Lecture P9: Trees. Overview. Searching a Database. Searching a Database

Size: px
Start display at page:

Download "Lecture P9: Trees. Overview. Searching a Database. Searching a Database"

Transcription

1 Overview Lecture P9: Trees Culmination of the programming portion of this class. Solve a database searching problem. Trees Versatile and useful data structure. A naturally recursive data structure. Application of stacks and queues. 1/27/00 Copyright 2000, Kevin Wayne P9.1 1/27/00 Copyright 2000, Kevin Wayne P9.2 Searching a Database Searching a Database Database entries. Names and social security numbers. Desired operations. Insert student. Delete student. Search for name given ID number. Goal. All operations fast, even for huge databases. SS# Last Name e Alam Baer Bagyenda Balestri Benjamin Berube Other applications. Online phone book looks up names and telephone numbers. Spell checker looks up words in dictionary. Internet domain server looks up IP addresses. Compiler looks up variable names to find type and memory address. Data structure that supports these operations is called a SYMBOL TABLE. search key 1/27/00 Copyright 2000, Kevin Wayne P9.3 1/27/00 Copyright 2000, Kevin Wayne P9.4

2 Representing the Database Entries Define Item.h file to encapsulate generic database entry. Don t want to use internals of item type when we write database code. want our insert and search code to work for any item type ideally Item would be an ADT Item.c Key is field in search. ITEM.h typedef int Key; typedef struct { Key ID; char name[30]; Item; Item NULLitem = {-1, ""; int eq(key, Key); int less(key, Key); Key key(item); void print(item); #include ITEM.h int eq(key A, Key B) { return A == B; int less(key A, Key B) { return A < B; Key key(item A) { return A.ID; void print(item A) { printf( %9d %20s, A.ID, A.name); Symbol Table ADT Define ST.h file to specify database operations. Make it a true ADT. ST.h (Sedgewick 12.1) Item STsearch(Key); void STinsert(Item); void STprint(void); int STcount(void); void STdelete(Item); 1/27/00 Copyright 2000, Kevin Wayne P9.5 1/27/00 Copyright 2000, Kevin Wayne P9.6 Sorted Array Representation of Database Maintain array of Items. Store in sorted order. Use BINARY SEARCH to find database Item with designated Key. Sorted Array Representation of Database Maintain array of Items. Store in sorted order. Use BINARY SEARCH to find database Item with designated Key. STarray.c (Sedgewick 12.6) Array of database Items. Key k not found. Divide and conquer. #define MAXSIZE Item st[maxsize]; Item search(int l, int r, Key k) { int m = (l+r)/2; if (l > r) return NULLitem; if eq(k, key(st[m])) Key k found. return st[m]; if less(k, key(st[m])) return search(l, m-1, k); return search(m+1, r, k); Wrapper for search function. STarray.c (Sedgewick 12.6) Item STsearch(Key k) { int N = Stcount(); return search(0, N-1, k); 1/27/00 Copyright 2000, Kevin Wayne P9.7 1/27/00 Copyright 2000, Kevin Wayne P9.8

3 Cost of Binary Search Insert Using Sorted Array Representation How many comparisons to find a name in database of size N? log 2 N = number of digits in binary representation of N. Divide list in half each time Problem 1: insertion is slow. Want to keep entries in sorted order. Have to move larger keys over one position to right. The log functions grows very slowly. log 2 (thousand) 10 log 2 (million) 20 log 2 (billion) 30 2 N = x x = log 2 N Demo: inserting 25 into a sorted array. 82 Without binary search (or if unsorted), may need to look at EVERY Item. Savings is enormous for large files. 1/27/00 Copyright 2000, Kevin Wayne P9.9 1/27/00 Copyright 2000, Kevin Wayne P9.10 Insert Using Sorted Array Representation Problem 1: insertion is slow. Want to keep entries in sorted order. Have to move larger keys over one position to right. Exercise: write code for insertion Linked List Representation of Database Keep items in a linked list. Store in sorted order. Insert. Only need to change links. No need to move large amounts of data. STlist.c typedef struct node* link; struct node { Item item; link next; Demo: inserting 25 into a sorted array NULL Problem 2: need to fix maximum database size ahead of time. 25 1/27/00 Copyright 2000, Kevin Wayne P9.11 1/27/00 Copyright 2000, Kevin Wayne P9.12

4 Linked List Representation of Database Keep items in a linked list. Store in sorted order. Insert. Only need to change links. No need to move large amounts of data. STlist.c typedef struct node* link; struct node { Item item; link next; Linked List Representation of Database Search. Can t use binary search since no DIRECT access to middle element. Use sequential search. may need to search entire linked list to find desired Key much slower than binary search NULL 25 STlist.c Item STsearch(Key k) { link x; for (x = head; x!= NULL; x = x->next) if (eq(k, key(x)) return x->item; return NULLitem; 1/27/00 Copyright 2000, Kevin Wayne P9.13 1/27/00 Copyright 2000, Kevin Wayne P9.14 Summary Binary Tree Database entries. Names and social security numbers. Desired operations. Insert, delete, search. Is there any way to have fast insert AND search? Yes. Use TWO links per node. root 14 parent Goal. Make all of these operations FAST even for huge databases. Tradeoff. ARRAY: fast search, slow insert/delete. LINKED LIST: fast insert/delete, slow search. left child right child leaf /27/00 Copyright 2000, Kevin Wayne P9.15 1/27/00 Copyright 2000, Kevin Wayne P9.16

5 Binary Tree in C STbst.h typedef struct STnode* link; struct STnode { Item item; link left; item link right; ; link head; left right Binary Search Tree Binary tree in sorted order. Maintain ordering property for ALL subtrees. root (middle value) Represent in C with two links per node. 66 NULL Leftmost arrow corresponds to left link Rightmost to right link. NULL NULL NULL NULL NULL NULL left subtree (smaller values) right subtree (smaller values) 1/27/00 Copyright 2000, Kevin Wayne P9.17 1/27/00 Copyright 2000, Kevin Wayne P9.18 Binary Search Tree Binary Search Tree Binary tree in sorted order. Maintain ordering property for ALL subtrees. 51 Binary tree in sorted order. Many BST s for the same input data. Have different tree shapes /27/00 Copyright 2000, Kevin Wayne P9.19 1/27/00 Copyright 2000, Kevin Wayne P9.20

6 Search in Binary Search Tree Search in BST s Search for Key k in binary search tree. Analogous to binary search in sorted array. Search for Key k. Search algorithm: Start at head node. If Key of current node is k, return node. Go LEFT if current node has Key < k. Go RIGHT if current node has Key > k. Found Key k. Look for Key k in right subtree. STbst.c (Sedgewick 12.7) Item search (link h, Key k) { if (h == NULL) return NULLitem; Key k not in tree. if (eq(k, key(h->item)) return h->item; if (less(k, key(h->item)) return search(h->left, k); Look for Key k return search(h->right, k); in left subtree. Item STsearch(Key k) { return search(head, k); Search for Key k in BST tree rooted at head. 1/27/00 Copyright 2000, Kevin Wayne P9.21 1/27/00 Copyright 2000, Kevin Wayne P9.22 Cost of BST Search Depends on tree shape. Proportional to length of path from root to Key. Balanced 2 log 2 N comparisons proportional to binary search cost Insert Using BST s How to insert new database Item. Search for key of database Item. Search ends at NULL pointer. New Item belongs here. Allocate memory for new Item, and link it to tree. Unbalanced takes N comparisons for degenerate tree shapes can be as slow as sequential search Algorithm works for any tree shape. With cleverness (see COS 226), can assure tree is always balanced. 1/27/00 Copyright 2000, Kevin Wayne P9.23 1/27/00 Copyright 2000, Kevin Wayne P9.24

7 Insert Using BST s Insertion Cost in BST Allocate memory and insert here. Divide-andconquer. BST.c (Sedgewick 12.7) link insert(link h, Item item) { Key k = key(item); Key k2 = key(h->item); link x; if (h == NULL) { link x = malloc(sizeof *x); x->item = item; x->left = x->right = NULL; return x; if (less(k, k2)) h->left = insert(h->left, item); else h->right = insert(h->right, item); return h; void STinsert(Item item) { head = insert(head, item); Wrapper function. Depends on tree shape. Cost is proportional to length of path from root to node. Tree shape depends on order keys are inserted. Insert in random order. Leads to well-balanced tree average length of path from root to node is 1.44 log 2 N Insert in sorted or reverse-sorted order. degenerates into linked list takes N -1 comparisons With cleverness, can ensure tree is always balanced. see COS 226 1/27/00 Copyright 2000, Kevin Wayne P9.25 1/27/00 Copyright 2000, Kevin Wayne P9.26 Question Other Types of Trees Current code searches for a name given an ID number. What if we want to search for an ID number given a name?! Easy, redefine Item type. Trees. Nodes need not have exactly two children. Order of children may not be important. me Item.h typedef char Key[30]; typedef struct { int ID; Key name; Item; Item NULLitem = {-1, ""; Item.c #include <string.h> int eq(key A, Key B) { return strcmp(a, B) == 0; int less(key A, Key B) { return strcmp(a, B) < 0; Examples. Family tree. mom s mom mom mom s dad dad s mom dad dad s dad int eq(key, Key); int less(key, Key); Key key(item); Key key(item A) { return A.name; 1/27/00 Copyright 2000, Kevin Wayne P9.27 1/27/00 Copyright 2000, Kevin Wayne P9.28

8 Other Types of Trees Trees. Nodes need not have exactly two children. Order of children may not be important. - Examples. Family tree. Parse tree. * + ( a * ( b + c ) ) - ( d + e ) a + d e Trees. Other Types of Trees Nodes need not have exactly two children. Order of children may not be important. Examples. Family tree. Parse tree. Unix file hierarchy. not binary aaclarke files bin lib etc u / cs126 grades zrnye submit mandel stock tsp b c POINT.h point.c tsp13509.txt 1/27/00 Copyright 2000, Kevin Wayne P9.29 1/27/00 Copyright 2000, Kevin Wayne P9.30 Traversing Binary Trees Goal: visit (process) each node in tree in some order. Tree traversal. wrapper function STbst.c void STprint(void) { traverse(head); Traversing Binary Trees Goal: visit (process) each node in tree in some order. Tree traversal. Goal realized no matter what order nodes are visited. inorder: visit between recursive calls traverse left subtree traverse right subtree inorder traverseinorder(link h) { if (h == NULL) return; traverse(h->left); print(h->item); process node h traverse(h->right); inorder traverseinorder(link h) { if (h == NULL) return; traverse(h->left); print(h->item); traverse(h->right); 1/27/00 Copyright 2000, Kevin Wayne P9.31 1/27/00 Copyright 2000, Kevin Wayne P9.32

9 Traversing Binary Trees Traversing Binary Trees Goal: visit (process) each node in tree in some order. Tree traversal. Goal realized no matter what order nodes are visited. inorder: visit between recursive calls preorder: visit before recursive calls Goal: visit (process) each node in tree in some order. Tree traversal. Goal realized no matter what order nodes are visited. inorder: visit between recursive calls preorder: visit before recursive calls postorder: visit after recursive calls preorder traversepreorder(link h) { if (h == NULL) return; print(h->item); traverse(h->left); traverse(h->right); postorder traversepostorder(link h) { if (h == NULL) return; traverse(h->left); traverse(h->right); print(h->item); 1/27/00 Copyright 2000, Kevin Wayne P9.33 1/27/00 Copyright 2000, Kevin Wayne P9.34 Traversing Binary Trees Preorder Traversal With Explicit Stack Goal: visit (process) each node in tree in some order. Tree traversal. Goal realized no matter what order nodes are visited. inorder: visit between recursive calls preorder: visit before recursive calls postorder: visit after recursive calls! Important note: inorder traversal of BST gives free sort! Visit the top node on the stack. Push its children onto stack. Push right node before left, so that left node is visited first. preorder traversal with stack traverse(link h) { STACKpush(h); while (!STACKempty()) { h = STACKpop(); print(h->item); if (h->right!= NULL) STACKpush(h->right); if (h->left!= NULL) STACKpush(h->left); Works for general trees. Generalizes to DEPTH- FIRST-SEARCH in graphs. 1/27/00 Copyright 2000, Kevin Wayne P9.35 1/27/00 Copyright 2000, Kevin Wayne P9.36

10 Level Traversal With Queue Q. What happens if we replace stack with QUEUE? Level order traversal. Visit nodes in order from distance to root. Works for general trees. Generalizes to BREADTH- FIRST-SEARCH in graphs. level traversal with queue traverse(link h) { QUEUEput(h); while (!QUEUEempty()) { h = QUEUEget(); print(h->item); if (h->left!= NULL) QUEUEput(h->left); if(h->right!= NULL) QUEUEput(h->right); Summary How to insert and search a database using: Arrays. Linked lists. Binary search trees. Performance characteristics using different data structures. The meaning of different traversal orders and how the code for them works. 1/27/00 Copyright 2000, Kevin Wayne P9.37 1/27/00 Copyright 2000, Kevin Wayne P9.38

Trees (part 2) CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Trees (part 2) CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Trees (part 2) CSE 232 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington 1 Student Self-Review Review the theoretical lecture on trees that was covered earlier in the semester.

More information

IS 2610: Data Structures

IS 2610: Data Structures IS 2610: Data Structures Searching March 29, 2004 Symbol Table A symbol table is a data structure of items with keys that supports two basic operations: insert a new item, and return an item with a given

More information

Binary Search Trees. Manolis Koubarakis. Data Structures and Programming Techniques

Binary Search Trees. Manolis Koubarakis. Data Structures and Programming Techniques Binary Search Trees Manolis Koubarakis 1 Search The retrieval of a particular piece of information from large volumes of previously stored data is a fundamental operation, called search. Search is an important

More information

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap DATA STRUCTURES AND ALGORITHMS Hierarchical data structures: AVL tree, Bayer tree, Heap Summary of the previous lecture TREE is hierarchical (non linear) data structure Binary trees Definitions Full tree,

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

12 Abstract Data Types

12 Abstract Data Types 12 Abstract Data Types 12.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: Define the concept of an abstract data type (ADT). Define

More information

CS24 Week 8 Lecture 1

CS24 Week 8 Lecture 1 CS24 Week 8 Lecture 1 Kyle Dewey Overview Tree terminology Tree traversals Implementation (if time) Terminology Node The most basic component of a tree - the squares Edge The connections between nodes

More information

4.3: Linked Structures

4.3: Linked Structures Linked vs. Sequential Allocation 4.3: Linked Structures "The name of the song is called 'Haddocks' Eyes.' " "Oh, that's the name of the song, is it?" Alice said, trying to feel interested. "No, you don't

More information

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR

MULTIMEDIA COLLEGE JALAN GURNEY KIRI KUALA LUMPUR STUDENT IDENTIFICATION NO MULTIMEDIA COLLEGE JALAN GURNEY KIRI 54100 KUALA LUMPUR FIFTH SEMESTER FINAL EXAMINATION, 2014/2015 SESSION PSD2023 ALGORITHM & DATA STRUCTURE DSEW-E-F-2/13 25 MAY 2015 9.00 AM

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

Binary Trees. Height 1

Binary Trees. Height 1 Binary Trees Definitions A tree is a finite set of one or more nodes that shows parent-child relationship such that There is a special node called root Remaining nodes are portioned into subsets T1,T2,T3.

More information

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL

CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL CSE 373 OCTOBER 11 TH TRAVERSALS AND AVL MINUTIAE Feedback for P1p1 should have gone out before class Grades on canvas tonight Emails went to the student who submitted the assignment If you did not receive

More information

Search Trees. The term refers to a family of implementations, that may have different properties. We will discuss:

Search Trees. The term refers to a family of implementations, that may have different properties. We will discuss: Search Trees CSE 2320 Algorithms and Data Structures Alexandra Stefan Based on slides and notes from: Vassilis Athitsos and Bob Weems University of Texas at Arlington 1 Search Trees Preliminary note: "search

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

Trees. Estruturas de Dados / Programação 2 Árvores. Márcio Ribeiro twitter.com/marciomribeiro. Introduc)on. Hierarchical structure

Trees. Estruturas de Dados / Programação 2 Árvores. Márcio Ribeiro twitter.com/marciomribeiro. Introduc)on. Hierarchical structure Introduc)on Linear structures Removing this idea, treasure of applicaons Estruturas de Dados / Programação 2 Árvores Márcio Ribeiro marcio@ic.ufal.br twitter.com/marciomribeiro Hierarchical structure Companies

More information

a graph is a data structure made up of nodes in graph theory the links are normally called edges

a graph is a data structure made up of nodes in graph theory the links are normally called edges 1 Trees Graphs a graph is a data structure made up of nodes each node stores data each node has links to zero or more nodes in graph theory the links are normally called edges graphs occur frequently in

More information

Trees and Graphs. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington

Trees and Graphs. CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington Trees and Graphs CSE 2320 Algorithms and Data Structures Vassilis Athitsos University of Texas at Arlington 1 Graphs A graph is formally defined as: A set V of vertices (also called nodes). A set E of

More information

Cpt S 122 Data Structures. Data Structures Trees

Cpt S 122 Data Structures. Data Structures Trees Cpt S 122 Data Structures Data Structures Trees Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Motivation Trees are one of the most important and extensively

More information

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College!

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! ADTʼs Weʼve Studied! Position-oriented ADT! List! Stack! Queue! Value-oriented ADT! Sorted list! All of these are linear! One previous item;

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

8. Binary Search Tree

8. Binary Search Tree 8 Binary Search Tree Searching Basic Search Sequential Search : Unordered Lists Binary Search : Ordered Lists Tree Search Binary Search Tree Balanced Search Trees (Skipped) Sequential Search int Seq-Search

More information

Symbol Tables. Computing 2 COMP x1

Symbol Tables. Computing 2 COMP x1 Symbol Tables Computing 2 COMP1927 16x1 SYMBOL TABLES Searching: like sorting, searching is a fundamental element of many computational tasks data bases dictionaries compiler symbol tables Symbol table:

More information

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false.

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false. Name: Class: Date: CSCI-401 Examlet #5 True/False Indicate whether the sentence or statement is true or false. 1. The root node of the standard binary tree can be drawn anywhere in the tree diagram. 2.

More information

Why Do We Need Trees?

Why Do We Need Trees? CSE 373 Lecture 6: Trees Today s agenda: Trees: Definition and terminology Traversing trees Binary search trees Inserting into and deleting from trees Covered in Chapter 4 of the text Why Do We Need Trees?

More information

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am Announcements Midterm exam 2, Thursday, May 18 Closed book/notes but one sheet of paper allowed Covers up to stacks and queues Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps

More information

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text)

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text) Lec 17 April 8 Topics: binary Trees expression trees Binary Search Trees (Chapter 5 of text) Trees Linear access time of linked lists is prohibitive Heap can t support search in O(log N) time. (takes O(N)

More information

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop.

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop. Tree A tree consists of a set of nodes and a set of edges connecting pairs of nodes. A tree has the property that there is exactly one path (no more, no less) between any pair of nodes. A path is a connected

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information

Hierarchical data structures. Announcements. Motivation for trees. Tree overview

Hierarchical data structures. Announcements. Motivation for trees. Tree overview Announcements Midterm exam 2, Thursday, May 18 Closed book/notes but one sheet of paper allowed Covers up to stacks and queues Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps

More information

Binary Search Trees. See Section 11.1 of the text.

Binary Search Trees. See Section 11.1 of the text. Binary Search Trees See Section 11.1 of the text. Consider the following Binary Search Tree 17 This tree has a nice property: for every node, all of the nodes in its left subtree have values less than

More information

BBM 201 Data structures

BBM 201 Data structures BBM 201 Data structures Lecture 11: Trees 2018-2019 Fall Content Terminology The Binary Tree The Binary Search Tree Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, 2013

More information

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Binary Trees and Binary Search Trees

Binary Trees and Binary Search Trees Binary Trees and Binary Search Trees Learning Goals After this unit, you should be able to... Determine if a given tree is an instance of a particular type (e.g. binary, and later heap, etc.) Describe

More information

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs

Algorithms in Systems Engineering ISE 172. Lecture 16. Dr. Ted Ralphs Algorithms in Systems Engineering ISE 172 Lecture 16 Dr. Ted Ralphs ISE 172 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms

More information

Cpt S 122 Data Structures. Course Review Midterm Exam # 1

Cpt S 122 Data Structures. Course Review Midterm Exam # 1 Cpt S 122 Data Structures Course Review Midterm Exam # 1 Nirmalya Roy School of Electrical Engineering and Computer Science Washington State University Midterm Exam 1 When: Friday (09/28) 12:10-1pm Where:

More information

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department Abstract Data Structures IB Computer Science Content developed by Dartford Grammar School Computer Science Department HL Topics 1-7, D1-4 1: System design 2: Computer Organisation 3: Networks 4: Computational

More information

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010 Uses for About Binary January 31, 2010 Uses for About Binary Uses for Uses for About Basic Idea Implementing Binary Example: Expression Binary Search Uses for Uses for About Binary Uses for Storage Binary

More information

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree.

Module 4: Index Structures Lecture 13: Index structure. The Lecture Contains: Index structure. Binary search tree (BST) B-tree. B+-tree. The Lecture Contains: Index structure Binary search tree (BST) B-tree B+-tree Order file:///c /Documents%20and%20Settings/iitkrana1/My%20Documents/Google%20Talk%20Received%20Files/ist_data/lecture13/13_1.htm[6/14/2012

More information

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD Data Structures Trees By Dr. Mohammad Ali H. Eljinini Trees Are collections of items arranged in a tree like data structure (none linear). Items are stored inside units called nodes. However: We can use

More information

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department Abstract Data Structures IB Computer Science Content developed by Dartford Grammar School Computer Science Department HL Topics 1-7, D1-4 1: System design 2: Computer Organisation 3: Networks 4: Computational

More information

SCJ2013 Data Structure & Algorithms. Binary Search Tree. Nor Bahiah Hj Ahmad

SCJ2013 Data Structure & Algorithms. Binary Search Tree. Nor Bahiah Hj Ahmad SCJ2013 Data Structure & Algorithms Binary Search Tree Nor Bahiah Hj Ahmad Binary Search Tree A binary search tree has the following properties: For every node n in the tree Value of n is greater than

More information

Stacks, Queues and Hierarchical Collections

Stacks, Queues and Hierarchical Collections Programming III Stacks, Queues and Hierarchical Collections 2501ICT Nathan Contents Linked Data Structures Revisited Stacks Queues Trees Binary Trees Generic Trees Implementations 2 Copyright 2002- by

More information

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree Chapter 4 Trees 2 Introduction for large input, even access time may be prohibitive we need data structures that exhibit running times closer to O(log N) binary search tree 3 Terminology recursive definition

More information

Binary Search Tree 1.0. Generated by Doxygen Mon Jun :12:39

Binary Search Tree 1.0. Generated by Doxygen Mon Jun :12:39 Binary Search Tree 1.0 Generated by Doxygen 1.7.1 Mon Jun 6 2011 16:12:39 Contents 1 Binary Search Tree Program 1 1.1 Introduction.......................................... 1 2 Data Structure Index 3

More information

[ DATA STRUCTURES ] Fig. (1) : A Tree

[ DATA STRUCTURES ] Fig. (1) : A Tree [ DATA STRUCTURES ] Chapter - 07 : Trees A Tree is a non-linear data structure in which items are arranged in a sorted sequence. It is used to represent hierarchical relationship existing amongst several

More information

Binary Trees. Examples:

Binary Trees. Examples: Binary Trees A tree is a data structure that is made of nodes and pointers, much like a linked list. The difference between them lies in how they are organized: In a linked list each node is connected

More information

Associate Professor Dr. Raed Ibraheem Hamed

Associate Professor Dr. Raed Ibraheem Hamed Associate Professor Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Computer Science Department 2015 2016 Department of Computer Science _ UHD 1 What this Lecture

More information

CP2 Revision. theme: dynamic datatypes & data structures

CP2 Revision. theme: dynamic datatypes & data structures CP2 Revision theme: dynamic datatypes & data structures structs can hold any combination of datatypes handled as single entity struct { }; ;

More information

CSE 530A. B+ Trees. Washington University Fall 2013

CSE 530A. B+ Trees. Washington University Fall 2013 CSE 530A B+ Trees Washington University Fall 2013 B Trees A B tree is an ordered (non-binary) tree where the internal nodes can have a varying number of child nodes (within some range) B Trees When a key

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

CS 231 Data Structures and Algorithms Fall Recursion and Binary Trees Lecture 21 October 24, Prof. Zadia Codabux

CS 231 Data Structures and Algorithms Fall Recursion and Binary Trees Lecture 21 October 24, Prof. Zadia Codabux CS 231 Data Structures and Algorithms Fall 2018 Recursion and Binary Trees Lecture 21 October 24, 2018 Prof. Zadia Codabux 1 Agenda ArrayQueue.java Recursion Binary Tree Terminologies Traversal 2 Administrative

More information

Trees. A tree is a directed graph with the property

Trees. A tree is a directed graph with the property 2: Trees Trees A tree is a directed graph with the property There is one node (the root) from which all other nodes can be reached by exactly one path. Seen lots of examples. Parse Trees Decision Trees

More information

If you took your exam home last time, I will still regrade it if you want.

If you took your exam home last time, I will still regrade it if you want. Some Comments about HW2: 1. You should have used a generic node in your structure one that expected an Object, and not some other type. 2. Main is still too long for some people 3. braces in wrong place,

More information

CSE 373 APRIL 17 TH TREE BALANCE AND AVL

CSE 373 APRIL 17 TH TREE BALANCE AND AVL CSE 373 APRIL 17 TH TREE BALANCE AND AVL ASSORTED MINUTIAE HW3 due Wednesday Double check submissions Use binary search for SADict Midterm text Friday Review in Class on Wednesday Testing Advice Empty

More information

References and Homework ABSTRACT DATA TYPES; LISTS & TREES. Abstract Data Type (ADT) 9/24/14. ADT example: Set (bunch of different values)

References and Homework ABSTRACT DATA TYPES; LISTS & TREES. Abstract Data Type (ADT) 9/24/14. ADT example: Set (bunch of different values) 9// References and Homework Text: Chapters, and ABSTRACT DATA TYPES; LISTS & TREES Homework: Learn these List methods, from http://docs.oracle.com/javase/7/docs/api/java/util/list.html add, addall, contains,

More information

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr mahmoud.sakr@cis.asu.edu.eg Cairo, Egypt, October 2012 Binary Search Trees (BST) 1. Hierarchical data structure with a single reference to root

More information

Data Structures and Algorithms for Engineers

Data Structures and Algorithms for Engineers 04-630 Data Structures and Algorithms for Engineers David Vernon Carnegie Mellon University Africa vernon@cmu.edu www.vernon.eu Data Structures and Algorithms for Engineers 1 Carnegie Mellon University

More information

Unit III - Tree TREES

Unit III - Tree TREES TREES Unit III - Tree Consider a scenario where you are required to represent the directory structure of your operating system. The directory structure contains various folders and files. A folder may

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2008S-19 B-Trees David Galles Department of Computer Science University of San Francisco 19-0: Indexing Operations: Add an element Remove an element Find an element,

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk A. Maus, R.K. Runde, I. Yu INF2220: algorithms and data structures Series 1 Topic Trees & estimation of running time (Exercises with hints for solution) Issued:

More information

Data Structure Advanced

Data Structure Advanced Data Structure Advanced 1. Is it possible to find a loop in a Linked list? a. Possilbe at O(n) b. Not possible c. Possible at O(n^2) only d. Depends on the position of loop Solution: a. Possible at O(n)

More information

Trees. T.U. Cluj-Napoca -DSA Lecture 2 - M. Joldos 1

Trees. T.U. Cluj-Napoca -DSA Lecture 2 - M. Joldos 1 Trees Terminology. Rooted Trees. Traversals. Labeled Trees and Expression Trees. Tree ADT. Tree Implementations. Binary Search Trees. Optimal Search Trees T.U. Cluj-Napoca -DSA Lecture 2 - M. Joldos 1

More information

Stacks, Queues and Hierarchical Collections. 2501ICT Logan

Stacks, Queues and Hierarchical Collections. 2501ICT Logan Stacks, Queues and Hierarchical Collections 2501ICT Logan Contents Linked Data Structures Revisited Stacks Queues Trees Binary Trees Generic Trees Implementations 2 Queues and Stacks Queues and Stacks

More information

An Introduction to Trees

An Introduction to Trees An Introduction to Trees Alice E. Fischer Spring 2017 Alice E. Fischer An Introduction to Trees... 1/34 Spring 2017 1 / 34 Outline 1 Trees the Abstraction Definitions 2 Expression Trees 3 Binary Search

More information

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree 0/2/ Preview Binary Tree Tree Binary Tree Property functions In-order walk Pre-order walk Post-order walk Search Tree Insert an element to the Tree Delete an element form the Tree A binary tree is a tree

More information

2-3 Tree. Outline B-TREE. catch(...){ printf( "Assignment::SolveProblem() AAAA!"); } ADD SLIDES ON DISJOINT SETS

2-3 Tree. Outline B-TREE. catch(...){ printf( Assignment::SolveProblem() AAAA!); } ADD SLIDES ON DISJOINT SETS Outline catch(...){ printf( "Assignment::SolveProblem() AAAA!"); } Balanced Search Trees 2-3 Trees 2-3-4 Trees Slide 4 Why care about advanced implementations? Same entries, different insertion sequence:

More information

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology Introduction Chapter 4 Trees for large input, even linear access time may be prohibitive we need data structures that exhibit average running times closer to O(log N) binary search tree 2 Terminology recursive

More information

Unit 8: Analysis of Algorithms 1: Searching

Unit 8: Analysis of Algorithms 1: Searching P Computer Science Unit 8: nalysis of lgorithms 1: Searching Topics: I. Sigma and Big-O notation II. Linear Search III. Binary Search Materials: I. Rawlins 1.6 II. Rawlins 2.1 III. Rawlins 2.3 IV. Sigma

More information

Tree Structures. A hierarchical data structure whose point of entry is the root node

Tree Structures. A hierarchical data structure whose point of entry is the root node Binary Trees 1 Tree Structures A tree is A hierarchical data structure whose point of entry is the root node This structure can be partitioned into disjoint subsets These subsets are themselves trees and

More information

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents Section 5.5 Binary Tree A binary tree is a rooted tree in which each vertex has at most two children and each child is designated as being a left child or a right child. Thus, in a binary tree, each vertex

More information

Trees, Part 1: Unbalanced Trees

Trees, Part 1: Unbalanced Trees Trees, Part 1: Unbalanced Trees The first part of this chapter takes a look at trees in general and unbalanced binary trees. The second part looks at various schemes to balance trees and/or make them more

More information

Binary Search Trees Treesort

Binary Search Trees Treesort Treesort CS 311 Data Structures and Algorithms Lecture Slides Friday, November 13, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009

More information

Binary Search Tree (3A) Young Won Lim 6/2/18

Binary Search Tree (3A) Young Won Lim 6/2/18 Binary Search Tree (A) /2/1 Copyright (c) 2015-201 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Binary Search Tree (3A) Young Won Lim 6/6/18

Binary Search Tree (3A) Young Won Lim 6/6/18 Binary Search Tree (A) //1 Copyright (c) 2015-201 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Tree-Structured Indexes

Tree-Structured Indexes Tree-Structured Indexes Chapter 9 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Introduction As for any index, 3 alternatives for data entries k*: Data record with key value k

More information

1 Binary trees. 1 Binary search trees. 1 Traversal. 1 Insertion. 1 An empty structure is an empty tree.

1 Binary trees. 1 Binary search trees. 1 Traversal. 1 Insertion. 1 An empty structure is an empty tree. Unit 6: Binary Trees Part 1 Engineering 4892: Data Structures Faculty of Engineering & Applied Science Memorial University of Newfoundland July 11, 2011 1 Binary trees 1 Binary search trees Analysis of

More information

CS 241 Data Organization Binary Trees

CS 241 Data Organization Binary Trees CS 241 Data Organization Binary Trees Brooke Chenoweth University of New Mexico Fall 2017 Binary Tree: Kernighan and Ritchie 6.5 Read a file and count the occurrences of each word. now is the time for

More information

Search Trees. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Binary Search Trees

Search Trees. Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Binary Search Trees Unit 9, Part 2 Search Trees Computer Science S-111 Harvard University David G. Sullivan, Ph.D. Binary Search Trees Search-tree property: for each node k: all nodes in k s left subtree are < k all nodes

More information

Advanced Tree Data Structures

Advanced Tree Data Structures Advanced Tree Data Structures Fawzi Emad Chau-Wen Tseng Department of Computer Science University of Maryland, College Park Binary trees Traversal order Balance Rotation Multi-way trees Search Insert Overview

More information

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes

CSE 250 Final Exam. Fall 2013 Time: 3 hours. Dec 11, No electronic devices of any kind. You can open your textbook and notes CSE 250 Final Exam Fall 2013 Time: 3 hours. Dec 11, 2013 Total points: 100 14 pages Please use the space provided for each question, and the back of the page if you need to. Please do not use any extra

More information

Garbage Collection: recycling unused memory

Garbage Collection: recycling unused memory Outline backtracking garbage collection trees binary search trees tree traversal binary search tree algorithms: add, remove, traverse binary node class 1 Backtracking finding a path through a maze is an

More information

IX. Binary Trees (Chapter 10)

IX. Binary Trees (Chapter 10) IX. Binary Trees (Chapter 10) -1- A. Introduction: Searching a linked list. 1. Linear Search /* To linear search a list for a particular Item */ 1. Set Loc = 0; 2. Repeat the following: a. If Loc >= length

More information

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging.

Operations on Heap Tree The major operations required to be performed on a heap tree are Insertion, Deletion, and Merging. Priority Queue, Heap and Heap Sort In this time, we will study Priority queue, heap and heap sort. Heap is a data structure, which permits one to insert elements into a set and also to find the largest

More information

Tree traversals and binary trees

Tree traversals and binary trees Tree traversals and binary trees Comp Sci 1575 Data Structures Valgrind Execute valgrind followed by any flags you might want, and then your typical way to launch at the command line in Linux. Assuming

More information

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications Trees 1 Outline Preliminaries What is Tree? Implementation of Trees using C++ Tree traversals and applications Binary Trees Binary Search Trees Structure and operations Analysis 2 What is a Tree? A tree

More information

Data Structures And Algorithms

Data Structures And Algorithms Data Structures And Algorithms Binary Trees Eng. Anis Nazer First Semester 2017-2018 Definitions Linked lists, arrays, queues, stacks are linear structures not suitable to represent hierarchical data,

More information

Trees. CSE 373 Data Structures

Trees. CSE 373 Data Structures Trees CSE 373 Data Structures Readings Reading Chapter 7 Trees 2 Why Do We Need Trees? Lists, Stacks, and Queues are linear relationships Information often contains hierarchical relationships File directories

More information

Binary Search Tree (3A) Young Won Lim 6/4/18

Binary Search Tree (3A) Young Won Lim 6/4/18 Binary Search Tree (A) /4/1 Copyright (c) 2015-201 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

Name CPTR246 Spring '17 (100 total points) Exam 3

Name CPTR246 Spring '17 (100 total points) Exam 3 Name CPTR246 Spring '17 (100 total points) Exam 3 1. Linked Lists Consider the following linked list of integers (sorted from lowest to highest) and the changes described. Make the necessary changes in

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2017S-06 Binary Search Trees David Galles Department of Computer Science University of San Francisco 06-0: Ordered List ADT Operations: Insert an element in the list

More information

Design and Analysis of Algorithms Lecture- 9: Binary Search Trees

Design and Analysis of Algorithms Lecture- 9: Binary Search Trees Design and Analysis of Algorithms Lecture- 9: Binary Search Trees Dr. Chung- Wen Albert Tsao 1 Binary Search Trees Data structures that can support dynamic set operations. Search, Minimum, Maximum, Predecessor,

More information

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University U Kang (2016) 1 In This Lecture The concept of binary tree, its terms, and its operations Full binary tree theorem Idea

More information

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example.

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example. Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Tree: non-recursive definition Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every node (except

More information

Postfix (and prefix) notation

Postfix (and prefix) notation Postfix (and prefix) notation Also called reverse Polish reversed form of notation devised by mathematician named Jan Łukasiewicz (so really lü-kä-sha-vech notation) Infix notation is: operand operator

More information

Binary Search Trees. Contents. Steven J. Zeil. July 11, Definition: Binary Search Trees The Binary Search Tree ADT...

Binary Search Trees. Contents. Steven J. Zeil. July 11, Definition: Binary Search Trees The Binary Search Tree ADT... Steven J. Zeil July 11, 2013 Contents 1 Definition: Binary Search Trees 2 1.1 The Binary Search Tree ADT.................................................... 3 2 Implementing Binary Search Trees 7 2.1 Searching

More information

Fall, 2015 Prof. Jungkeun Park

Fall, 2015 Prof. Jungkeun Park Data Structures and Algorithms Binary Search Trees Fall, 2015 Prof. Jungkeun Park Copyright Notice: This material is modified version of the lecture slides by Prof. Rada Mihalcea in Univ. of North Texas.

More information

CS 206 Introduction to Computer Science II

CS 206 Introduction to Computer Science II CS 206 Introduction to Computer Science II 02 / 24 / 2017 Instructor: Michael Eckmann Today s Topics Questions? Comments? Trees binary trees two ideas for representing them in code traversals start binary

More information

Data Structures. Outline. Introduction Linked Lists Stacks Queues Trees Deitel & Associates, Inc. All rights reserved.

Data Structures. Outline. Introduction Linked Lists Stacks Queues Trees Deitel & Associates, Inc. All rights reserved. Data Structures Outline Introduction Linked Lists Stacks Queues Trees Introduction dynamic data structures - grow and shrink during execution Linked lists - insertions and removals made anywhere Stacks

More information