MA 1128: Lecture 02 1/22/2018

Size: px
Start display at page:

Download "MA 1128: Lecture 02 1/22/2018"

Transcription

1 MA 1128: Lecture 02 1/22/2018 Exponents Scientific Notation 1

2 Exponents Exponents are used to indicate how many copies of a number are to be multiplied together. For example, I like to deal with the signs separately. (-2) 5 = (-2)(-2)(-2)(-2)(-2) In this example, five negatives is negative, so (-2) 5 = -2 5 = -32 Similarly, since four negatives is positive, (-2) = 2 = 16 2

3 Multiplying Exponents Since the exponent indicates the number of copies to be multiplied, Means five copies of 3 and seven more copies of 3 are to multiplied, for a total of 12. Therefore, we can write = = 3 12 In 3 5, the 3 is called the base, and the 5 is called the exponent. Remember: When multiplying exponent expressions with the same base, you can simply add the exponents. 3

4 This comes in handy with variables. As I said before, it s hard to implement the order of operations when we have variables, since we don t have specific numbers to compute with. But they follow the same rules, since variables represent numbers. It must be true, for example, that x 2 x 5 = x 2+5 = x 7 Of course, this rule does not help us with Since the bases are different, Or with Since we re not multiplying or x 3 y

5 Negative Exponents A negative exponent is our way of indicating how many copies of a number are to be divided. For example, 3-2 Means multiply three s and divide two s. Dividing by is the same thing as multiplying by ¼, so 3-2 = ¼ ¼ When multiplying, order does not matter (multiplication is commutative) = ¼ ¼ = ( ¼) ( ¼) = 1 1 = Note that this follows the adding-the-exponents rule 3-2 = 3 2 = 1 = 5

6 6 In terms of cancellation. We can look at this last example in terms of cancellation. Negative exponents mean divide, multiplying by -2 is the same as dividing by 2 (with a positive exponent). 1 When you cancel everything with multiplication or division, you re left with

7 Exponents Raised to Exponents If we have something like (3 2 ) The exponent means four copies of 3 2 should be multiplied. = (3 2 ) (3 2 ) (3 2 ) (3 2 ) Since 3 2 means two copies of 3, = (33) (33) (33) (33) Two copies four times means that we have eight copies all together. Therefore, (3 2 ) = 3 2 = 3 8 Remember: If we have an exponent raised to another exponent, We can simplify by multiplying the exponents. 7

8 This applies equally to negative exponents The expression (3 2 ) Means divide by 3 2 four times. All total, we should divide by 3 eight times. (3 2 ) = 3 (2)( ) = 3 8 Finally, we can make sense of zero exponent as follows. Since x 2 x 2 = x 2 2 = x 0 And x 2 divided by x 2 must be 1, We can conclude that x 0 = 1 If x is zero, this doesn t make sense, but otherwise, we ll always have x 0 = 1. 8

9 Practice Exponent Problems Simplify each of the following expressions involving exponents (6 2 ) 5 6. (2 3 ) 2 Click for answers. 1) 5 = 1,02 (either answer is OK); 2) 3 8 = 6,561; 3) 5 1 = 5; ) 1; 5) 6 10 = 60,66,176; 6) 2 6 = 6. 9

10 More Examples Suppose we are dividing by 5 2. That is, we re dividing by a negative exponent. On it s own, 5 2 is 1 divided by 5 2. We re dividing by a fraction, and when we divide by fractions, we invert and multiply. Therefore, dividing by 5 2 must be the same as multiplying by Remember: Within a single fraction with only multiplication in the numerator and denominator, you can move anything from the bottom to the top, or vice versa, just remember that the sign on the exponent changes. 10

11 Scientific Notation Scientific notation is used to express very large or very small numbers in a compact notation. What I ll refer to as correct scientific notation is a decimal number, greater than or equal to 1 and less than 10, times some power of 10. For example, is in correct scientific notation. Since 10 2 = 100, we have that = 217. Most people look at the exponent on the 10, which is 2, and associate this with moving the decimal point two to the right. Very small numbers will have a negative exponent on the = Here, we moved the decimal point nine to the left. 11

12 Converting into Scientific Notation When converting a number into scientific notation, we ll move the decimal point the opposite way. Whether the exponent on the 10 is positive or negative can be hard to remember, but if you keep in mind whether the number is really big or really small, you should be OK. For example, consider 2,056,000. This is a really big number, and we want one non-zero digit to the left the decimal point. Therefore, the decimal point has to move six places. 2,056,000 = , and we know that the exponent is positive 6, because this is a big number. 12

13 More Examples Consider the number The decimal point must move four places to get one non-zero digit to the left of the decimal point, and this is a small number. Therefore, = Now, let s convert 65,020,000,000 into scientific notation. This is a big number, so we ll have a positive exponent. We need to move the decimal point 10 places, so the exponent will be When converting to or from scientific notation, the exponent agrees with the number of places the decimal point moved. Make sure that if you start with a big number, then you end with a big number. 13

14 Multiplying and Dividing with Scientific Notation Scientific notation is easy to work with. It wouldn t be used otherwise. Suppose we want to multiply two numbers in scientific notation. For example ( )( ) This really is just four numbers being multiplied together If we re only multiplying, order doesn t matter, so we can rewrite this as = We just multiplied the first numbers and multiplied the powers of 10, probably using a calculator. The one thing we need to be careful of is that in correct scientific notation, there is exactly one non-zero digit to the left of the decimal point. 1

15 More Examples When multiplying, it s possible for the two decimal numbers to multiply to something bigger than 10. Consider this product ( )( ) Multiplying as we did in the previous example, we get This is fine, except we now have two digits to the left of the decimal point. We need to move the decimal point to the left one place = Remember that when you make the adjustment to correct scientific notation, you need to make sure the size of the number stays the same. 15

16 More Examples Here s another example. ( )( ) The negative exponent is no problem. Just multiply the corresponding parts = In the adjustment, we made the decimal part smaller by a factor of 10, the power of 10 must get bigger. Here s one more. ( )( ) = = Division works pretty much the same way, as you ll see on the next slide 16

17 Examples with Division Consider the following division problem. As with multiplication, we divide the decimal parts and divide the powers of Here we rounded to four decimal places. Here s another example Note that we adjusted the decimal part bigger, so the power of 10 had to get smaller. 8 17

18 Practice Problems with Scientific Notation Convert to or from correct scientific notation ,980, ,010,000, Click for answers 1) 277,000,000; 2) ; 3) ; ) 10,100,000,000,000; 5) ; 6) ; 7) ; 8)

19 More Practice Problems with Scientific Notation Multiply or divide and write your answer in correct scientific notation. 1. ( )( ) 2. ( )( ) 3. ( )( ). ( )( ) 5. ( ) ( ) (I m being lazy, and not using the division bar.) 6. ( )/( ) (Here s another way to indicate division.) Click for answers All answers are rounded to two decimal places. Make sure you re rounding correctly. 1) ; 2) ; 3) ; ) ; 5) ; 6) End 19

6.1 Evaluate Roots and Rational Exponents

6.1 Evaluate Roots and Rational Exponents VOCABULARY:. Evaluate Roots and Rational Exponents Radical: We know radicals as square roots. But really, radicals can be used to express any root: 0 8, 8, Index: The index tells us exactly what type of

More information

Exponential Numbers ID1050 Quantitative & Qualitative Reasoning

Exponential Numbers ID1050 Quantitative & Qualitative Reasoning Exponential Numbers ID1050 Quantitative & Qualitative Reasoning In what ways can you have $2000? Just like fractions, you can have a number in some denomination Number Denomination Mantissa Power of 10

More information

!"!!!"!!"!! = 10!!!!!(!!) = 10! = 1,000,000

!!!!!!!! = 10!!!!!(!!) = 10! = 1,000,000 Math Review for AP Chemistry The following is a brief review of some of the math you should remember from your past. This is meant to jog your memory and not to teach you something new. If you find you

More information

DECIMALS are special fractions whose denominators are powers of 10.

DECIMALS are special fractions whose denominators are powers of 10. Ch 3 DECIMALS ~ Notes DECIMALS are special fractions whose denominators are powers of 10. Since decimals are special fractions, then all the rules we have already learned for fractions should work for

More information

Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 10.

Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 10. PA Ch 5 Rational Expressions Rational Number is a number that can be written as a quotient of two integers. DECIMALS are special fractions whose denominators are powers of 0. Since decimals are special

More information

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions

Algebra 1 Review. Properties of Real Numbers. Algebraic Expressions Algebra 1 Review Properties of Real Numbers Algebraic Expressions Real Numbers Natural Numbers: 1, 2, 3, 4,.. Numbers used for counting Whole Numbers: 0, 1, 2, 3, 4,.. Natural Numbers and 0 Integers:,

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Rules of Exponents Part 1[Algebra 1](In Class Version).notebook. August 22, 2017 WARM UP. Simplify using order of operations. SOLUTION.

Rules of Exponents Part 1[Algebra 1](In Class Version).notebook. August 22, 2017 WARM UP. Simplify using order of operations. SOLUTION. WARM UP Simplify using order of operations. Aug 22 3:22 PM 1 Aug 22 4:09 PM 2 WARM UP a) The equation 3(4x) = (4x)3 illustrates which property? b) Which property of real numbers is illustrated by the equation

More information

Rev Name Date. . Round-off error is the answer to the question How wrong is the rounded answer?

Rev Name Date. . Round-off error is the answer to the question How wrong is the rounded answer? Name Date TI-84+ GC 7 Avoiding Round-off Error in Multiple Calculations Objectives: Recall the meaning of exact and approximate Observe round-off error and learn to avoid it Perform calculations using

More information

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties

Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties Chapter 3: Arithmetic Properties CHAPTER 3: ARITHMETIC PROPERTIES Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 3: Arithmetic Properties Date: Lesson: Learning Log Title:

More information

What is a Fraction? Fractions. One Way To Remember Numerator = North / 16. Example. What Fraction is Shaded? 9/16/16. Fraction = Part of a Whole

What is a Fraction? Fractions. One Way To Remember Numerator = North / 16. Example. What Fraction is Shaded? 9/16/16. Fraction = Part of a Whole // Fractions Pages What is a Fraction? Fraction Part of a Whole Top Number? Bottom Number? Page Numerator tells how many parts you have Denominator tells how many parts are in the whole Note: the fraction

More information

1.1 Review of Place Value

1.1 Review of Place Value 1 1.1 Review of Place Value Our decimal number system is based upon powers of ten. In a given whole number, each digit has a place value, and each place value consists of a power of ten. Example 1 Identify

More information

Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions

Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions MAT 51 Wladis Project 2: How Parentheses and the Order of Operations Impose Structure on Expressions Parentheses show us how things should be grouped together. The sole purpose of parentheses in algebraic

More information

Chapter 4 Section 2 Operations on Decimals

Chapter 4 Section 2 Operations on Decimals Chapter 4 Section 2 Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers.

More information

Only to be used for arranged hours. Order of Operations

Only to be used for arranged hours. Order of Operations Math 84 Activity # 1 Your name: Order of Operations Goals: 1) Evaluate Real numbers with Exponents. ) Use the Order of Operations to Evaluate Expressions. ) Review Exponents and Powers of Ten Integer exponents

More information

Pre-Algebra Notes Unit Five: Rational Numbers and Equations

Pre-Algebra Notes Unit Five: Rational Numbers and Equations Pre-Algebra Notes Unit Five: Rational Numbers and Equations Rational Numbers Rational numbers are numbers that can be written as a quotient of two integers. Since decimals are special fractions, all the

More information

Introduction to Scientific Computing Lecture 1

Introduction to Scientific Computing Lecture 1 Introduction to Scientific Computing Lecture 1 Professor Hanno Rein Last updated: September 10, 2017 1 Number Representations In this lecture, we will cover two concept that are important to understand

More information

Exponent Properties: The Product Rule. 2. Exponential expressions multiplied with each other that have the same base.

Exponent Properties: The Product Rule. 2. Exponential expressions multiplied with each other that have the same base. Exponent Properties: The Product Rule 1. What is the difference between 3x and x 3? Explain in complete sentences and with examples. 2. Exponential expressions multiplied with each other that have the

More information

Section 1.8. Simplifying Expressions

Section 1.8. Simplifying Expressions Section 1.8 Simplifying Expressions But, first Commutative property: a + b = b + a; a * b = b * a Associative property: (a + b) + c = a + (b + c) (a * b) * c = a * (b * c) Distributive property: a * (b

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

(Refer Slide Time: 02:59)

(Refer Slide Time: 02:59) Numerical Methods and Programming P. B. Sunil Kumar Department of Physics Indian Institute of Technology, Madras Lecture - 7 Error propagation and stability Last class we discussed about the representation

More information

Chapter 1 Operations With Numbers

Chapter 1 Operations With Numbers Chapter 1 Operations With Numbers Part I Negative Numbers You may already know what negative numbers are, but even if you don t, then you have probably seen them several times over the past few days. If

More information

Section 1.1 Definitions and Properties

Section 1.1 Definitions and Properties Section 1.1 Definitions and Properties Objectives In this section, you will learn to: To successfully complete this section, you need to understand: Abbreviate repeated addition using Exponents and Square

More information

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd Is the statement sufficient? If both x and y are odd, is xy odd? Is x < 0? 1) xy 2 < 0 Positives & Negatives Answer: Yes, xy is odd Odd numbers can be represented as 2m + 1 or 2n + 1, where m and n are

More information

Number Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column

Number Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column 1's column 10's column 100's column 1000's column 1's column 2's column 4's column 8's column Number Systems Decimal numbers 5374 10 = Binary numbers 1101 2 = Chapter 1 1's column 10's column 100's

More information

Slide 1 / 180. Radicals and Rational Exponents

Slide 1 / 180. Radicals and Rational Exponents Slide 1 / 180 Radicals and Rational Exponents Slide 2 / 180 Roots and Radicals Table of Contents: Square Roots Intro to Cube Roots n th Roots Irrational Roots Rational Exponents Operations with Radicals

More information

Math 171 Proficiency Packet on Integers

Math 171 Proficiency Packet on Integers Math 171 Proficiency Packet on Integers Section 1: Integers For many of man's purposes the set of whole numbers W = { 0, 1, 2, } is inadequate. It became necessary to invent negative numbers and extend

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Week 02 Module 06 Lecture - 14 Merge Sort: Analysis

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Week 02 Module 06 Lecture - 14 Merge Sort: Analysis Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Week 02 Module 06 Lecture - 14 Merge Sort: Analysis So, we have seen how to use a divide and conquer strategy, we

More information

Get to Know Your Calculator!

Get to Know Your Calculator! Math BD Calculator Lab Name: Date: Get to Know Your Calculator! You are allowed to use a non-graphing, scientific calculator for this course. A scientific calculator is different from an ordinary hand-held

More information

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum.

A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum. Problem Solving Drill 05: Exponents and Radicals Question No. 1 of 10 Question 1. Simplify: 7u v 4u 3 v 6 Question #01 (A) 11u 5 v 7 (B) 8u 6 v 6 (C) 8u 5 v 7 (D) 8u 3 v 9 To simplify this expression you

More information

Introduction to Computers and Programming. Numeric Values

Introduction to Computers and Programming. Numeric Values Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 47-71 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000

More information

Summer Assignment Glossary

Summer Assignment Glossary Algebra 1.1 Summer Assignment Name: Date: Hour: Directions: Show all work for full credit using a pencil. Circle your final answer. This assignment is due the first day of school. Use the summer assignment

More information

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

More information

Adding and Subtracting with Decimals

Adding and Subtracting with Decimals Adding and Subtracting with Decimals Before you can add or subtract numbers with decimals, all the decimal points must be lined up. (It will help if you use zeros to fill in places so that the numbers

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

Brainstorm. Period. Scientific Notation Activity 7 NOTES

Brainstorm. Period. Scientific Notation Activity 7 NOTES Name Scientific Notation Activity 7 NOTES Period By the end of this activity, I will be able to express numbers in scientific notation. By the end of this activity, I will be able to convert numbers in

More information

Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Switching Circuits and Logic Design Prof. Indranil Sengupta Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Lecture - 02 Octal and Hexadecimal Number Systems Welcome

More information

EC121 Mathematical Techniques A Revision Notes

EC121 Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes EC Mathematical Techniques A Revision Notes Mathematical Techniques A begins with two weeks of intensive revision of basic arithmetic and algebra, to the level

More information

Binary, Hexadecimal and Octal number system

Binary, Hexadecimal and Octal number system Binary, Hexadecimal and Octal number system Binary, hexadecimal, and octal refer to different number systems. The one that we typically use is called decimal. These number systems refer to the number of

More information

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras

Numbers and Computers. Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras Numbers and Computers Debdeep Mukhopadhyay Assistant Professor Dept of Computer Sc and Engg IIT Madras 1 Think of a number between 1 and 15 8 9 10 11 12 13 14 15 4 5 6 7 12 13 14 15 2 3 6 7 10 11 14 15

More information

Mark Important Points in Margin. Significant Figures. Determine which digits in a number are significant.

Mark Important Points in Margin. Significant Figures. Determine which digits in a number are significant. Knowledge/Understanding: How and why measurements are rounded. Date: How rounding and significant figures relate to precision and uncertainty. When significant figures do not apply. Skills: Determine which

More information

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4.

Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. CHAPTER 8 Integers Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. Strategy 13 Use cases. This strategy may be appropriate when A problem can be

More information

Pre-Algebra Notes Unit Five: Rational Numbers and Equations

Pre-Algebra Notes Unit Five: Rational Numbers and Equations Pre-Algebra Notes Unit Five: Rational Numbers and Equations Rational Numbers Rational numbers are numbers that can be written as a quotient of two integers. Since decimals are special fractions, all the

More information

Name Student ID Number. Group Name. Group Members. Fractions

Name Student ID Number. Group Name. Group Members. Fractions Name Student ID Number Group Name Group Members Fractions Many people struggle with and even fear working with fractions. Part of the reason people struggle is because they do not know what a fraction

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

2.Simplification & Approximation

2.Simplification & Approximation 2.Simplification & Approximation As we all know that simplification is most widely asked topic in almost every banking exam. So let us try to understand what is actually meant by word Simplification. Simplification

More information

Pre-Algebra Notes Unit Five: Rational Numbers and Equations

Pre-Algebra Notes Unit Five: Rational Numbers and Equations Pre-Algebra Notes Unit Five: Rational Numbers and Equations Rational Numbers Rational numbers are numbers that can be written as a quotient of two integers. Since decimals are special fractions, all the

More information

Math 7 Notes Unit Three: Applying Rational Numbers

Math 7 Notes Unit Three: Applying Rational Numbers Math 7 Notes Unit Three: Applying Rational Numbers Strategy note to teachers: Typically students need more practice doing computations with fractions. You may want to consider teaching the sections on

More information

Objective- Students will be able to use the Order of Operations to evaluate algebraic expressions. Evaluating Algebraic Expressions

Objective- Students will be able to use the Order of Operations to evaluate algebraic expressions. Evaluating Algebraic Expressions Objective- Students will be able to use the Order of Operations to evaluate algebraic expressions. Evaluating Algebraic Expressions Variable is a letter or symbol that represents a number. Variable (algebraic)

More information

Divisibility Rules and Their Explanations

Divisibility Rules and Their Explanations Divisibility Rules and Their Explanations Increase Your Number Sense These divisibility rules apply to determining the divisibility of a positive integer (1, 2, 3, ) by another positive integer or 0 (although

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Exponential Notation

Exponential Notation Exponential Notation INTRODUCTION Chemistry as a science deals with the qualitative and quantitative aspects of substances. In the qualitative part, we deal with the general and specific properties of

More information

Note: The last command (10-5) will generate an error message. Can you see why the calculator is having difficulty deciphering the command?

Note: The last command (10-5) will generate an error message. Can you see why the calculator is having difficulty deciphering the command? Arithmetic on the TI 8/84 Your calculator is incredibly powerful and relatively easy to use. This activity will touch on a small part of its capabilities. There are two keys that look very much alike,

More information

Calculations with Sig Figs

Calculations with Sig Figs Calculations with Sig Figs When you make calculations using data with a specific level of uncertainty, it is important that you also report your answer with the appropriate level of uncertainty (i.e.,

More information

Decimal Binary Conversion Decimal Binary Place Value = 13 (Base 10) becomes = 1101 (Base 2).

Decimal Binary Conversion Decimal Binary Place Value = 13 (Base 10) becomes = 1101 (Base 2). DOMAIN I. NUMBER CONCEPTS Competency 00 The teacher understands the structure of number systems, the development of a sense of quantity, and the relationship between quantity and symbolic representations.

More information

Number Systems MA1S1. Tristan McLoughlin. November 27, 2013

Number Systems MA1S1. Tristan McLoughlin. November 27, 2013 Number Systems MA1S1 Tristan McLoughlin November 27, 2013 http://en.wikipedia.org/wiki/binary numeral system http://accu.org/index.php/articles/1558 http://www.binaryconvert.com http://en.wikipedia.org/wiki/ascii

More information

Machine Arithmetic 8/31/2007

Machine Arithmetic 8/31/2007 Machine Arithmetic 8/31/2007 1 Opening Discussion Let's look at some interclass problems. If you played with your program some you probably found that it behaves oddly in some regards. Why is this? What

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Summer 8 Fractional numbers Fractional numbers fixed point Floating point numbers the IEEE 7 floating point standard Floating point operations Rounding modes CMPE Summer 8 Slides

More information

Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not.

Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not. What is an INTEGER/NONINTEGER? Integers are whole numbers; they include negative whole numbers and zero. For example -7, 0, 18 are integers, 1.5 is not. What is a REAL/IMAGINARY number? A real number is

More information

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7

Classwork. Exercises Use long division to determine the decimal expansion of. NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 6 8 7 Classwork Exercises 1 5 1. Use long division to determine the decimal expansion of. 2. Use long division to determine the decimal expansion of. 3. Use long division to determine the decimal expansion of.

More information

Set up and use a proportion

Set up and use a proportion Daily Do Question from last class Set up and use a proportion If you are driving 70 miles per hour and you have 280 miles to go on the highway part of your trip. How long will it take? adding, subtracting,

More information

Part 1: Decimal to Percent. Part 2: Fraction to Percent

Part 1: Decimal to Percent. Part 2: Fraction to Percent Lecture Notes Review of Fractions and Percents page Part : Decimal to Percent Turning a decimal to a percent is easy if we know what percents mean. A percent is a standardized fraction, with denominator

More information

radicals are just exponents

radicals are just exponents Section 5 7: Rational Exponents Simplify each of the following expressions to the furthest extent possible. You should have gotten 2xy 4 for the first one, 2x 2 y 3 for the second one, and concluded that

More information

Combinatorics Prof. Dr. L. Sunil Chandran Department of Computer Science and Automation Indian Institute of Science, Bangalore

Combinatorics Prof. Dr. L. Sunil Chandran Department of Computer Science and Automation Indian Institute of Science, Bangalore Combinatorics Prof. Dr. L. Sunil Chandran Department of Computer Science and Automation Indian Institute of Science, Bangalore Lecture - 5 Elementary concepts and basic counting principles So, welcome

More information

Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions).

Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions). 7.2: Adding and Subtracting Rational Expressions, Simplifying Complex Fractions Adding and subtracting rational expressions is quite similar to adding and subtracting rational numbers (fractions). Adding

More information

Dr. Yau s Math Review for General Chemistry I

Dr. Yau s Math Review for General Chemistry I Dr. Yau s Math Review for eneral Chemistry I The following is a brief review of some of the math you should remember from your past. This is meant to jog your memory and not to teach you something new.

More information

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture)

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture) COSC 243 Data Representation 3 Lecture 3 - Data Representation 3 1 Data Representation Test Material Lectures 1, 2, and 3 Tutorials 1b, 2a, and 2b During Tutorial a Next Week 12 th and 13 th March If you

More information

x 2 + 3, r 4(x) = x2 1

x 2 + 3, r 4(x) = x2 1 Math 121 (Lesieutre); 4.2: Rational functions; September 1, 2017 1. What is a rational function? It s a function of the form p(x), where p(x) and q(x) are both polynomials. In other words, q(x) something

More information

What Every Programmer Should Know About Floating-Point Arithmetic

What Every Programmer Should Know About Floating-Point Arithmetic What Every Programmer Should Know About Floating-Point Arithmetic Last updated: October 15, 2015 Contents 1 Why don t my numbers add up? 3 2 Basic Answers 3 2.1 Why don t my numbers, like 0.1 + 0.2 add

More information

Section 5.1 Rules for Exponents

Section 5.1 Rules for Exponents Objectives Section 5.1 Rules for Exponents Identify bases and exponents Multiply exponential expressions that have like bases Divide exponential expressions that have like bases Raise exponential expressions

More information

Revision on fractions and decimals

Revision on fractions and decimals Revision on fractions and decimals Fractions 1. Addition and subtraction of fractions (i) For same denominator, only need to add the numerators, then simplify the fraction Example 1: " + $ " = &$ " (they

More information

Example: Which of the following expressions must be an even integer if x is an integer? a. x + 5

Example: Which of the following expressions must be an even integer if x is an integer? a. x + 5 8th Grade Honors Basic Operations Part 1 1 NUMBER DEFINITIONS UNDEFINED On the ACT, when something is divided by zero, it is considered undefined. For example, the expression a bc is undefined if either

More information

FLOATING POINT NUMBERS

FLOATING POINT NUMBERS FLOATING POINT NUMBERS Robert P. Webber, Longwood University We have seen how decimal fractions can be converted to binary. For instance, we can write 6.25 10 as 4 + 2 + ¼ = 2 2 + 2 1 + 2-2 = 1*2 2 + 1*2

More information

Step 1 The number name given in the question is five and sixty-eight-hundredths. We know that

Step 1 The number name given in the question is five and sixty-eight-hundredths. We know that Answers (1) 5.68 The number name given in the question is five and sixty-eight-hundredths. We know that hundredths can be represented as 1. So, we can write five and sixty-eight-hundredths as 5 and 68

More information

Discovering. Algebra. An Investigative Approach. Condensed Lessons for Make-up Work

Discovering. Algebra. An Investigative Approach. Condensed Lessons for Make-up Work Discovering Algebra An Investigative Approach Condensed Lessons for Make-up Work CONDENSED L E S S O N 0. The Same yet Smaller Previous In this lesson you will apply a recursive rule to create a fractal

More information

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

Multiplying and Dividing Fractions 2

Multiplying and Dividing Fractions 2 Unit : Linear Equations Name Directions: Solve. Multiplying and Dividing Fractions 7 Appendix B: Answer Keys Transparency/Guided Practice Book Answers 4 Unit : Linear Equations Name Directions: Calculate.

More information

Chapter 1 Section 1 Lesson: Solving Linear Equations

Chapter 1 Section 1 Lesson: Solving Linear Equations Introduction Linear equations are the simplest types of equations to solve. In a linear equation, all variables are to the first power only. All linear equations in one variable can be reduced to the form

More information

9 R1 Get another piece of paper. We re going to have fun keeping track of (inaudible). Um How much time do you have? Are you getting tired?

9 R1 Get another piece of paper. We re going to have fun keeping track of (inaudible). Um How much time do you have? Are you getting tired? Page: 1 of 14 1 R1 And this is tell me what this is? 2 Stephanie x times y plus x times y or hm? 3 R1 What are you thinking? 4 Stephanie I don t know. 5 R1 Tell me what you re thinking. 6 Stephanie Well.

More information

1.7 Limit of a Function

1.7 Limit of a Function 1.7 Limit of a Function We will discuss the following in this section: 1. Limit Notation 2. Finding a it numerically 3. Right and Left Hand Limits 4. Infinite Limits Consider the following graph Notation:

More information

Scientific Notation & Significant Figures. Mergenthaler Vo-Tech HS Mrs. Judith B. Abergos Chemistry 2013

Scientific Notation & Significant Figures. Mergenthaler Vo-Tech HS Mrs. Judith B. Abergos Chemistry 2013 Scientific Notation & Significant Figures Mergenthaler Vo-Tech HS Mrs. Judith B. Abergos Chemistry 2013 Significant Figures Significant Figures digits that show how precise a measurement is The more significant

More information

Section 1.2 Fractions

Section 1.2 Fractions Objectives Section 1.2 Fractions Factor and prime factor natural numbers Recognize special fraction forms Multiply and divide fractions Build equivalent fractions Simplify fractions Add and subtract fractions

More information

Exponents. Common Powers

Exponents. Common Powers Exponents An exponent defines the number of times a number is to be multiplied by itself. For example, in a b, where a is the base and b the exponent, a is multiplied by itself btimes. In a numerical example,

More information

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems In everyday life, we humans most often count using decimal or base-10 numbers. In computer science, it

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

Lesson 6a Exponents and Rational Functions

Lesson 6a Exponents and Rational Functions Lesson 6a Eponents and Rational Functions In this lesson, we put quadratics aside for the most part (not entirely) in this lesson and move to a study of eponents and rational functions. The rules of eponents

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

Fractions and their Equivalent Forms

Fractions and their Equivalent Forms Fractions Fractions and their Equivalent Forms Little kids use the concept of a fraction long before we ever formalize their knowledge in school. Watching little kids share a candy bar or a bottle of soda

More information

Algebra II Radical Equations

Algebra II Radical Equations 1 Algebra II Radical Equations 2016-04-21 www.njctl.org 2 Table of Contents: Graphing Square Root Functions Working with Square Roots Irrational Roots Adding and Subtracting Radicals Multiplying Radicals

More information

Medical Dosage Calculations

Medical Dosage Calculations Medical Dosage Calculations Ninth Edition Chapter 1 Review of Arithmetic for Medical Dosage Calculations Learning Outcomes 1. Convert decimal numbers to fractions. 2. Convert fractions to decimal numbers.

More information

COUNTING AND CONVERTING

COUNTING AND CONVERTING COUNTING AND CONVERTING The base of each number system is also called the radix. The radix of a decimal number is ten, and the radix of binary is two. The radix determines how many different symbols are

More information

Fractions / 8 / / 10 1 ½ / 12

Fractions / 8 / / 10 1 ½ / 12 Fractions / 8 / 60 / ½ / 0 / What is a fraction? Loosely speaking, a fraction is a quantity that cannot be represented by a whole number. Why do we need fractions? Consider the following scenario. Can

More information

Introduction to Computer Systems Recitation 2 May 29, Marjorie Carlson Aditya Gupta Shailin Desai

Introduction to Computer Systems Recitation 2 May 29, Marjorie Carlson Aditya Gupta Shailin Desai Introduction to Computer Systems Recitation 2 May 29, 2014 Marjorie Carlson Aditya Gupta Shailin Desai 1 Agenda! Goal: translate any real number (plus some!) into and out of machine representation.! Integers!

More information

Signed umbers. Sign/Magnitude otation

Signed umbers. Sign/Magnitude otation Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

More information

Chapter 1 & 2 Calculator Test Study Guide

Chapter 1 & 2 Calculator Test Study Guide Chapter 1 & 2 Calculator Test Study Guide Powers and Exponents 1) To put a number to the second power, simply hit the x 2 key, then enter. 2) To put a number to the third or a higher power, key in base,

More information

Floating Point. What can be represented in N bits? 0 to 2N-1. 9,349,398,989,787,762,244,859,087, x 1067

Floating Point. What can be represented in N bits? 0 to 2N-1. 9,349,398,989,787,762,244,859,087, x 1067 MIPS Floating Point Operations Cptr280 Dr Curtis Nelson Floating Point What can be represented in N bits? Unsigned 2 s Complement 0 to 2N-1-2N-1 to 2N-1-1 But, what about- Very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

(Refer Slide Time 6:48)

(Refer Slide Time 6:48) Digital Circuits and Systems Prof. S. Srinivasan Department of Electrical Engineering Indian Institute of Technology Madras Lecture - 8 Karnaugh Map Minimization using Maxterms We have been taking about

More information

SAMLab Tip Sheet #1 Translating Mathematical Formulas Into Excel s Language

SAMLab Tip Sheet #1 Translating Mathematical Formulas Into Excel s Language Translating Mathematical Formulas Into Excel s Language Introduction Microsoft Excel is a very powerful calculator; you can use it to compute a wide variety of mathematical expressions. Before exploring

More information

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b.

Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b. Section 2.3 Rational Numbers A rational number is a number that may be written in the form a b for any integer a and any nonzero integer b. Why is division by zero undefined? For example, we know that

More information

Converting Between Mixed Numbers & Improper Fractions

Converting Between Mixed Numbers & Improper Fractions 01 Converting Between Mixed Numbers & Improper Fractions A mixed number is a whole number and a fraction: 4 1 2 An improper fraction is a fraction with a larger numerator than denominator: 9 2 You can

More information