12 Rational Functions

Size: px
Start display at page:

Download "12 Rational Functions"

Transcription

1 Funtions Conepts: The Definition of a Funtion Identifing Funtions Finding the Domain of a Funtion The Big-Little Priniple Vertial and Horizontal Asmptotes The Graphs of Funtions (Setion.) Definition. A rational funtion is a funtion that is equivalent to a funtion of the following form. r() = polnomial polnomial Eample. Whih of the following are rational funtions? If the funtion is rational, find its domain. f() = f() is defined if 3, so the domain of f() is (, 3) (3, ) g() = + + Not rational sine the numerator is not a polnomial. h() = +3 h() is defined for all eept 0, so the domain of h() is (, 0) (0, ). j() = + + = + ( ) + = ++ = + j() is defined if, so the domain of j() is (, ) (, ). k() = + += + + k() is defined for all so its domain is (, ). Note.3 Polnomials are a speial ase of rational funtions.

2 . Graphs of Some Simple Funtions Let f() =. Below is a hart of the basi shapes that the graph of f() antakeon. n n odd n even Eamples: f() =, g() = 7 Eample: f() =, h() = 0 Propert. (The Big-Little Priniple) If is a number that is lose to 0 on the number line, then is a number that is far from 0 on the number line. If is a number that is far from 0 on the number line, then is a number that is lose to 0 on the number line. How should ou remember the Big-Little Priniple? If is big then is little and if is big then is little. Can ou use the Big-Little Priniple to eplain the shape of the graph of = f() =? n How do ou desribe the end behavior of the graph of = f() =? n If is big (in either the positive or negative sense) then is little so is also little. As n gets bigger, gets littler - that is, it gets loser to zero. So, the end behavior of f() is n 0as 0as

3 Man (though not all) of the graphs of rational funtions have asmptotes. Intuitivel, if a graph approahes another graph and eventuall gets as lose to that other graph as anone ould possibl hope without neessaril touhing the other graph, then the other graph is alled an asmptote for the original graph. Two tpes of asmptotes that often our in the graphs of rational funtions are horizontal asmptotes (asmptotes that are horizontal lines) and vertial asmptotes (asmptotes that are vertial lines). You an determine a rational funtion s horizontal asmptotes b onsidering the leading terms of the numerator and denominator. (This is onept is ver similar to the end behavior of a polnomial.) You an determine a rational funtion s vertial asmptotes b finding the values whih are zeros of the denominator but are not zeros of the numerator. Eample. Desribe the horizontal asmptotes of the graph of = g() = The leading term of the numerator is 3 and the leading term of the denominator is 3. The ratio of the leading terms is 3 3 = 3.Thus,g() hasthesameendbehavioras whih is 0as and 0as So, =0isahorizontalasmptote. Eample. Desribe the horizontal and vertial asmptotes of the graph of = f() = + 3. The leading term of the numerator is and the leading term of the denominator is. Theratio of the leading terms is =. Thus,f() hasthesameendbehavioras =whihis as and as So, =isahorizontalasmptote. =3isazeroofthedenominatorbutnotthenumerator. So =3isavertialasmptoteoff(). Eample.7 Desribe the horizontal and vertial asmptotes of the graph of = g() = The leading term of the numerator is and the leading term of the denominator is. Theratio of the leading terms is =. Thus,g() hasthesameendbehavioras = whih is as and as So, g()doesnothaveahorizontalasmptote. Notiethatthenumerator ++ = (+3)(+). So, = isazeroofthedenominatorbutnotthenumerator.so = isavertialasmptote of g(). 3

4 . The Graphs of Funtions - Some Eamples We have used a graphing alulator (TI-3 Plus) to approimate the graphs of a few rational funtions. Graphing alulators do not do a ver good job of skething asmptotes. Nevertheless, we an use them to better understand the graphs of rational funtions. For eah graph, look at the algebrai desription of the funtion and the approimate graph to better understand its asmptotes. Show algebraiall how ou would find the asmptotes of eah graph. Draw a better sketh of the graph that inludes all asmptotes. Make sure that asmptotes are drawn with dotted lines. Note: Eah graph is in a [, 0] [, 0] viewing window. The graph of = f() =. The leading term of the numerator is and the leading term of the denominator is. The ratio of the leading terms is =3. Thus,f() has the same end behavior as = 3 whih is 3as and as So, = 3 is a horizontal asmptote of f(). Notie that = is a zero of the denominator but not the numerator. So = + The graph of = f() = + +. is a vertial asmptote of f(). The leading term of the numerator is and the leading term of the denominator is. The ratio of the leading terms is =. Thus, f() has the same end behavior as = whih is 0 as and 0as So, = 0 is a horizontal asmptote of g(). The denominator + +=( +3)( + ) is zero when = 3 andwhen =. Sine neither of these make the numerator zero then = 3 and = are vertial asmptotes of f().

5 Eample. (Graphs of Funtions) Let h() = +.Skeththegraphofh() without using our alulator. Be sure 0 to label all asmptotes and interepts of the graph. The leading term of the numerator is and the leading term of the denominator is. The ratio of the leading terms is =.Thus,h() has the same end behavior as = whih is as and as So, = is a horizontal asmptote. Notie that the numerator + =( +)( ) and the denominator 0 = ( +)( ). So, = and =arezerosof the denominator but not the numerator. So = and = are vertial asmptotes of h() The -interept of the graph is = (0) (0) 0 = =. The -interepts are found b setting h() = 0. The-interepts are where the numerator of h() are 0. Sine we ve alread fatored the numerator above, its eas to see that the -interepts are = and = = = = 0.

Week 3. Topic 5 Asymptotes

Week 3. Topic 5 Asymptotes Week 3 Topic 5 Asmptotes Week 3 Topic 5 Asmptotes Introduction One of the strangest features of a graph is an asmptote. The come in three flavors: vertical, horizontal, and slant (also called oblique).

More information

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions.

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions. YOU WILL NEED graph paper coloured pencils or pens graphing calculator or graphing software Eploring Quotients of Polnomial Functions EXPLORE the Math Each row shows the graphs of two polnomial functions.

More information

A Rational Existence Introduction to Rational Functions

A Rational Existence Introduction to Rational Functions Lesson. Skills Practice Name Date A Rational Eistence Introduction to Rational Functions Vocabular Write the term that best completes each sentence.. A rational function is an function that can be written

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

4.4 Absolute Value Equations. What is the absolute value of a number? Example 1 Simplify a) 6 b) 4 c) 7 3. Example 2 Solve x = 2

4.4 Absolute Value Equations. What is the absolute value of a number? Example 1 Simplify a) 6 b) 4 c) 7 3. Example 2 Solve x = 2 4.4 Absolute Value Equations What is the absolute value of a number? Eample Simplif a) 6 b) 4 c) 7 3 Eample Solve = Steps for solving an absolute value equation: ) Get the absolute value b itself on one

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

Math 111 Lecture Notes Section 3.3: Graphing Rational Functions

Math 111 Lecture Notes Section 3.3: Graphing Rational Functions Math 111 Lecture Notes Section 3.3: Graphing Rational Functions A rational function is of the form R() = p() q() where p and q are polnomial functions. The zeros of a rational function occur where p()

More information

Section 1.4 Limits involving infinity

Section 1.4 Limits involving infinity Section. Limits involving infinit (/3/08) Overview: In later chapters we will need notation and terminolog to describe the behavior of functions in cases where the variable or the value of the function

More information

Algebra 1B Assignments Chapter 6: Linear Equations (All graphs must be drawn on GRAPH PAPER!)

Algebra 1B Assignments Chapter 6: Linear Equations (All graphs must be drawn on GRAPH PAPER!) Name Score Algebra 1B Assignments Chapter 6: Linear Equations (All graphs must be drawn on GRAPH PAPER!) Review Review Worksheet: Rational Numbers and Distributive Propert Worksheet: Solving Equations

More information

Math 111 Lecture Notes

Math 111 Lecture Notes A rational function is of the form R() = p() q() where p and q are polnomial functions. A rational function is undefined where the denominator equals zero, as this would cause division b zero. The zeros

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals . A Rational Shift in Behavior LEARnIng goals In this lesson, ou will: Analze rational functions with a constant added to the denominator. Compare rational functions in different forms. Identif vertical

More information

Rational Functions with Removable Discontinuities

Rational Functions with Removable Discontinuities Rational Functions with Removable Discontinuities 1. a) Simplif the rational epression and state an values of where the epression is b) Using the simplified epression in part (a), predict the shape for

More information

Checkpoint: Assess Your Understanding, pages

Checkpoint: Assess Your Understanding, pages Checkpoint: Assess Your Understanding, pages 1 18.1 1. Multiple Choice Given the graph of the function f(), which graph below right represents = f()? f() D C A B Chapter : Radical and Rational Functions

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

TIPS4RM: MHF4U: Unit 1 Polynomial Functions

TIPS4RM: MHF4U: Unit 1 Polynomial Functions TIPSRM: MHFU: Unit Polnomial Functions 008 .5.: Polnomial Concept Attainment Activit Compare and contrast the eamples and non-eamples of polnomial functions below. Through reasoning, identif attributes

More information

Lesson 2.4 Exercises, pages

Lesson 2.4 Exercises, pages Lesson. Eercises, pages 13 10 A 3. Sketch the graph of each function. ( - )( + 1) a) = b) = + 1 ( )( 1) 1 (- + )( - ) - ( )( ) 0 0 The function is undefined when: 1 There is a hole at 1. The function can

More information

«From straight line graph to polynomial inequalities»

«From straight line graph to polynomial inequalities» «Fro straight line graph to polynoial inequalities» Bakground inforation: Solving linear and quadrati inequalities are the two topis over in Eleentary and Additional Matheatis at level. Solving polynoial

More information

Appendix A.6 Functions

Appendix A.6 Functions A. Functions 539 RELATIONS: DOMAIN AND RANGE Appendi A. Functions A relation is a set of ordered pairs. A relation can be a simple set of just a few ordered pairs, such as {(0, ), (1, 3), (, )}, or it

More information

Chapter 8: Right Triangle Trigonometry

Chapter 8: Right Triangle Trigonometry Haberman MTH 11 Setion I: The Trigonometri Funtions Chapter 8: Right Triangle Trigonometry As we studied in Part 1 of Chapter 3, if we put the same angle in the enter of two irles of different radii, we

More information

Date Lesson Text TOPIC Homework. Simplifying Rational Expressions Pg. 246 # 2-5, 7

Date Lesson Text TOPIC Homework. Simplifying Rational Expressions Pg. 246 # 2-5, 7 UNIT RATIONAL FUNCTIONS EQUATIONS and INEQUALITIES Date Lesson Tet TOPIC Homework Oct. 7.0 (9).0 Simplifing Rational Epressions Pg. 6 # -, 7 Oct. 9. (0). Graphs of Reciprocal Functions Pg. #,,, doso, 6,

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

SECTION 3-4 Rational Functions

SECTION 3-4 Rational Functions 20 3 Polnomial and Rational Functions 0. Shipping. A shipping bo is reinforced with steel bands in all three directions (see the figure). A total of 20. feet of steel tape is to be used, with 6 inches

More information

f (x ) ax b cx d Solving Rational Equations Pg. 285 # 1, 3, 4, (5 7)sodo, 11, 12, 13

f (x ) ax b cx d Solving Rational Equations Pg. 285 # 1, 3, 4, (5 7)sodo, 11, 12, 13 UNIT RATIONAL FUNCTIONS EQUATIONS and INEQUALITIES Date Lesson Tet TOPIC Homework Oct. 7.0 (9).0 Simplifing Rational Epressions Pg. 6 # -, 7 Oct. 8. (0). Graphs of Reciprocal Functions Pg. #,,, doso, 6,

More information

Using a Table of Values to Sketch the Graph of a Polynomial Function

Using a Table of Values to Sketch the Graph of a Polynomial Function A point where the graph changes from decreasing to increasing is called a local minimum point. The -value of this point is less than those of neighbouring points. An inspection of the graphs of polnomial

More information

Graphing Rational Functions

Graphing Rational Functions 5 LESSON Graphing Rational Functions Points of Discontinuit and Vertical Asmptotes UNDERSTAND The standard form of a rational function is f () 5 P(), where P () and Q () Q() are polnomial epressions. Remember

More information

9.4 Exponential Growth and Decay Functions

9.4 Exponential Growth and Decay Functions Setion 9. Eponential Growth and Dea Funtions 56 9. Eponential Growth and Dea Funtions S Model Eponential Growth. Model Eponential Dea. Now that we an graph eponential funtions, let s learn about eponential

More information

A Rational Existence Introduction to Rational Functions

A Rational Existence Introduction to Rational Functions Lesson. Skills Practice Name Date A Rational Eistence Introduction to Rational Functions Vocabular Write the term that best completes each sentence.. A is an function that can be written as the ratio of

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9

Math RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9 Math 201-103-RE - Calculus I Application of the derivative (1) Curve Sketching Page 1 of 9 Critical numbers - Increasing and decreasing intervals - Relative Etrema Given f(), the derivatives f () and f

More information

Algebra Lab Investigating Trigonometri Ratios You an use paper triangles to investigate the ratios of the lengths of sides of right triangles. Virginia SOL Preparation for G.8 The student will solve realworld

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

Complex Rational Expressions

Complex Rational Expressions Comple ational Epressions What is a Comple ational Epression? A omple rational epression is similar to a omple fration whih has one or more frations in its numerator, denominator, or both The following

More information

Math College Algebra

Math College Algebra Math 5 - College Algebra Eam # - 08.0. Solutions. Below is the graph of a function f(), using the information on the graph, sketch on a separate graph the function F () = f( + ) +. Be sure to include important

More information

What is a Function? How to find the domain of a function (algebraically) Domain hiccups happen in 2 major cases (rational functions and radicals)

What is a Function? How to find the domain of a function (algebraically) Domain hiccups happen in 2 major cases (rational functions and radicals) What is a Function? Proving a Function Vertical Line Test Mapping Provide definition for function Provide sketch/rule for vertical line test Provide sketch/rule for mapping (notes #-3) How to find the

More information

Graphs of Parabolas. typical graph typical graph moved up 4 units. y = x 2 3. typical graph moved down 3 units

Graphs of Parabolas. typical graph typical graph moved up 4 units. y = x 2 3. typical graph moved down 3 units Graphs of Parabolas = x 2 = x 2 + 1 = x 2 + 4 = x 2 3 tpical graph tpical graph moved up 1 unit tpical graph moved up 4 units tpical graph moved down 3 units = x 2 = (x 1) 2 = (x 4) 2 = (x + 3) 2 tpical

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Lesson -5 Lesson -5 The Sine and Cosine Functions Vocabular BIG IDEA The values of cos and sin determine functions with equations = sin and = cos whose domain is the set of all real numbers. From the eact

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

The Graph Scale-Change Theorem

The Graph Scale-Change Theorem Lesson 3-5 Lesson 3-5 The Graph Scale-Change Theorem Vocabular horizontal and vertical scale change, scale factor size change BIG IDEA The graph of a function can be scaled horizontall, verticall, or in

More information

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center

12.4 The Ellipse. Standard Form of an Ellipse Centered at (0, 0) (0, b) (0, -b) center . The Ellipse The net one of our conic sections we would like to discuss is the ellipse. We will start b looking at the ellipse centered at the origin and then move it awa from the origin. Standard Form

More information

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267

Algebra I. Linear Equations. Slide 1 / 267 Slide 2 / 267. Slide 3 / 267. Slide 3 (Answer) / 267. Slide 4 / 267. Slide 5 / 267 Slide / 67 Slide / 67 lgebra I Graphing Linear Equations -- www.njctl.org Slide / 67 Table of ontents Slide () / 67 Table of ontents Linear Equations lick on the topic to go to that section Linear Equations

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

Finding the Equation of a Straight Line

Finding the Equation of a Straight Line Finding the Equation of a Straight Line You should have, before now, ome aross the equation of a straight line, perhaps at shool. Engineers use this equation to help determine how one quantity is related

More information

A DYNAMIC ACCESS CONTROL WITH BINARY KEY-PAIR

A DYNAMIC ACCESS CONTROL WITH BINARY KEY-PAIR Malaysian Journal of Computer Siene, Vol 10 No 1, June 1997, pp 36-41 A DYNAMIC ACCESS CONTROL WITH BINARY KEY-PAIR Md Rafiqul Islam, Harihodin Selamat and Mohd Noor Md Sap Faulty of Computer Siene and

More information

8B.2: Graphs of Cosecant and Secant

8B.2: Graphs of Cosecant and Secant Opp. Name: Date: Period: 8B.: Graphs of Cosecant and Secant Or final two trigonometric functions to graph are cosecant and secant. Remember that So, we predict that there is a close relationship between

More information

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0.

1. The collection of the vowels in the word probability. 2. The collection of real numbers that satisfy the equation x 9 = 0. C HPTER 1 SETS I. DEFINITION OF SET We begin our study of probability with the disussion of the basi onept of set. We assume that there is a ommon understanding of what is meant by the notion of a olletion

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions.

1-1. Functions. Lesson 1-1. What You ll Learn. Active Vocabulary. Scan Lesson 1-1. Write two things that you already know about functions. 1-1 Functions What You ll Learn Scan Lesson 1- Write two things that ou alread know about functions. Lesson 1-1 Active Vocabular New Vocabular Write the definition net to each term. domain dependent variable

More information

Lesson 11 Skills Maintenance. Activity 1. Model. The addition problem is = 4. The subtraction problem is 5 9 = 4.

Lesson 11 Skills Maintenance. Activity 1. Model. The addition problem is = 4. The subtraction problem is 5 9 = 4. Lesson Skills Maintenance Lesson Planner Vocabular Development -coordinate -coordinate point of origin Skills Maintenance ddition and Subtraction of Positive and Negative Integers Problem Solving: We look

More information

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards Contents 1.1 Functions.............................................. 2 1.2 Analzing Graphs of Functions.................................. 5 1.3 Shifting and Reflecting Graphs..................................

More information

1.5 LIMITS. The Limit of a Function

1.5 LIMITS. The Limit of a Function 60040_005.qd /5/05 :0 PM Page 49 SECTION.5 Limits 49.5 LIMITS Find its of functions graphicall and numericall. Use the properties of its to evaluate its of functions. Use different analtic techniques to

More information

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1)

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1) Unit 4 Trigonometr Stud Notes 1 Right Triangle Trigonometr (Section 8.1) Objective: Evaluate trigonometric functions of acute angles. Use a calculator to evaluate trigonometric functions. Use trigonometric

More information

Functions Project Core Precalculus Extra Credit Project

Functions Project Core Precalculus Extra Credit Project Name: Period: Date Due: 10/10/1 (for A das) and 10/11/1(for B das) Date Turned In: Functions Project Core Precalculus Etra Credit Project Instructions and Definitions: This project ma be used during the

More information

Domain of Rational Functions

Domain of Rational Functions SECTION 46 RATIONAL FU NCTIONS SKI LLS OBJ ECTIVES Find the domain of a rational function Determine vertical, horizontal, and slant asmptotes of rational functions Graph rational functions CONCE PTUAL

More information

MATH STUDENT BOOK. 12th Grade Unit 6

MATH STUDENT BOOK. 12th Grade Unit 6 MATH STUDENT BOOK 12th Grade Unit 6 Unit 6 TRIGONOMETRIC APPLICATIONS MATH 1206 TRIGONOMETRIC APPLICATIONS INTRODUCTION 3 1. TRIGONOMETRY OF OBLIQUE TRIANGLES 5 LAW OF SINES 5 AMBIGUITY AND AREA OF A TRIANGLE

More information

Chapter 9: Rational Equations and Functions

Chapter 9: Rational Equations and Functions Chapter 9: Rational Equations and Functions Chapter 9: Rational Equations and Functions Assignment Sheet Date Topic Assignment Completed 9.: Inverse and Joint Variation pg. 57 # - 4 odd, 54 9..: Graphing

More information

Essential Question How many turning points can the graph of a polynomial function have?

Essential Question How many turning points can the graph of a polynomial function have? .8 Analzing Graphs of Polnomial Functions Essential Question How man turning points can the graph of a polnomial function have? A turning point of the graph of a polnomial function is a point on the graph

More information

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam

Sections 5.1, 5.2, 5.3, 8.1,8.6 & 8.7 Practice for the Exam Sections.1,.2,.3, 8.1,8.6 & 8.7 Practice for the Eam MAC 1 -- Sulivan 8th Ed Name: Date: Class/Section: State whether the function is a polnomial function or not. If it is, give its degree. If it is not,

More information

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant.

This handout will discuss three kinds of asymptotes: vertical, horizontal, and slant. CURVE SKETCHING This is a handout that will help you systematically sketch functions on a coordinate plane. This handout also contains definitions of relevant terms needed for curve sketching. ASYMPTOTES:

More information

Module 3 Graphing and Optimization

Module 3 Graphing and Optimization Module 3 Graphing and Optimization One of the most important applications of calculus to real-world problems is in the area of optimization. We will utilize the knowledge gained in the previous chapter,

More information

Partial Fraction Decomposition

Partial Fraction Decomposition Section 7. Partial Fractions 53 Partial Fraction Decomposition Algebraic techniques for determining the constants in the numerators of partial fractions are demonstrated in the eamples that follow. Note

More information

Week 27 Algebra 1 Assignment:

Week 27 Algebra 1 Assignment: Week 7 Algebra Assignment: Da : p. 494 #- odd, -, 8- Da : pp. 496-497 #-9 odd, -6 Da : pp. 0-0 #-9 odd, -, -9 Da 4: p. 09 #-4, 7- Da : pp. - #-9 odd Notes on Assignment: Page 494: General notes for this

More information

Polynomial Functions I

Polynomial Functions I Name Student ID Number Group Name Group Members Polnomial Functions I 1. Sketch mm() =, nn() = 3, ss() =, and tt() = 5 on the set of aes below. Label each function on the graph. 15 5 3 1 1 3 5 15 Defn:

More information

Folding. Hardware Mapped vs. Time multiplexed. Folding by N (N=folding factor) Node A. Unfolding by J A 1 A J-1. Time multiplexed/microcoded

Folding. Hardware Mapped vs. Time multiplexed. Folding by N (N=folding factor) Node A. Unfolding by J A 1 A J-1. Time multiplexed/microcoded Folding is verse of Unfolding Node A A Folding by N (N=folding fator) Folding A Unfolding by J A A J- Hardware Mapped vs. Time multiplexed l Hardware Mapped vs. Time multiplexed/mirooded FI : y x(n) h

More information

Triangles. Learning Objectives. Pre-Activity

Triangles. Learning Objectives. Pre-Activity Setion 3.2 Pre-tivity Preparation Triangles Geena needs to make sure that the dek she is building is perfetly square to the brae holding the dek in plae. How an she use geometry to ensure that the boards

More information

2.3. Horizontal and Vertical Translations of Functions. Investigate

2.3. Horizontal and Vertical Translations of Functions. Investigate .3 Horizontal and Vertical Translations of Functions When a video game developer is designing a game, she might have several objects displaed on the computer screen that move from one place to another

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Review (Law of sines and cosine) cosines)

Review (Law of sines and cosine) cosines) Date:03/7,8/01 Review 6.1-6. Objetive: Apply the onept to use the law of the sines and osines to solve oblique triangles Apply the onept to find areas using the law of sines and osines Agenda: Bell ringer

More information

Fair Game Review. Chapter 11. Name Date. Reflect the point in (a) the x-axis and (b) the y-axis. 2. ( 2, 4) 1. ( 1, 1 ) 3. ( 3, 3) 4.

Fair Game Review. Chapter 11. Name Date. Reflect the point in (a) the x-axis and (b) the y-axis. 2. ( 2, 4) 1. ( 1, 1 ) 3. ( 3, 3) 4. Name Date Chapter Fair Game Review Reflect the point in (a) the -ais and (b) the -ais.. (, ). (, ). (, ). (, ) 5. (, ) 6. (, ) Copright Big Ideas Learning, LLC Name Date Chapter Fair Game Review (continued)

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM

ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM 61 LESSON 4-1 ABSOLUTE EXTREMA AND THE MEAN VALUE THEOREM Definitions (informal) The absolute maimum (global maimum) of a function is the -value that is greater than or equal to all other -values in the

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

arxiv: v1 [cs.db] 13 Sep 2017

arxiv: v1 [cs.db] 13 Sep 2017 An effiient lustering algorithm from the measure of loal Gaussian distribution Yuan-Yen Tai (Dated: May 27, 2018) In this paper, I will introdue a fast and novel lustering algorithm based on Gaussian distribution

More information

4 Using The Derivative

4 Using The Derivative 4 Using The Derivative 4.1 Local Maima and Minima * Local Maima and Minima Suppose p is a point in the domain of f : f has a local minimum at p if f (p) is less than or equal to the values of f for points

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313 WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #11 SLOPE is a number that indicates the steepness (or flatness) of a line, as well as its direction (up or down) left to right. SLOPE is determined

More information

Contents. How You May Use This Resource Guide

Contents. How You May Use This Resource Guide Contents How You Ma Use This Resource Guide ii 16 Higher Degree Equations 1 Worksheet 16.1: A Graphical Eploration of Polnomials............ 4 Worksheet 16.2: Thinking about Cubic Functions................

More information

Worksheet on Line Symmetry & Rotational Symmetry

Worksheet on Line Symmetry & Rotational Symmetry Gr. 9 Math 8. - 8.7 Worksheet on Line Smmetr & Rotational Smmetr Multiple Choice Identif the choice that best completes the statement or answers the question.. Which shapes have at least lines of smmetr?

More information

Chapter 2 Radicals and Rationals Practice Test

Chapter 2 Radicals and Rationals Practice Test Chapter Radicals and Rationals Practice Test Multiple Choice Identif the choice that best completes the statement or answers the question.. For the graph of shown below, which graph best represents? =

More information

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions?

4 B. 4 D. 4 F. 3. What are some common characteristics of the graphs of cubic and quartic polynomial functions? .1 Graphing Polnomial Functions COMMON CORE Learning Standards HSF-IF.B. HSF-IF.C.7c Essential Question What are some common characteristics of the graphs of cubic and quartic polnomial functions? A polnomial

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

Student Exploration: General Form of a Rational Function

Student Exploration: General Form of a Rational Function Name: Date: Student Eploration: General Form of a Rational Function Vocabulary: asymptote, degree of a polynomial, discontinuity, rational function, root Prior Knowledge Questions (Do these BEFORE using

More information

8.2 Exercises. Section 8.2 Exponential Functions 783

8.2 Exercises. Section 8.2 Exponential Functions 783 Section 8.2 Eponential Functions 783 8.2 Eercises 1. The current population of Fortuna is 10,000 heart souls. It is known that the population is growing at a rate of 4% per ear. Assuming this rate remains

More information

Lesson 2: Right Triangle Trigonometry

Lesson 2: Right Triangle Trigonometry Lesson : Right Triangle Trigonometry lthough Trigonometry is used to solve many prolems, historially it was first applied to prolems that involve a right triangle. This an e extended to non-right triangles

More information

And, the (low-pass) Butterworth filter of order m is given in the frequency domain by

And, the (low-pass) Butterworth filter of order m is given in the frequency domain by Problem Set no.3.a) The ideal low-pass filter is given in the frequeny domain by B ideal ( f ), f f; =, f > f. () And, the (low-pass) Butterworth filter of order m is given in the frequeny domain by B

More information

Radical Functions Review

Radical Functions Review Radical Functions Review Specific Outcome 3 Graph and analyze radical functions (limited to functions involving one radical) Acceptable Standard sketch and analyze (domain, range, invariant points, - and

More information

Runtime Support for OOLs Part II Comp 412

Runtime Support for OOLs Part II Comp 412 COMP 412 FALL 2017 Runtime Support for OOLs Part II Comp 412 soure IR Front End Optimizer Bak End IR target Copright 2017, Keith D. Cooper & Linda Torzon, all rights reserved. Students enrolled in Comp

More information

Essential Question What are the characteristics of the graph of the tangent function?

Essential Question What are the characteristics of the graph of the tangent function? 8.5 Graphing Other Trigonometric Functions Essential Question What are the characteristics of the graph of the tangent function? Graphing the Tangent Function Work with a partner. a. Complete the table

More information

Math 121. Graphing Rational Functions Fall 2016

Math 121. Graphing Rational Functions Fall 2016 Math 121. Graphing Rational Functions Fall 2016 1. Let x2 85 x 2 70. (a) State the domain of f, and simplify f if possible. (b) Find equations for the vertical asymptotes for the graph of f. (c) For each

More information

4.6 Graphs of Other Trigonometric Functions

4.6 Graphs of Other Trigonometric Functions .6 Graphs of Other Trigonometric Functions Section.6 Graphs of Other Trigonometric Functions 09 Graph of the Tangent Function Recall that the tangent function is odd. That is, tan tan. Consequentl, the

More information

Finding Asymptotes KEY

Finding Asymptotes KEY Unit: 0 Lesson: 0 Discontinuities Rational functions of the form f ( are undefined at values of that make 0. Wherever a rational function is undefined, a break occurs in its graph. Each such break is called

More information

Development Length: Compression Bars

Development Length: Compression Bars CHAPTER Reinfored Conrete Design Fifth Edition DEVELOPMENT, SPLICES, AND SIMPLE SPAN BAR CUTOFFS A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering Part I Conrete Design

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

Lesson 6a Exponents and Rational Functions

Lesson 6a Exponents and Rational Functions Lesson 6a Eponents and Rational Functions In this lesson, we put quadratics aside for the most part (not entirely) in this lesson and move to a study of eponents and rational functions. The rules of eponents

More information

Section 4.4 Concavity and Points of Inflection

Section 4.4 Concavity and Points of Inflection Section 4.4 Concavit and Points of Inflection In Chapter 3, ou saw that the second derivative of a function has applications in problems involving velocit and acceleration or in general rates-of-change

More information