Part 5 Program Analysis Principles and Techniques 1 Part 5 Program Analysis Principles and Techniques Front end 2 source code scanner tokens parser il errors Responsibilities: Recognize legal programs Report errors Produce il Preliminary storage map Shape

More information

Syntax and Grammars 1 / 21

Syntax and Grammars 1 / 21 Syntax and Grammars 1 / 21 Outline What is a language? Abstract syntax and grammars Abstract syntax vs. concrete syntax Encoding grammars as Haskell data types What is a language? 2 / 21 What is a language?

More information

ECE251 Midterm practice questions, Fall 2010

ECE251 Midterm practice questions, Fall 2010 ECE251 Midterm practice questions, Fall 2010 Patrick Lam October 20, 2010 Bootstrapping In particular, say you have a compiler from C to Pascal which runs on x86, and you want to write a self-hosting Java

More information

CPS 506 Comparative Programming Languages. Syntax Specification

CPS 506 Comparative Programming Languages. Syntax Specification CPS 506 Comparative Programming Languages Syntax Specification Compiling Process Steps Program Lexical Analysis Convert characters into a stream of tokens Lexical Analysis Syntactic Analysis Send tokens

More information

A simple syntax-directed

A simple syntax-directed Syntax-directed is a grammaroriented compiling technique Programming languages: Syntax: what its programs look like? Semantic: what its programs mean? 1 A simple syntax-directed Lexical Syntax Character

More information

Formal Languages and Compilers Lecture V: Parse Trees and Ambiguous Gr

Formal Languages and Compilers Lecture V: Parse Trees and Ambiguous Gr Formal Languages and Compilers Lecture V: Parse Trees and Ambiguous Grammars Free University of Bozen-Bolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/

More information

MATVEC: MATRIX-VECTOR COMPUTATION LANGUAGE REFERENCE MANUAL. John C. Murphy jcm2105 Programming Languages and Translators Professor Stephen Edwards

MATVEC: MATRIX-VECTOR COMPUTATION LANGUAGE REFERENCE MANUAL. John C. Murphy jcm2105 Programming Languages and Translators Professor Stephen Edwards MATVEC: MATRIX-VECTOR COMPUTATION LANGUAGE REFERENCE MANUAL John C. Murphy jcm2105 Programming Languages and Translators Professor Stephen Edwards Language Reference Manual Introduction The purpose of

More information

CSCE 314 Programming Languages

CSCE 314 Programming Languages CSCE 314 Programming Languages Syntactic Analysis Dr. Hyunyoung Lee 1 What Is a Programming Language? Language = syntax + semantics The syntax of a language is concerned with the form of a program: how

More information

Week 2: Syntax Specification, Grammars

Week 2: Syntax Specification, Grammars CS320 Principles of Programming Languages Week 2: Syntax Specification, Grammars Jingke Li Portland State University Fall 2017 PSU CS320 Fall 17 Week 2: Syntax Specification, Grammars 1/ 62 Words and Sentences

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Lecture 5: Syntax Analysis (Parsing) Zheng (Eddy) Zhang Rutgers University January 31, 2018 Class Information Homework 1 is being graded now. The sample solution

More information

Simple Lexical Analyzer

Simple Lexical Analyzer Lecture 7: Simple Lexical Analyzer Dr Kieran T. Herley Department of Computer Science University College Cork 2017-2018 KH (03/10/17) Lecture 7: Simple Lexical Analyzer 2017-2018 1 / 1 Summary Use of jflex

More information

MIT Specifying Languages with Regular Expressions and Context-Free Grammars. Martin Rinard Massachusetts Institute of Technology

MIT Specifying Languages with Regular Expressions and Context-Free Grammars. Martin Rinard Massachusetts Institute of Technology MIT 6.035 Specifying Languages with Regular essions and Context-Free Grammars Martin Rinard Massachusetts Institute of Technology Language Definition Problem How to precisely define language Layered structure

More information

MIT Specifying Languages with Regular Expressions and Context-Free Grammars

MIT Specifying Languages with Regular Expressions and Context-Free Grammars MIT 6.035 Specifying Languages with Regular essions and Context-Free Grammars Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Language Definition Problem How to precisely

More information

Types and Static Type Checking (Introducing Micro-Haskell)

Types and Static Type Checking (Introducing Micro-Haskell) Types and Static (Introducing Micro-Haskell) Informatics 2A: Lecture 13 Alex Simpson School of Informatics University of Edinburgh als@inf.ed.ac.uk 16 October, 2012 1 / 21 1 Types 2 3 4 2 / 21 Thus far

More information

CS 44 Exam #2 February 14, 2001

CS 44 Exam #2 February 14, 2001 CS 44 Exam #2 February 14, 2001 Name Time Started: Time Finished: Each question is equally weighted. You may omit two questions, but you must answer #8, and you can only omit one of #6 or #7. Circle the

More information

Compilers - Chapter 2: An introduction to syntax analysis (and a complete toy compiler)

Compilers - Chapter 2: An introduction to syntax analysis (and a complete toy compiler) Compilers - Chapter 2: An introduction to syntax analysis (and a complete toy compiler) Lecturers: Paul Kelly (phjk@doc.ic.ac.uk) Office: room 304, William Penney Building Naranker Dulay (nd@doc.ic.ac.uk)

More information

CS Lecture 2. The Front End. Lecture 2 Lexical Analysis

CS Lecture 2. The Front End. Lecture 2 Lexical Analysis CS 1622 Lecture 2 Lexical Analysis CS 1622 Lecture 2 1 Lecture 2 Review of last lecture and finish up overview The first compiler phase: lexical analysis Reading: Chapter 2 in text (by 1/18) CS 1622 Lecture

More information

Types and Static Type Checking (Introducing Micro-Haskell)

Types and Static Type Checking (Introducing Micro-Haskell) Types and Static (Introducing Micro-Haskell) Informatics 2A: Lecture 14 John Longley School of Informatics University of Edinburgh jrl@inf.ed.ac.uk 17 October 2017 1 / 21 1 Types 2 3 4 2 / 21 So far in

More information

The SPL Programming Language Reference Manual

The SPL Programming Language Reference Manual The SPL Programming Language Reference Manual Leonidas Fegaras University of Texas at Arlington Arlington, TX 76019 fegaras@cse.uta.edu February 27, 2018 1 Introduction The SPL language is a Small Programming

More information

CS143 Midterm Fall 2008

CS143 Midterm Fall 2008 CS143 Midterm Fall 2008 Please read all instructions (including these) carefully. There are 4 questions on the exam, some with multiple parts. You have 75 minutes to work on the exam. The exam is closed

More information

Syntactic Directed Translation

Syntactic Directed Translation Sntactic Directed Translation What is Sntax-Directed Translation? Translation Process guided b Context-Free Grammars Attach Attributes to Grammar Smbols Attribute Grammars & Sntax-Directed Definitions

More information

Specifying Syntax. An English Grammar. Components of a Grammar. Language Specification. Types of Grammars. 1. Terminal symbols or terminals, Σ

Specifying Syntax. An English Grammar. Components of a Grammar. Language Specification. Types of Grammars. 1. Terminal symbols or terminals, Σ Specifying Syntax Language Specification Components of a Grammar 1. Terminal symbols or terminals, Σ Syntax Form of phrases Physical arrangement of symbols 2. Nonterminal symbols or syntactic categories,

More information

EDAN65: Compilers, Lecture 04 Grammar transformations: Eliminating ambiguities, adapting to LL parsing. Görel Hedin Revised:

EDAN65: Compilers, Lecture 04 Grammar transformations: Eliminating ambiguities, adapting to LL parsing. Görel Hedin Revised: EDAN65: Compilers, Lecture 04 Grammar transformations: Eliminating ambiguities, adapting to LL parsing Görel Hedin Revised: 2017-09-04 This lecture Regular expressions Context-free grammar Attribute grammar

More information

The PCAT Programming Language Reference Manual

The PCAT Programming Language Reference Manual The PCAT Programming Language Reference Manual Andrew Tolmach and Jingke Li Dept. of Computer Science Portland State University September 27, 1995 (revised October 15, 2002) 1 Introduction The PCAT language

More information

This book is licensed under a Creative Commons Attribution 3.0 License

This book is licensed under a Creative Commons Attribution 3.0 License 6. Syntax Learning objectives: syntax and semantics syntax diagrams and EBNF describe context-free grammars terminal and nonterminal symbols productions definition of EBNF by itself parse tree grammars

More information

Programming Languages & Translators PARSING. Baishakhi Ray. Fall These slides are motivated from Prof. Alex Aiken: Compilers (Stanford)

Programming Languages & Translators PARSING. Baishakhi Ray. Fall These slides are motivated from Prof. Alex Aiken: Compilers (Stanford) Programming Languages & Translators PARSING Baishakhi Ray Fall 2018 These slides are motivated from Prof. Alex Aiken: Compilers (Stanford) Languages and Automata Formal languages are very important in

More information

( ) i 0. Outline. Regular languages revisited. Introduction to Parsing. Parser overview. Context-free grammars (CFG s) Lecture 5.

( ) i 0. Outline. Regular languages revisited. Introduction to Parsing. Parser overview. Context-free grammars (CFG s) Lecture 5. Outline Regular languages revisited Introduction to Parsing Lecture 5 Parser overview Context-free grammars (CFG s) Derivations Prof. Aiken CS 143 Lecture 5 1 Ambiguity Prof. Aiken CS 143 Lecture 5 2 Languages

More information

Implementation of Lexical Analysis

Implementation of Lexical Analysis Implementation of Lexical Analysis Outline Specifying lexical structure using regular expressions Finite automata Deterministic Finite Automata (DFAs) Non-deterministic Finite Automata (NFAs) Implementation

More information

Lecture 4: Syntax Specification

Lecture 4: Syntax Specification The University of North Carolina at Chapel Hill Spring 2002 Lecture 4: Syntax Specification Jan 16 1 Phases of Compilation 2 1 Syntax Analysis Syntax: Webster s definition: 1 a : the way in which linguistic

More information

Introduction to Lexical Analysis

Introduction to Lexical Analysis Introduction to Lexical Analysis Outline Informal sketch of lexical analysis Identifies tokens in input string Issues in lexical analysis Lookahead Ambiguities Specifying lexical analyzers (lexers) Regular

More information

Implementation of Lexical Analysis

Implementation of Lexical Analysis Implementation of Lexical Analysis Outline Specifying lexical structure using regular expressions Finite automata Deterministic Finite Automata (DFAs) Non-deterministic Finite Automata (NFAs) Implementation

More information

Outline. Regular languages revisited. Introduction to Parsing. Parser overview. Context-free grammars (CFG s) Lecture 5. Derivations.

Outline. Regular languages revisited. Introduction to Parsing. Parser overview. Context-free grammars (CFG s) Lecture 5. Derivations. Outline Regular languages revisited Introduction to Parsing Lecture 5 Parser overview Context-free grammars (CFG s) Derivations Prof. Aiken CS 143 Lecture 5 1 Ambiguity Prof. Aiken CS 143 Lecture 5 2 Languages

More information

Introduction to Parsing. Lecture 5. Professor Alex Aiken Lecture #5 (Modified by Professor Vijay Ganesh)

Introduction to Parsing. Lecture 5. Professor Alex Aiken Lecture #5 (Modified by Professor Vijay Ganesh) Introduction to Parsing Lecture 5 (Modified by Professor Vijay Ganesh) 1 Outline Regular languages revisited Parser overview Context-free grammars (CFG s) Derivations Ambiguity 2 Languages and Automata

More information

CSCI 1260: Compilers and Program Analysis Steven Reiss Fall Lecture 4: Syntax Analysis I

CSCI 1260: Compilers and Program Analysis Steven Reiss Fall Lecture 4: Syntax Analysis I CSCI 1260: Compilers and Program Analysis Steven Reiss Fall 2015 Lecture 4: Syntax Analysis I I. Syntax Analysis A. Breaking the program into logical units 1. Input: token stream 2. Output: representation

More information

Introduction to Parsing. Lecture 5

Introduction to Parsing. Lecture 5 Introduction to Parsing Lecture 5 1 Outline Regular languages revisited Parser overview Context-free grammars (CFG s) Derivations Ambiguity 2 Languages and Automata Formal languages are very important

More information

Examination in Compilers, EDAN65

Examination in Compilers, EDAN65 Examination in Compilers, EDAN65 Department of Computer Science, Lund University 2016 10 28, 08.00-13.00 Note! Your exam will be marked only if you have completed all six programming lab assignments in

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2016 Lecture 15 Ana Bove May 23rd 2016 More on Turing machines; Summary of the course. Overview of today s lecture: Recap: PDA, TM Push-down

More information

UNIT -2 LEXICAL ANALYSIS

UNIT -2 LEXICAL ANALYSIS OVER VIEW OF LEXICAL ANALYSIS UNIT -2 LEXICAL ANALYSIS o To identify the tokens we need some method of describing the possible tokens that can appear in the input stream. For this purpose we introduce

More information

CSE 401 Midterm Exam Sample Solution 2/11/15

CSE 401 Midterm Exam Sample Solution 2/11/15 Question 1. (10 points) Regular expression warmup. For regular expression questions, you must restrict yourself to the basic regular expression operations covered in class and on homework assignments:

More information

LECTURE 3. Compiler Phases

LECTURE 3. Compiler Phases LECTURE 3 Compiler Phases COMPILER PHASES Compilation of a program proceeds through a fixed series of phases. Each phase uses an (intermediate) form of the program produced by an earlier phase. Subsequent

More information

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation

9/5/17. The Design and Implementation of Programming Languages. Compilation. Interpretation. Compilation vs. Interpretation. Hybrid Implementation Language Implementation Methods The Design and Implementation of Programming Languages Compilation Interpretation Hybrid In Text: Chapter 1 2 Compilation Interpretation Translate high-level programs to

More information

Contextual Analysis (2) Limitations of CFGs (3)

Contextual Analysis (2) Limitations of CFGs (3) G53CMP: Lecture 5 Contextual Analysis: Scope I Henrik Nilsson University of Nottgham, UK This Lecture Limitations of context-free languages: Why checkg contextual constrats is different from checkg syntactical

More information

Chapter 3. Describing Syntax and Semantics ISBN

Chapter 3. Describing Syntax and Semantics ISBN Chapter 3 Describing Syntax and Semantics ISBN 0-321-49362-1 Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Copyright 2009 Addison-Wesley. All

More information

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics

Parsing. Zhenjiang Hu. May 31, June 7, June 14, All Right Reserved. National Institute of Informatics National Institute of Informatics May 31, June 7, June 14, 2010 All Right Reserved. Outline I 1 Parser Type 2 Monad Parser Monad 3 Derived Primitives 4 5 6 Outline Parser Type 1 Parser Type 2 3 4 5 6 What

More information

Compiler Design Concepts. Syntax Analysis

Compiler Design Concepts. Syntax Analysis Compiler Design Concepts Syntax Analysis Introduction First task is to break up the text into meaningful words called tokens. newval=oldval+12 id = id + num Token Stream Lexical Analysis Source Code (High

More information

CSE 401 Midterm Exam 11/5/10

CSE 401 Midterm Exam 11/5/10 Name There are 5 questions worth a total of 100 points. Please budget your time so you get to all of the questions. Keep your answers brief and to the point. The exam is closed books, closed notes, closed

More information

CSE 3302 Programming Languages Lecture 2: Syntax

CSE 3302 Programming Languages Lecture 2: Syntax CSE 3302 Programming Languages Lecture 2: Syntax (based on slides by Chengkai Li) Leonidas Fegaras University of Texas at Arlington CSE 3302 L2 Spring 2011 1 How do we define a PL? Specifying a PL: Syntax:

More information

Course Overview. Introduction (Chapter 1) Compiler Frontend: Today. Compiler Backend:

Course Overview. Introduction (Chapter 1) Compiler Frontend: Today. Compiler Backend: Course Overview Introduction (Chapter 1) Compiler Frontend: Today Lexical Analysis & Parsing (Chapter 2,3,4) Semantic Analysis (Chapter 5) Activation Records (Chapter 6) Translation to Intermediate Code

More information

Lexical Analysis. Introduction

Lexical Analysis. Introduction Lexical Analysis Introduction Copyright 2015, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at the University of Southern California have explicit permission to make copies

More information

Introduction to Parsing. Lecture 5

Introduction to Parsing. Lecture 5 Introduction to Parsing Lecture 5 1 Outline Regular languages revisited Parser overview Context-free grammars (CFG s) Derivations Ambiguity 2 Languages and Automata Formal languages are very important

More information

Formal Languages and Compilers Lecture VI: Lexical Analysis

Formal Languages and Compilers Lecture VI: Lexical Analysis Formal Languages and Compilers Lecture VI: Lexical Analysis Free University of Bozen-Bolzano Faculty of Computer Science POS Building, Room: 2.03 artale@inf.unibz.it http://www.inf.unibz.it/ artale/ Formal

More information

Comp 411 Principles of Programming Languages Lecture 3 Parsing. Corky Cartwright January 11, 2019

Comp 411 Principles of Programming Languages Lecture 3 Parsing. Corky Cartwright January 11, 2019 Comp 411 Principles of Programming Languages Lecture 3 Parsing Corky Cartwright January 11, 2019 Top Down Parsing What is a context-free grammar (CFG)? A recursive definition of a set of strings; it is

More information

Compiler Construction D7011E

Compiler Construction D7011E Compiler Construction D7011E Lecture 2: Lexical analysis Viktor Leijon Slides largely by Johan Nordlander with material generously provided by Mark P. Jones. 1 Basics of Lexical Analysis: 2 Some definitions:

More information

PL Revision overview

PL Revision overview PL Revision overview Course topics Parsing G = (S, P, NT, T); (E)BNF; recursive descent predictive parser (RDPP) Lexical analysis; Syntax and semantic errors; type checking Programming language structure

More information

Anatomy of a Compiler. Overview of Semantic Analysis. The Compiler So Far. Why a Separate Semantic Analysis?

Anatomy of a Compiler. Overview of Semantic Analysis. The Compiler So Far. Why a Separate Semantic Analysis? Anatomy of a Compiler Program (character stream) Lexical Analyzer (Scanner) Syntax Analyzer (Parser) Semantic Analysis Parse Tree Intermediate Code Generator Intermediate Code Optimizer Code Generator

More information

Outline. Parser overview Context-free grammars (CFG s) Derivations Syntax-Directed Translation

Outline. Parser overview Context-free grammars (CFG s) Derivations Syntax-Directed Translation Outline Introduction to Parsing (adapted from CS 164 at Berkeley) Parser overview Context-free grammars (CFG s) Derivations Syntax-Directed ranslation he Functionality of the Parser Input: sequence of

More information

14.1 Encoding for different models of computation

14.1 Encoding for different models of computation Lecture 14 Decidable languages In the previous lecture we discussed some examples of encoding schemes, through which various objects can be represented by strings over a given alphabet. We will begin this

More information

The Front End. The purpose of the front end is to deal with the input language. Perform a membership test: code source language?

The Front End. The purpose of the front end is to deal with the input language. Perform a membership test: code source language? The Front End Source code Front End IR Back End Machine code Errors The purpose of the front end is to deal with the input language Perform a membership test: code source language? Is the program well-formed

More information

EDA180: Compiler Construc6on Context- free grammars. Görel Hedin Revised:

EDA180: Compiler Construc6on Context- free grammars. Görel Hedin Revised: EDA180: Compiler Construc6on Context- free grammars Görel Hedin Revised: 2013-01- 28 Compiler phases and program representa6ons source code Lexical analysis (scanning) Intermediate code genera6on tokens

More information

Interpreter. Scanner. Parser. Tree Walker. read. request token. send token. send AST I/O. Console

Interpreter. Scanner. Parser. Tree Walker. read. request token. send token. send AST I/O. Console Scanning 1 read Interpreter Scanner request token Parser send token Console I/O send AST Tree Walker 2 Scanner This process is known as: Scanning, lexing (lexical analysis), and tokenizing This is the

More information

Automated Tools. The Compilation Task. Automated? Automated? Easier ways to create parsers. The final stages of compilation are language dependant

Automated Tools. The Compilation Task. Automated? Automated? Easier ways to create parsers. The final stages of compilation are language dependant Automated Tools Easier ways to create parsers The Compilation Task Input character stream Lexer Token stream Parser Abstract Syntax Tree Analyser Annotated AST Code Generator Code CC&P 2003 1 CC&P 2003

More information

Finding People and Information (1) G53CMP: Lecture 1. Aims and Motivation (1) Finding People and Information (2)

Finding People and Information (1) G53CMP: Lecture 1. Aims and Motivation (1) Finding People and Information (2) Finding People and Information (1) G53CMP: Lecture 1 Administrative Details 2017 and Introduction to Compiler Construction Henrik Nilsson Henrik Nilsson Room A08, Computer Science Building e-mail: nhn@cs.nott.ac.uk

More information

First Midterm Exam CS164, Fall 2007 Oct 2, 2007

First Midterm Exam CS164, Fall 2007 Oct 2, 2007 P a g e 1 First Midterm Exam CS164, Fall 2007 Oct 2, 2007 Please read all instructions (including these) carefully. Write your name, login, and SID. No electronic devices are allowed, including cell phones

More information

Appendix A: Syntax Diagrams

Appendix A: Syntax Diagrams A. Syntax Diagrams A-1 Appendix A: Syntax Diagrams References: Kathleen Jensen/Niklaus Wirth: PASCAL User Manual and Report, 4th Edition. Springer, 1991. Niklaus Wirth: Compilerbau (in German). Teubner,

More information

7. Introduction to Denotational Semantics. Oscar Nierstrasz

7. Introduction to Denotational Semantics. Oscar Nierstrasz 7. Introduction to Denotational Semantics Oscar Nierstrasz Roadmap > Syntax and Semantics > Semantics of Expressions > Semantics of Assignment > Other Issues References > D. A. Schmidt, Denotational Semantics,

More information

Formal Semantics. Chapter Twenty-Three Modern Programming Languages, 2nd ed. 1

Formal Semantics. Chapter Twenty-Three Modern Programming Languages, 2nd ed. 1 Formal Semantics Chapter Twenty-Three Modern Programming Languages, 2nd ed. 1 Formal Semantics At the beginning of the book we saw formal definitions of syntax with BNF And how to make a BNF that generates

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

More information

Properties of Regular Expressions and Finite Automata

Properties of Regular Expressions and Finite Automata Properties of Regular Expressions and Finite Automata Some token patterns can t be defined as regular expressions or finite automata. Consider the set of balanced brackets of the form [[[ ]]]. This set

More information

Theoretical Part. Chapter one:- - What are the Phases of compiler? Answer:

Theoretical Part. Chapter one:- - What are the Phases of compiler? Answer: Theoretical Part Chapter one:- - What are the Phases of compiler? Six phases Scanner Parser Semantic Analyzer Source code optimizer Code generator Target Code Optimizer Three auxiliary components Literal

More information

CS415 Compilers. Lexical Analysis

CS415 Compilers. Lexical Analysis CS415 Compilers Lexical Analysis These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University Lecture 7 1 Announcements First project and second homework

More information

Crafting a Compiler with C (V) Scanner generator

Crafting a Compiler with C (V) Scanner generator Crafting a Compiler with C (V) 資科系 林偉川 Scanner generator Limit the effort in building a scanner to specify which tokens the scanner is to recognize Some generators do not produce an entire scanner; rather,

More information

CS Parsing 1

CS Parsing 1 CS414-20034-03 Parsing 1 03-0: Parsing Once we have broken an input file into a sequence of tokens, the next step is to determine if that sequence of tokens forms a syntactically correct program parsing

More information

Lexical Analysis. Dragon Book Chapter 3 Formal Languages Regular Expressions Finite Automata Theory Lexical Analysis using Automata

Lexical Analysis. Dragon Book Chapter 3 Formal Languages Regular Expressions Finite Automata Theory Lexical Analysis using Automata Lexical Analysis Dragon Book Chapter 3 Formal Languages Regular Expressions Finite Automata Theory Lexical Analysis using Automata Phase Ordering of Front-Ends Lexical analysis (lexer) Break input string

More information

Lexical Analysis. Lexical analysis is the first phase of compilation: The file is converted from ASCII to tokens. It must be fast!

Lexical Analysis. Lexical analysis is the first phase of compilation: The file is converted from ASCII to tokens. It must be fast! Lexical Analysis Lexical analysis is the first phase of compilation: The file is converted from ASCII to tokens. It must be fast! Compiler Passes Analysis of input program (front-end) character stream

More information

Formal Languages and Grammars. Chapter 2: Sections 2.1 and 2.2

Formal Languages and Grammars. Chapter 2: Sections 2.1 and 2.2 Formal Languages and Grammars Chapter 2: Sections 2.1 and 2.2 Formal Languages Basis for the design and implementation of programming languages Alphabet: finite set Σ of symbols String: finite sequence

More information

Defining Program Syntax. Chapter Two Modern Programming Languages, 2nd ed. 1

Defining Program Syntax. Chapter Two Modern Programming Languages, 2nd ed. 1 Defining Program Syntax Chapter Two Modern Programming Languages, 2nd ed. 1 Syntax And Semantics Programming language syntax: how programs look, their form and structure Syntax is defined using a kind

More information

Principles of Programming Languages COMP251: Syntax and Grammars

Principles of Programming Languages COMP251: Syntax and Grammars Principles of Programming Languages COMP251: Syntax and Grammars Prof. Dekai Wu Department of Computer Science and Engineering The Hong Kong University of Science and Technology Hong Kong, China Fall 2007

More information

Optimizing Finite Automata

Optimizing Finite Automata Optimizing Finite Automata We can improve the DFA created by MakeDeterministic. Sometimes a DFA will have more states than necessary. For every DFA there is a unique smallest equivalent DFA (fewest states

More information

MP 3 A Lexer for MiniJava

MP 3 A Lexer for MiniJava MP 3 A Lexer for MiniJava CS 421 Spring 2012 Revision 1.0 Assigned Wednesday, February 1, 2012 Due Tuesday, February 7, at 09:30 Extension 48 hours (penalty 20% of total points possible) Total points 43

More information

CMSC 330: Organization of Programming Languages. Context Free Grammars

CMSC 330: Organization of Programming Languages. Context Free Grammars CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

More information

CS 4240: Compilers and Interpreters Project Phase 1: Scanner and Parser Due Date: October 4 th 2015 (11:59 pm) (via T-square)

CS 4240: Compilers and Interpreters Project Phase 1: Scanner and Parser Due Date: October 4 th 2015 (11:59 pm) (via T-square) CS 4240: Compilers and Interpreters Project Phase 1: Scanner and Parser Due Date: October 4 th 2015 (11:59 pm) (via T-square) Introduction This semester, through a project split into 3 phases, we are going

More information

Implementation of Lexical Analysis

Implementation of Lexical Analysis Implementation of Lexical Analysis Lecture 4 (Modified by Professor Vijay Ganesh) Tips on Building Large Systems KISS (Keep It Simple, Stupid!) Don t optimize prematurely Design systems that can be tested

More information

Semantic Analysis. Lecture 9. February 7, 2018

Semantic Analysis. Lecture 9. February 7, 2018 Semantic Analysis Lecture 9 February 7, 2018 Midterm 1 Compiler Stages 12 / 14 COOL Programming 10 / 12 Regular Languages 26 / 30 Context-free Languages 17 / 21 Parsing 20 / 23 Extra Credit 4 / 6 Average

More information

More Assigned Reading and Exercises on Syntax (for Exam 2)

More Assigned Reading and Exercises on Syntax (for Exam 2) More Assigned Reading and Exercises on Syntax (for Exam 2) 1. Read sections 2.3 (Lexical Syntax) and 2.4 (Context-Free Grammars) on pp. 33 41 of Sethi. 2. Read section 2.6 (Variants of Grammars) on pp.

More information

Midterm 2 Solutions Many acceptable answers; one was the following: (defparameter g1

Midterm 2 Solutions Many acceptable answers; one was the following: (defparameter g1 Midterm 2 Solutions 1. [20 points] Consider the language that consist of possibly empty lists of the identifier x enclosed by parentheses and separated by commas. The language includes { () (x) (x,x) (x,x,x)

More information

The Compiler So Far. Lexical analysis Detects inputs with illegal tokens. Overview of Semantic Analysis

The Compiler So Far. Lexical analysis Detects inputs with illegal tokens. Overview of Semantic Analysis The Compiler So Far Overview of Semantic Analysis Adapted from Lectures by Profs. Alex Aiken and George Necula (UCB) Lexical analysis Detects inputs with illegal tokens Parsing Detects inputs with ill-formed

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

More information

CS 315 Programming Languages Syntax. Parser. (Alternatively hand-built) (Alternatively hand-built)

CS 315 Programming Languages Syntax. Parser. (Alternatively hand-built) (Alternatively hand-built) Programming languages must be precise Remember instructions This is unlike natural languages CS 315 Programming Languages Syntax Precision is required for syntax think of this as the format of the language

More information

Writing a Lexical Analyzer in Haskell (part II)

Writing a Lexical Analyzer in Haskell (part II) Writing a Lexical Analyzer in Haskell (part II) Today Regular languages and lexicographical analysis part II Some of the slides today are from Dr. Saumya Debray and Dr. Christian Colberg This week PA1:

More information

CMSC 330: Organization of Programming Languages. Context Free Grammars

CMSC 330: Organization of Programming Languages. Context Free Grammars CMSC 330: Organization of Programming Languages Context Free Grammars 1 Architecture of Compilers, Interpreters Source Analyzer Optimizer Code Generator Abstract Syntax Tree Front End Back End Compiler

More information

Chapter 4. Syntax - the form or structure of the expressions, statements, and program units

Chapter 4. Syntax - the form or structure of the expressions, statements, and program units Syntax - the form or structure of the expressions, statements, and program units Semantics - the meaning of the expressions, statements, and program units Who must use language definitions? 1. Other language

More information

Parsing a primer. Ralf Lämmel Software Languages Team University of Koblenz-Landau

Parsing a primer. Ralf Lämmel Software Languages Team University of Koblenz-Landau Parsing a primer Ralf Lämmel Software Languages Team University of Koblenz-Landau http://www.softlang.org/ Mappings (edges) between different representations (nodes) of language elements. For instance,

More information

Introduction to Parsing Ambiguity and Syntax Errors

Introduction to Parsing Ambiguity and Syntax Errors Introduction to Parsing Ambiguity and Syntax rrors Outline Regular languages revisited Parser overview Context-free grammars (CFG s) Derivations Ambiguity Syntax errors Compiler Design 1 (2011) 2 Languages

More information

Syntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38

Syntax Analysis. Martin Sulzmann. Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Martin Sulzmann Martin Sulzmann Syntax Analysis 1 / 38 Syntax Analysis Objective Recognize individual tokens as sentences of a language (beyond regular languages). Example 1 (OK) Program

More information