Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage:

Size: px
Start display at page:

Download "Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage:"

Transcription

1 Discussion 2C Notes (Week 8, February 25) TA: Brian Choi Section Webpage: Trees Definitions Yet another data structure -- trees. Just like a linked list, a tree consists of nodes (vertices) and links (edges). A tree is a hierarchical structure. That is, a pair of nodes connected by an edge has a parent-child relationship. The following diagram depicts a simple tree of 8 nodes: (" Here, A is the parent of B and C. B and C are the children of A. Because B and C share the parent, they are siblings. We can also say B is an ancestor of F, and G is an descendant of A, and so forth. If you view this structure as a lineage tree, all these terms should be intuitive. In a pointerbased implementation of a tree, a node keeps several pointers that point to the children nodes, and optionally keep a pointer that points to the parent node. The ancestor of all nodes (A in this example) is called the root of the tree. A node with no children is called a leaf (D, E, H, and G). If you look carefully, there is another tree embedded in the tree (formed by the shaded nodes). A tree within another tree is called a subtree. The shaded subtree in the left figure is rooted at B. This subtree rooted at B has 5 nodes. Every node in a tree can serve as the root of some subtree. Therefore, there are a total of 8 subtrees in this tree, rooted at each node. A tree with no node is an empty tree. The height of a tree is defined to be the length the longest path from a root to a leaf. The example tree has the height of 3. A node in a tree generally cannot have an ancestor as its child. This forms a loop in the structure, as depicted on the left side, and therefore, it is no longer a tree. Also, every node except the root must have exactly one parent. A tree is considered malformed when there are nodes that violate these rules. In a general tree, a node can have a variable number of children, as in this tree. For some trees, we limit the number of children a node can have. If you think about it, a tree with each node having only one child is nothing but a linked list. Therefore, a tree can be thought of as a generalization of a linked list. Question: How many edges should there be for a tree of n nodes? Copyright 2011 Brian Choi Week 8, Page 1/8

2 Binary Tree A binary tree, as evident from its name, is a tree with each node having no more than 2 children. A child of a node is called either the left child or the right child, depending on its location. For example, in the tree in the left figure, D is the left child of B, and E is the right child of E. Question: What is the maximum number of nodes that a height-h binary tree can have? When a tree has this maximum number of nodes given the height, it is called a full binary tree. (" Don t confuse a full binary tree with a complete binary tree. A complete binary tree is almost like a full binary tree in that it is filled up to the second to last level, and all nodes are as far left as possible. An example is shown on right. An implementation of a tree should be very similar to that of a linked list. We first need to define a node, and how they relate to each other. As we did with other data structures, we must also define some operations that go with the structure: 1) inserting a node, 2) removing a node, and 3) searching for a node. For trees, there is another algorithm we need to define: 4) traverse the tree When we say traverse the structure, we mean to iterate over all the elements in a tree. With the structure as awkwardly defined as a tree, there can be several different ways of achieving this goal. Let us examine the options. Tree Traversal Traversing a list is straightforward -- you just keep following the next pointer until you hit the end (or until you come back to the original spot in a circularly linked list). But how about a tree? There is more than one outgoing pointer for each node. Which pointer should you follow first? Before we say anything about the traversals, imagine a structure like the following: struct Node ItemType val; Node *left; Node *right; ; // left child (root of the left subtree) // right child (root of the right subtree) Question: Most algorithms, including traversal algorithms we will discuss, we design for a tree will involve some form of recursion. Why is this so? Copyright 2011 Brian Choi Week 8, Page 2/8

3 There are mainly three ways of traversing elements in a tree. Preorder We always start at the root node, and when we are at some node, we traverse the subtrees rooted at its children recursively. For simplicity, let us assume the tree is binary. In the preorder traversal, we process the current node first, and recursively process the children trees. For simplicity, assume our process is just cout-ing of the value. It looks as follows: void preorder(node *node) if (node == NULL) // Base case (leaf detection). cout << node->val << " "; // Our "processing" of a node. preorder(node->left); // Visit the left node. preorder(node->right); // Visit the right node. Inorder In the inorder traversal, we start at the root node again, but this time, we explore the left subtree, then print the root node s value, and explore the right subtree as a last step. void inorder(node *node) if (node == NULL) inorder(node->left); cout << node->val << " "; inorder(node->right); Postorder Most of you should see the pattern here. How else can postorder traversal look, but like the following? void postorder(node *node) if (node == NULL) postorder(node->left); postorder(node->right); cout << node->val << " "; Let s try traversing the tree on left. preorder: inorder: postorder: Copyright 2011 Brian Choi Week 8, Page 3/8

4 Binary Search Tree A binary search tree is a special case of a binary tree, which keeps elements sorted and enhances the performance of a search operation. We will define a set of operations (insertion, etc.) for a binary search tree. Assume the same Node structure defined two pages ago. In a binary search tree, we make sure the following conditions are satisfied at all nodes: 1) If there is a left subtree, all nodes in the left subtree must have values smaller than the current node. 2) If there is a right subtree, all nodes in the right subtree must have values larger than the current node. Generally there is no specific condition for equal values. We will assume all values are unique. An example of a binary search tree is on left. Question: I want to print the values in the increasing order. Which of the above traversal methods shall I use? (" Question: I want to print the values in the decreasing order. Which of the above traversal methods shall I use? (Consider making some modifications to the traversal methods that are defined above.) Insertion Suppose we want to insert a new node into a binary search tree. If the tree is empty (i.e., no node), the new node becomes the only node of the tree and becomes the root. Otherwise, we should trace down the tree to place this new node in the right place. void insert(node* &node, ItemType value) (" )" The above tree is the result of: insert(root, 7); Can you implement the insert function? Make sure to set the values of newnode s parent, left, and right pointers are set correctly at the termination of the function. Hint 1: Why is the pointer being passed in a reference? (You can do it with without &, but this is simpler.) Hint 2: The newly added node will always be a leaf. Question: What is the worst-case time complexity of insertion? Copyright 2011 Brian Choi Week 8, Page 4/8

5 Search To search a node with a certain value, we can apply one of the traversal functions we defined above. We can apply an approach very similar to binary search we ve seen before. Node *search(const Node *root, ItemType value) Question: What is the worst-case time complexity? Removal Removing a node from a tree might seem a little tricky, but after breaking it down to cases, it might not be that tricky. The simplest case, of course, is when the node to remove is the only node in the tree. You can simply delete the node and set the root pointer to NULL. Another simple case would be when the node is a leaf. You can simply remove the node and set the corresponding pointer to NULL, without worrying about fixing the structure. A more general case would be a node with children. After the removal of a node, this location should be filled in by the node with a value - larger than all nodes in the left subtree - smaller than all nodes in the right subtree If the node has only one child (e.g. 8 in the right figure, with only one child 6), the problem is simplified -- you can take the subtree rooted at the child node and pull the whole subtree one level up. But we cannot do this for a node with two children. There are two subtrees disconnected now, and we cannot pull both trees up. (" )" (" In this case, you must find the node that satisfies the above two conditions. This node is either - the right-most node of the left subtree, or - the left-most node of the right subtree.... and notice how we can easily find this node using the inorder traversal. So we re going to take this new node and insert it to where the node is removed. Wait, what happens to the subtrees of the new node that just got moved? They are disconnected! This suggests that we call the remove function on this new subtree as well. Copyright 2011 Brian Choi Week 8, Page 5/8

6 void remove(node* &root, ItemType value) if (root == NULL) if (root->val == value) // Case 1: leaf if (root->left == NULL && root->right == NULL) delete root; root = NULL; // Case 2: one child if (root->left!= NULL && root->right == NULL) Node* temp = root; root = root->left; delete temp; if (root->left == NULL && root->right!= NULL) Node* temp = root; root = root->right; delete temp; // Case 3: two children Node* insnode = findnodetoinsert(root->right); // inorder trav. Node* newnode = new Node(insNode->val,root->left, root->right); delete root; remove(insnode); remove(root->left); remove(root->right); Copyright 2011 Brian Choi Week 8, Page 6/8

7 More Problems on Trees Maximum Value? Assuming ItemType has < and > operators overloaded, define findmax, which returns the maximum value stored in a binary tree rooted at node, where node is never NULL. ItemType findmax(const Node *node) Valid Binary Search Tree? Given a binary tree, how do you check if the binary tree is a valid binary search tree? In other words, are the values organized the right way, such that the following conditions are satisfied? 1) If there is a left subtree, all nodes in the left subtree must have values smaller than the current node. 2) If there is a right subtree, all nodes in the right subtree must have values larger than the current node. Assume the values are unique, and consider you have findmax and findmin (similar to findmax, but returns the minimum value) defined. bool valid(const Node* node) Copyright 2011 Brian Choi Week 8, Page 7/8

8 Height of the Tree? Given a binary tree, how do you compute the height of the tree? int treeheight(const Node* root) (" )" Possible Multiple Choice Question on the Final(?) Given the binary search tree here, in what order could the nodes possibly have been inserted? Select all possible cases. a) 5, 2, 8, 1, 3, 6, 4, 7 b) 1, 2, 3, 4, 5, 6, 7, 8 c) 8, 7, 6, 5, 4, 3, 2, 1 d) 5, 2, 1, 3, 4, 8, 6, 7 e) 5, 8, 6, 7, 2, 1, 3, 4 Which of the following traversals will the return you the sequence that is one possible order of insertions? a) inorder b) preorder c) postorder Copyright 2011 Brian Choi Week 8, Page 8/8

Binary Trees, Binary Search Trees

Binary Trees, Binary Search Trees Binary Trees, Binary Search Trees Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search, insert, delete)

More information

Chapter 20: Binary Trees

Chapter 20: Binary Trees Chapter 20: Binary Trees 20.1 Definition and Application of Binary Trees Definition and Application of Binary Trees Binary tree: a nonlinear linked list in which each node may point to 0, 1, or two other

More information

Trees. (Trees) Data Structures and Programming Spring / 28

Trees. (Trees) Data Structures and Programming Spring / 28 Trees (Trees) Data Structures and Programming Spring 2018 1 / 28 Trees A tree is a collection of nodes, which can be empty (recursive definition) If not empty, a tree consists of a distinguished node r

More information

Binary Trees

Binary Trees Binary Trees 4-7-2005 Opening Discussion What did we talk about last class? Do you have any code to show? Do you have any questions about the assignment? What is a Tree? You are all familiar with what

More information

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example.

Tree: non-recursive definition. Trees, Binary Search Trees, and Heaps. Tree: recursive definition. Tree: example. Trees, Binary Search Trees, and Heaps CS 5301 Fall 2013 Jill Seaman Tree: non-recursive definition Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every node (except

More information

BBM 201 Data structures

BBM 201 Data structures BBM 201 Data structures Lecture 11: Trees 2018-2019 Fall Content Terminology The Binary Tree The Binary Search Tree Data Structures and Problem Solving with C++: Walls and Mirrors, Carrano and Henry, 2013

More information

Successor/Predecessor Rules in Binary Trees

Successor/Predecessor Rules in Binary Trees Successor/Predecessor Rules in inary Trees Thomas. nastasio July 7, 2003 Introduction inary tree traversals are commonly made in one of three patterns, inorder, preorder, and postorder. These traversals

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees (& Heaps) Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Spring 2015 Jill Seaman 1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root -

More information

Trees, Binary Trees, and Binary Search Trees

Trees, Binary Trees, and Binary Search Trees COMP171 Trees, Binary Trees, and Binary Search Trees 2 Trees Linear access time of linked lists is prohibitive Does there exist any simple data structure for which the running time of most operations (search,

More information

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge

! Tree: set of nodes and directed edges. ! Parent: source node of directed edge. ! Child: terminal node of directed edge Trees & Heaps Week 12 Gaddis: 20 Weiss: 21.1-3 CS 5301 Fall 2018 Jill Seaman!1 Tree: non-recursive definition! Tree: set of nodes and directed edges - root: one node is distinguished as the root - Every

More information

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text)

Lec 17 April 8. Topics: binary Trees expression trees. (Chapter 5 of text) Lec 17 April 8 Topics: binary Trees expression trees Binary Search Trees (Chapter 5 of text) Trees Linear access time of linked lists is prohibitive Heap can t support search in O(log N) time. (takes O(N)

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 11: Binary Search Trees MOUNA KACEM mouna@cs.wisc.edu Fall 2018 General Overview of Data Structures 2 Introduction to trees 3 Tree: Important non-linear data structure

More information

TREES. Trees - Introduction

TREES. Trees - Introduction TREES Chapter 6 Trees - Introduction All previous data organizations we've studied are linear each element can have only one predecessor and successor Accessing all elements in a linear sequence is O(n)

More information

Binary Trees. Height 1

Binary Trees. Height 1 Binary Trees Definitions A tree is a finite set of one or more nodes that shows parent-child relationship such that There is a special node called root Remaining nodes are portioned into subsets T1,T2,T3.

More information

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology

Trees : Part 1. Section 4.1. Theory and Terminology. A Tree? A Tree? Theory and Terminology. Theory and Terminology Trees : Part Section. () (2) Preorder, Postorder and Levelorder Traversals Definition: A tree is a connected graph with no cycles Consequences: Between any two vertices, there is exactly one unique path

More information

Trees. Introduction & Terminology. February 05, 2018 Cinda Heeren / Geoffrey Tien 1

Trees. Introduction & Terminology. February 05, 2018 Cinda Heeren / Geoffrey Tien 1 Trees Introduction & Terminology Cinda Heeren / Geoffrey Tien 1 Review: linked lists Linked lists are constructed out of nodes, consisting of a data element a pointer to another node Lists are constructed

More information

Binary Trees and Binary Search Trees

Binary Trees and Binary Search Trees Binary Trees and Binary Search Trees Learning Goals After this unit, you should be able to... Determine if a given tree is an instance of a particular type (e.g. binary, and later heap, etc.) Describe

More information

CMSC 341 Lecture 10 Binary Search Trees

CMSC 341 Lecture 10 Binary Search Trees CMSC 341 Lecture 10 Binary Search Trees John Park Based on slides from previous iterations of this course Review: Tree Traversals 2 Traversal Preorder, Inorder, Postorder H X M A K B E N Y L G W UMBC CMSC

More information

Tree Structures. A hierarchical data structure whose point of entry is the root node

Tree Structures. A hierarchical data structure whose point of entry is the root node Binary Trees 1 Tree Structures A tree is A hierarchical data structure whose point of entry is the root node This structure can be partitioned into disjoint subsets These subsets are themselves trees and

More information

Tree Data Structures CSC 221

Tree Data Structures CSC 221 Tree Data Structures CSC 221 Specialized Trees Binary Tree: A restriction of trees such that the maximum degree of a node is 2. Order of nodes is now relevant May have zero nodes (emtpy tree) Formal Definition:

More information

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures.

Trees. Q: Why study trees? A: Many advance ADTs are implemented using tree-based data structures. Trees Q: Why study trees? : Many advance DTs are implemented using tree-based data structures. Recursive Definition of (Rooted) Tree: Let T be a set with n 0 elements. (i) If n = 0, T is an empty tree,

More information

A set of nodes (or vertices) with a single starting point

A set of nodes (or vertices) with a single starting point Binary Search Trees Understand tree terminology Understand and implement tree traversals Define the binary search tree property Implement binary search trees Implement the TreeSort algorithm 2 A set of

More information

CISC 235 Topic 3. General Trees, Binary Trees, Binary Search Trees

CISC 235 Topic 3. General Trees, Binary Trees, Binary Search Trees CISC 235 Topic 3 General Trees, Binary Trees, Binary Search Trees Outline General Trees Terminology, Representation, Properties Binary Trees Representations, Properties, Traversals Recursive Algorithms

More information

Data and File Structures Laboratory

Data and File Structures Laboratory Binary Trees Assistant Professor Machine Intelligence Unit Indian Statistical Institute, Kolkata September, 2018 1 Basics 2 Implementation 3 Traversal Basics of a tree A tree is recursively defined as

More information

INF2220: algorithms and data structures Series 1

INF2220: algorithms and data structures Series 1 Universitetet i Oslo Institutt for Informatikk A. Maus, R.K. Runde, I. Yu INF2220: algorithms and data structures Series 1 Topic Trees & estimation of running time (Exercises with hints for solution) Issued:

More information

Why Do We Need Trees?

Why Do We Need Trees? CSE 373 Lecture 6: Trees Today s agenda: Trees: Definition and terminology Traversing trees Binary search trees Inserting into and deleting from trees Covered in Chapter 4 of the text Why Do We Need Trees?

More information

Binary Search Trees. See Section 11.1 of the text.

Binary Search Trees. See Section 11.1 of the text. Binary Search Trees See Section 11.1 of the text. Consider the following Binary Search Tree 17 This tree has a nice property: for every node, all of the nodes in its left subtree have values less than

More information

Friday Four Square! 4:15PM, Outside Gates

Friday Four Square! 4:15PM, Outside Gates Binary Search Trees Friday Four Square! 4:15PM, Outside Gates Implementing Set On Monday and Wednesday, we saw how to implement the Map and Lexicon, respectively. Let's now turn our attention to the Set.

More information

CMSC 341. Binary Search Trees CMSC 341 BST

CMSC 341. Binary Search Trees CMSC 341 BST CMSC 341 Binary Search Trees CMSC 341 BST Announcements Homework #3 dues Thursday (10/5/2017) Exam #1 next Thursday (10/12/2017) CMSC 341 BST A Generic Tree CMSC 341 BST Binary Tree CMSC 341 BST The Binary

More information

Unit III - Tree TREES

Unit III - Tree TREES TREES Unit III - Tree Consider a scenario where you are required to represent the directory structure of your operating system. The directory structure contains various folders and files. A folder may

More information

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am

Announcements. Midterm exam 2, Thursday, May 18. Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps. Break around 11:45am Announcements Midterm exam 2, Thursday, May 18 Closed book/notes but one sheet of paper allowed Covers up to stacks and queues Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps

More information

Advanced Java Concepts Unit 5: Trees. Notes and Exercises

Advanced Java Concepts Unit 5: Trees. Notes and Exercises Advanced Java Concepts Unit 5: Trees. Notes and Exercises A Tree is a data structure like the figure shown below. We don t usually care about unordered trees but that s where we ll start. Later we will

More information

Trees. Dr. Ronaldo Menezes Hugo Serrano Ronaldo Menezes, Florida Tech

Trees. Dr. Ronaldo Menezes Hugo Serrano Ronaldo Menezes, Florida Tech Trees Dr. Ronaldo Menezes Hugo Serrano (hbarbosafilh2011@my.fit.edu) Introduction to Trees Trees are very common in computer science They come in different variations They are used as data representation

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE 221 Data Structures and Algorithms Chapter 4: Trees (Binary) Text: Read Weiss, 4.1 4.2 Izmir University of Economics 1 Preliminaries - I (Recursive) Definition: A tree is a collection of nodes. The

More information

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology

9/29/2016. Chapter 4 Trees. Introduction. Terminology. Terminology. Terminology. Terminology Introduction Chapter 4 Trees for large input, even linear access time may be prohibitive we need data structures that exhibit average running times closer to O(log N) binary search tree 2 Terminology recursive

More information

COSC 2011 Section N. Trees: Terminology and Basic Properties

COSC 2011 Section N. Trees: Terminology and Basic Properties COSC 2011 Tuesday, March 27 2001 Overview Trees and Binary Trees Quick review of definitions and examples Tree Algorithms Depth, Height Tree and Binary Tree Traversals Preorder, postorder, inorder Binary

More information

Programming II (CS300)

Programming II (CS300) 1 Programming II (CS300) Chapter 10: Search and Heaps MOUNA KACEM mouna@cs.wisc.edu Spring 2018 Search and Heaps 2 Linear Search Binary Search Introduction to trees Priority Queues Heaps Linear Search

More information

Trees. CSE 373 Data Structures

Trees. CSE 373 Data Structures Trees CSE 373 Data Structures Readings Reading Chapter 7 Trees 2 Why Do We Need Trees? Lists, Stacks, and Queues are linear relationships Information often contains hierarchical relationships File directories

More information

CSCI2100B Data Structures Trees

CSCI2100B Data Structures Trees CSCI2100B Data Structures Trees Irwin King king@cse.cuhk.edu.hk http://www.cse.cuhk.edu.hk/~king Department of Computer Science & Engineering The Chinese University of Hong Kong Introduction General Tree

More information

Trees. Truong Tuan Anh CSE-HCMUT

Trees. Truong Tuan Anh CSE-HCMUT Trees Truong Tuan Anh CSE-HCMUT Outline Basic concepts Trees Trees A tree consists of a finite set of elements, called nodes, and a finite set of directed lines, called branches, that connect the nodes

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms CS245-2017S-06 Binary Search Trees David Galles Department of Computer Science University of San Francisco 06-0: Ordered List ADT Operations: Insert an element in the list

More information

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications

Outline. Preliminaries. Binary Trees Binary Search Trees. What is Tree? Implementation of Trees using C++ Tree traversals and applications Trees 1 Outline Preliminaries What is Tree? Implementation of Trees using C++ Tree traversals and applications Binary Trees Binary Search Trees Structure and operations Analysis 2 What is a Tree? A tree

More information

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University U Kang (2016) 1 In This Lecture The concept of binary tree, its terms, and its operations Full binary tree theorem Idea

More information

Principles of Computer Science

Principles of Computer Science Principles of Computer Science Binary Trees 08/11/2013 CSCI 2010 - Binary Trees - F.Z. Qureshi 1 Today s Topics Extending LinkedList with Fast Search Sorted Binary Trees Tree Concepts Traversals of a Binary

More information

Trees. Tree Structure Binary Tree Tree Traversals

Trees. Tree Structure Binary Tree Tree Traversals Trees Tree Structure Binary Tree Tree Traversals The Tree Structure Consists of nodes and edges that organize data in a hierarchical fashion. nodes store the data elements. edges connect the nodes. The

More information

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree

Introduction. for large input, even access time may be prohibitive we need data structures that exhibit times closer to O(log N) binary search tree Chapter 4 Trees 2 Introduction for large input, even access time may be prohibitive we need data structures that exhibit running times closer to O(log N) binary search tree 3 Terminology recursive definition

More information

BINARY TREES, THE SEARCH TREE ADT BINARY SEARCH TREES, RED BLACK TREES, TREE TRAVERSALS, B TREES WEEK - 6

BINARY TREES, THE SEARCH TREE ADT BINARY SEARCH TREES, RED BLACK TREES, TREE TRAVERSALS, B TREES WEEK - 6 Ashish Jamuda Week 6 CS 331 DATA STRUCTURES & ALGORITHMS BINARY TREES, THE SEARCH TREE ADT BINARY SEARCH TREES, RED BLACK TREES, TREE TRAVERSALS, B TREES OBJECTIVES: Binary Trees Binary Search Trees Tree

More information

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010

Uses for Trees About Trees Binary Trees. Trees. Seth Long. January 31, 2010 Uses for About Binary January 31, 2010 Uses for About Binary Uses for Uses for About Basic Idea Implementing Binary Example: Expression Binary Search Uses for Uses for About Binary Uses for Storage Binary

More information

Trees CONTENTS. Hours: 8. Marks: 12. Anuradha Bhatia 1

Trees CONTENTS. Hours: 8. Marks: 12. Anuradha Bhatia 1 Trees CONTENTS 6.1 Introduction 1. Terminologies: tree,degree of a node, degree of a tree, level of a node, leaf node, Depth / Height of a tree, In-degree & out- Degree, Directed edge, Path, Ancestor &

More information

Tree Structures. Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest

Tree Structures. Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest Tree Structures Definitions: o A tree is a connected acyclic graph. o A disconnected acyclic graph is called a forest o A tree is a connected digraph with these properties: There is exactly one node (Root)

More information

Hierarchical data structures. Announcements. Motivation for trees. Tree overview

Hierarchical data structures. Announcements. Motivation for trees. Tree overview Announcements Midterm exam 2, Thursday, May 18 Closed book/notes but one sheet of paper allowed Covers up to stacks and queues Today s topic: Binary trees (Ch. 8) Next topic: Priority queues and heaps

More information

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents Section 5.5 Binary Tree A binary tree is a rooted tree in which each vertex has at most two children and each child is designated as being a left child or a right child. Thus, in a binary tree, each vertex

More information

Binary Trees Fall 2018 Margaret Reid-Miller

Binary Trees Fall 2018 Margaret Reid-Miller Binary Trees 15-121 Fall 2018 Margaret Reid-Miller Trees Fall 2018 15-121 (Reid-Miller) 2 Binary Trees A binary tree is either empty or it contains a root node and left- and right-subtrees that are also

More information

Trees: examples (Family trees)

Trees: examples (Family trees) Ch 4: Trees it s a jungle out there... I think that I will never see a linked list useful as a tree; Linked lists are used by everybody, but it takes real smarts to do a tree Trees: examples (Family trees)

More information

Binary Trees. Examples:

Binary Trees. Examples: Binary Trees A tree is a data structure that is made of nodes and pointers, much like a linked list. The difference between them lies in how they are organized: In a linked list each node is connected

More information

Algorithms. Deleting from Red-Black Trees B-Trees

Algorithms. Deleting from Red-Black Trees B-Trees Algorithms Deleting from Red-Black Trees B-Trees Recall the rules for BST deletion 1. If vertex to be deleted is a leaf, just delete it. 2. If vertex to be deleted has just one child, replace it with that

More information

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge.

Binary Trees. BSTs. For example: Jargon: Data Structures & Algorithms. root node. level: internal node. edge. Binary Trees 1 A binary tree is either empty, or it consists of a node called the root together with two binary trees called the left subtree and the right subtree of the root, which are disjoint from

More information

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams

BST Implementation. Data Structures. Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr University of Ain Shams Lecture 4 Binary search trees (BST) Dr. Mahmoud Attia Sakr mahmoud.sakr@cis.asu.edu.eg Cairo, Egypt, October 2012 Binary Search Trees (BST) 1. Hierarchical data structure with a single reference to root

More information

4. Trees. 4.1 Preliminaries. 4.2 Binary trees. 4.3 Binary search trees. 4.4 AVL trees. 4.5 Splay trees. 4.6 B-trees. 4. Trees

4. Trees. 4.1 Preliminaries. 4.2 Binary trees. 4.3 Binary search trees. 4.4 AVL trees. 4.5 Splay trees. 4.6 B-trees. 4. Trees 4. Trees 4.1 Preliminaries 4.2 Binary trees 4.3 Binary search trees 4.4 AVL trees 4.5 Splay trees 4.6 B-trees Malek Mouhoub, CS340 Fall 2002 1 4.1 Preliminaries A Root B C D E F G Height=3 Leaves H I J

More information

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false.

CSCI-401 Examlet #5. Name: Class: Date: True/False Indicate whether the sentence or statement is true or false. Name: Class: Date: CSCI-401 Examlet #5 True/False Indicate whether the sentence or statement is true or false. 1. The root node of the standard binary tree can be drawn anywhere in the tree diagram. 2.

More information

Binary Tree. Binary tree terminology. Binary tree terminology Definition and Applications of Binary Trees

Binary Tree. Binary tree terminology. Binary tree terminology Definition and Applications of Binary Trees Binary Tree (Chapter 0. Starting Out with C++: From Control structures through Objects, Tony Gaddis) Le Thanh Huong School of Information and Communication Technology Hanoi University of Technology 11.1

More information

CSI33 Data Structures

CSI33 Data Structures Outline Department of Mathematics and Computer Science Bronx Community College November 13, 2017 Outline Outline 1 C++ Supplement.1: Trees Outline C++ Supplement.1: Trees 1 C++ Supplement.1: Trees Uses

More information

Chapter 5. Binary Trees

Chapter 5. Binary Trees Chapter 5 Binary Trees Definitions and Properties A binary tree is made up of a finite set of elements called nodes It consists of a root and two subtrees There is an edge from the root to its children

More information

Garbage Collection: recycling unused memory

Garbage Collection: recycling unused memory Outline backtracking garbage collection trees binary search trees tree traversal binary search tree algorithms: add, remove, traverse binary node class 1 Backtracking finding a path through a maze is an

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Trees Kostas Alexis Trees List, stacks, and queues are linear in their organization of data. Items are one after another In this section, we organize data in a

More information

Binary Trees and Huffman Encoding Binary Search Trees

Binary Trees and Huffman Encoding Binary Search Trees Binary Trees and Huffman Encoding Binary Search Trees Computer Science E-22 Harvard Extension School David G. Sullivan, Ph.D. Motivation: Maintaining a Sorted Collection of Data A data dictionary is a

More information

Trees. Estruturas de Dados / Programação 2 Árvores. Márcio Ribeiro twitter.com/marciomribeiro. Introduc)on. Hierarchical structure

Trees. Estruturas de Dados / Programação 2 Árvores. Márcio Ribeiro twitter.com/marciomribeiro. Introduc)on. Hierarchical structure Introduc)on Linear structures Removing this idea, treasure of applicaons Estruturas de Dados / Programação 2 Árvores Márcio Ribeiro marcio@ic.ufal.br twitter.com/marciomribeiro Hierarchical structure Companies

More information

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD

Data Structures. Trees. By Dr. Mohammad Ali H. Eljinini. M.A. Eljinini, PhD Data Structures Trees By Dr. Mohammad Ali H. Eljinini Trees Are collections of items arranged in a tree like data structure (none linear). Items are stored inside units called nodes. However: We can use

More information

CSE 230 Intermediate Programming in C and C++ Binary Tree

CSE 230 Intermediate Programming in C and C++ Binary Tree CSE 230 Intermediate Programming in C and C++ Binary Tree Fall 2017 Stony Brook University Instructor: Shebuti Rayana shebuti.rayana@stonybrook.edu Introduction to Tree Tree is a non-linear data structure

More information

Topic 14. The BinaryTree ADT

Topic 14. The BinaryTree ADT Topic 14 The BinaryTree ADT Objectives Define trees as data structures Define the terms associated with trees Discuss tree traversal algorithms Discuss a binary tree implementation Examine a binary tree

More information

CS24 Week 8 Lecture 1

CS24 Week 8 Lecture 1 CS24 Week 8 Lecture 1 Kyle Dewey Overview Tree terminology Tree traversals Implementation (if time) Terminology Node The most basic component of a tree - the squares Edge The connections between nodes

More information

Binary Search Trees Treesort

Binary Search Trees Treesort Treesort CS 311 Data Structures and Algorithms Lecture Slides Friday, November 13, 2009 Glenn G. Chappell Department of Computer Science University of Alaska Fairbanks CHAPPELLG@member.ams.org 2005 2009

More information

Trees 11/15/16. Chapter 11. Terminology. Terminology. Terminology. Terminology. Terminology

Trees 11/15/16. Chapter 11. Terminology. Terminology. Terminology. Terminology. Terminology Chapter 11 Trees Definition of a general tree A general tree T is a set of one or more nodes such that T is partitioned into disjoint subsets: A single node r, the root Sets that are general trees, called

More information

Trees and Tree Traversals. Binary Trees. COMP 210: Object-Oriented Programming Lecture Notes 8. Based on notes by Logan Mayfield

Trees and Tree Traversals. Binary Trees. COMP 210: Object-Oriented Programming Lecture Notes 8. Based on notes by Logan Mayfield OMP 210: Object-Oriented Programming Lecture Notes 8 Trees and Tree Traversals ased on notes by Logan Mayfield In these notes we look at inary Trees and how to traverse them. inary Trees Imagine a list.

More information

(b) int count = 0; int i = 1; while (i<m) { for (int j=i; j<n; j++) { count = count + 1; i = i + 1; O(M + N 2 ) (c) int count = 0; int i,j,k; for (i=1

(b) int count = 0; int i = 1; while (i<m) { for (int j=i; j<n; j++) { count = count + 1; i = i + 1; O(M + N 2 ) (c) int count = 0; int i,j,k; for (i=1 CPS 100 Exam 2 Solutions Spring 199 Dr Rodger 1 (3 pts) A virtual function in C++ is bound dynamically or statically? dynamic 2 (3 pts) When does one use a class template in C++? Templates are used to

More information

a graph is a data structure made up of nodes in graph theory the links are normally called edges

a graph is a data structure made up of nodes in graph theory the links are normally called edges 1 Trees Graphs a graph is a data structure made up of nodes each node stores data each node has links to zero or more nodes in graph theory the links are normally called edges graphs occur frequently in

More information

Binary Search Trees Part Two

Binary Search Trees Part Two Binary Search Trees Part Two Recap from Last Time Binary Search Trees A binary search tree (or BST) is a data structure often used to implement maps and sets. The tree consists of a number of nodes, each

More information

If you took your exam home last time, I will still regrade it if you want.

If you took your exam home last time, I will still regrade it if you want. Some Comments about HW2: 1. You should have used a generic node in your structure one that expected an Object, and not some other type. 2. Main is still too long for some people 3. braces in wrong place,

More information

CSC148 Week 6. Larry Zhang

CSC148 Week 6. Larry Zhang CSC148 Week 6 Larry Zhang 1 Announcements Test 1 coverage: trees (topic of today and Wednesday) are not covered Assignment 1 slides posted on the course website. 2 Data Structures 3 Data Structures A data

More information

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap

DATA STRUCTURES AND ALGORITHMS. Hierarchical data structures: AVL tree, Bayer tree, Heap DATA STRUCTURES AND ALGORITHMS Hierarchical data structures: AVL tree, Bayer tree, Heap Summary of the previous lecture TREE is hierarchical (non linear) data structure Binary trees Definitions Full tree,

More information

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College!

Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! Trees! Ellen Walker! CPSC 201 Data Structures! Hiram College! ADTʼs Weʼve Studied! Position-oriented ADT! List! Stack! Queue! Value-oriented ADT! Sorted list! All of these are linear! One previous item;

More information

- 1 - Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions. CS106B Spring 2013

- 1 - Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions. CS106B Spring 2013 CS106B Spring 2013 Handout #22S May 24, 2013 Practice Second Midterm Exam Solutions Based on handouts by Eric Roberts and Jerry Cain Problem One: Reversing a Queue One way to reverse the queue is to keep

More information

Also, recursive methods are usually declared private, and require a public non-recursive method to initiate them.

Also, recursive methods are usually declared private, and require a public non-recursive method to initiate them. Laboratory 11: Expression Trees and Binary Search Trees Introduction Trees are nonlinear objects that link nodes together in a hierarchical fashion. Each node contains a reference to the data object, a

More information

Algorithms and Data Structures

Algorithms and Data Structures Lesson 3: trees and visits Luciano Bononi http://www.cs.unibo.it/~bononi/ (slide credits: these slides are a revised version of slides created by Dr. Gabriele D Angelo) International

More information

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department

Abstract Data Structures IB Computer Science. Content developed by Dartford Grammar School Computer Science Department Abstract Data Structures IB Computer Science Content developed by Dartford Grammar School Computer Science Department HL Topics 1-7, D1-4 1: System design 2: Computer Organisation 3: Networks 4: Computational

More information

Lecture Notes 16 - Trees CSS 501 Data Structures and Object-Oriented Programming Professor Clark F. Olson

Lecture Notes 16 - Trees CSS 501 Data Structures and Object-Oriented Programming Professor Clark F. Olson Lecture Notes 16 - Trees CSS 501 Data Structures and Object-Oriented Programming Professor Clark F. Olson Reading: Carrano, Chapter 15 Introduction to trees The data structures we have seen so far to implement

More information

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree

Binary Tree. Preview. Binary Tree. Binary Tree. Binary Search Tree 10/2/2017. Binary Tree 0/2/ Preview Binary Tree Tree Binary Tree Property functions In-order walk Pre-order walk Post-order walk Search Tree Insert an element to the Tree Delete an element form the Tree A binary tree is a tree

More information

Trees. Chapter 6. strings. 3 Both position and Enumerator are similar in concept to C++ iterators, although the details are quite different.

Trees. Chapter 6. strings. 3 Both position and Enumerator are similar in concept to C++ iterators, although the details are quite different. Chapter 6 Trees In a hash table, the items are not stored in any particular order in the table. This is fine for implementing Sets and Maps, since for those abstract data types, the only thing that matters

More information

Advanced Java Concepts Unit 5: Trees. Notes and Exercises

Advanced Java Concepts Unit 5: Trees. Notes and Exercises dvanced Java Concepts Unit 5: Trees. Notes and Exercises Tree is a data structure like the figure shown below. We don t usually care about unordered trees but that s where we ll start. Later we will focus

More information

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F))

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F)) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES UNIT IV NONLINEAR DATA STRUCTURES Part A 1. Define Tree [N/D 08]

More information

Course Review for. Cpt S 223 Fall Cpt S 223. School of EECS, WSU

Course Review for. Cpt S 223 Fall Cpt S 223. School of EECS, WSU Course Review for Midterm Exam 1 Cpt S 223 Fall 2011 1 Midterm Exam 1 When: Friday (10/14) 1:10-2pm Where: in class Closed book, closed notes Comprehensive Material for preparation: Lecture slides & in-class

More information

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop.

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop. Tree A tree consists of a set of nodes and a set of edges connecting pairs of nodes. A tree has the property that there is exactly one path (no more, no less) between any pair of nodes. A path is a connected

More information

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees

Computer Science 210 Data Structures Siena College Fall Topic Notes: Trees Computer Science 0 Data Structures Siena College Fall 08 Topic Notes: Trees We ve spent a lot of time looking at a variety of structures where there is a natural linear ordering of the elements in arrays,

More information

Chapter 11.!!!!Trees! 2011 Pearson Addison-Wesley. All rights reserved 11 A-1

Chapter 11.!!!!Trees! 2011 Pearson Addison-Wesley. All rights reserved 11 A-1 Chapter 11!!!!Trees! 2011 Pearson Addison-Wesley. All rights reserved 11 A-1 2015-12-01 09:30:53 1/54 Chapter-11.pdf (#13) Terminology Definition of a general tree! A general tree T is a set of one or

More information

Chapter 11.!!!!Trees! 2011 Pearson Addison-Wesley. All rights reserved 11 A-1

Chapter 11.!!!!Trees! 2011 Pearson Addison-Wesley. All rights reserved 11 A-1 Chapter 11!!!!Trees! 2011 Pearson Addison-Wesley. All rights reserved 11 A-1 2015-03-25 21:47:41 1/53 Chapter-11.pdf (#4) Terminology Definition of a general tree! A general tree T is a set of one or more

More information

Tree Travsersals and BST Iterators

Tree Travsersals and BST Iterators Tree Travsersals and BST Iterators PIC 10B May 25, 2016 PIC 10B Tree Travsersals and BST Iterators May 25, 2016 1 / 17 Overview of Lecture 1 Sorting a BST 2 In-Order Travsersal 3 Pre-Order Traversal 4

More information

Discussion 2C Notes (Week 9, March 4) TA: Brian Choi Section Webpage:

Discussion 2C Notes (Week 9, March 4) TA: Brian Choi Section Webpage: Discussion 2C Notes (Week 9, March 4) TA: Brian Choi (schoi@cs.ucla.edu) Section Webpage: http://www.cs.ucla.edu/~schoi/cs32 Heaps A heap is a tree with special properties. In this class we will only consider

More information

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu

Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Algorithms and Data Structures (INF1) Lecture 8/15 Hua Lu Department of Computer Science Aalborg University Fall 2007 This Lecture Trees Basics Rooted trees Binary trees Binary tree ADT Tree traversal

More information

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs

Computational Optimization ISE 407. Lecture 16. Dr. Ted Ralphs Computational Optimization ISE 407 Lecture 16 Dr. Ted Ralphs ISE 407 Lecture 16 1 References for Today s Lecture Required reading Sections 6.5-6.7 References CLRS Chapter 22 R. Sedgewick, Algorithms in

More information