CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

Size: px
Start display at page:

Download "CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng."

Transcription

1 CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng.

2 CS 265 Midterm #1 Monday, Oct 18, 12:00pm-1:45pm, SCI 163 Questions on essential terms and concepts of Computer Architecture Mathematical questions on binary operations Analysis questions on memory organization Programming questions with vonneumann (ISA) instruction set Exam is open book, open notes, open slides, open assignment and exercise solutions

3 Lectures covered by Midterm #1 Data Representation (3 lectures) Memory Organization (4 lectures) Classical vonneumann Architecture (2 lectures)

4 Data Representation

5 Midterm #1: Data Representation How to do the 4 basic binary arithmetic operations: addition, subtraction, multiplication and division? How to represent signed integer with sign magnitude How to represent signed integer with one s complement How to represent signed integer with two s complement How to represent floating point in computer

6 Sign magnitude representation First (leftmost significant) bit represents sign Successive bits (for n-bit word, the rightmost N-1 bits) represent absolute value of integer Sample question: what is the 8-bit sign magnitude representation of decimal number -18? +18 = =

7 One's complement representation Positive number uses positional representation Negative number formed by inverting all bits of positive value, i.e., a 1 is replaced by a 0, and a 0 is replaced by a 1 Sample question: what is the 8-bit one s complement representation of decimal number -18? +18 = =

8 Two's complement representation Positive number uses positional representation Negative number formed by subtracting 1 from positive value and inverting all bits of result Sample question: what is the 8-bit two s complement representation of decimal number -18? +18 = =

9 Binary arithmetic operation Sample question: In computer using 8-bit sign magnitude representation, what is the result to subtract binary number from

10 Binary arithmetic operation Sample question: In computer using 8-bit one s complement representation, what is the 8-bit binary result to add decimal number 23 to decimal number -9

11 Binary arithmetic operation Sample question: find the sum of decimal number 23 and decimal number -9 in binary using two s complement representation

12 IEEE Standard 754 IEEE standard 754 defines a generic format to represent single-precision (32 bits) floating point and doubleprecision (64 bits) floating point in modern computer 1 sign bit "biased" exponent (8 bits) "normalized" mantissa (23 bits) Binary floating point = (-1) s x (1.m) x 2 (e-bias) Notice that the 1 in 1.m is always assumed. where, bias = 127

13 Sample question: express 6.5 in a 32-bit single-precision floating point with the format of IEEE standard 754 Step (decimal) = (binary) Step 2. Move the radix point until a single 1 appears on the left, and multiply by the corresponding power of x 2 2 so the sign bit is 0 (positive) the biased exponent is = 129 = = e and the normalized mantissa is 101 (drop the 1, rest zero-fill) binary or 40D00000 hexadecimal IEEE Standard 754

14 Memory Organization

15 Midterm #1: Memory Organization What are the two basic operations on memory? What are the three cache mapping schemes, and how they work to map main memory to cache How to map the virtual memory address to main memory address How CPU get the content of memory with specified address in a computer using cache and virtual memory

16 Operations on Memory Basic operations to memory Fetch (address): Fetch a copy of the content of memory with the specified address. Store (address, value): Store the specific value into the memory specified by address. A hit is when data is found at a given memory address A miss is when it is not found. hit rate is the percent of time data is found at a given memory address. miss rate is the percentage of time it is not. Miss rate = 1 - hit rate.

17 direct mapped cache Main memory address is divided in 3 parts Least Significant w bits identify unique byte (or word) Most Significant s bits specify one main memory block The Most Significant s bits are further split into a cache block index field r and a tag of s-r (most significant) Tag Block Word

18 Direct mapped cache Sample questions: Suppose a computer using direct mapped cache has 2 20 bytes of main memory and a cache of 32 blocks, where each cache block contains 16 bytes. a) How many blocks of main memory are there? b) What is the format of a memory address as seen by the cache, that is, what are the sizes of the tag, block, and word fields? c) To which cache block will the memory reference 0x0DB63 map?

19 Fully associative mapped cache In fully associative mapped cache, cache would have to fill up one by one before any blocks are evicted. In fully associative cache, a memory address is partitioned into only two fields: the tag and the word. Tag Word

20 Fully associative mapped cache Sample questions: Suppose a computer using fully associative cache has 2 16 bytes of main memory and a cache of 64 blocks, where each cache block contains 32 bytes. a) How many blocks of main memory are there? b) What is the format of a memory address as seen by the cache, that is, what are the sizes of the tag and word fields?

21 Set associative mapped cache An N-way set associative cache mapping is: Similar to direct mapped cache in which a memory reference maps to a particular location in cache. Similar to fully associative cache in which a memory reference maps to a set of several (N) cache blocks, In set associative cache mapping, a memory reference is divided into three fields: tag, set, and word, and the set field determines the set to which the memory block maps. Tag Set Word

22 Set associative mapped cache Sample question: Suppose a computer using set associative cache has 2 16 bytes of main memory and a cache of 32 blocks, and each cache block contains 8 bytes. a) If this cache is 2-way set associative, what is the format of a memory address as seen by the cache, that is, what are the sizes of the tag, set, and word fields? b) If this cache is 4-way set associative, what is the format of a memory address as seen by the cache?

23 virtual address vs. physical address virtual address with demand paging is divided into two fields: A page field, and an offset field. Page Offset The page field determines the page location of the virtual address, and the offset indicates the location of the address within the page. The physical address is divided into two fields: A page frame field, and an offset field. Page Frame Offset

24 virtual address vs. physical address virtual address with demand paging is divided into two fields: A page field, and an offset field. Page Offset The page field determines the page location of the virtual address, and the offset indicates the location of the address within the page. The physical address is divided into two fields: A page frame field, and an offset field. Page Frame Offset

25 virtual address vs. physical address By checking Translation Lookaside Buffer and updating page table, we can locate the physical memory address behind the virtual address that operated by CPU

26 Main memory, virtual memory and cache You have a virtual memory system with a two-entry TLB, a 2-way set associative cache, and a page table for a process P. Assume cache blocks of 8 bytes and page size of 16 bytes. In the system below, main memory is divided into blocks, where each block is represented by a letter. The exact byte in each block is represented by the letter with a number, e,g. 8 bytes stored in letter D are D0,D1,D2,D3,D4,D5,D6 and D7. Two blocks equal one page frame. a) How many bits are in a virtual address for process P? b) How many bits are in a physical address? c) Show the address format for virtual address 18 (decimal) (specify field name and size) that would be used by the system to translate to a physical address and then translate this virtual address into the corresponding physical address. (Hint: convert 18 to its binary equivalent and divide it into the appropriate fields.), and then give the value stored at memory that fetched by virtual address 18 (decimal)

27 Main memory, virtual memory and cache

28 vonneumann Architecture

29 Midterm #1: vonneumann Architecture What is the general format of a machine instruction? Analysis on the machine instruction code

30 Format of machine language instruction A machine language instruction consists of: Operation code/opcode, telling which operation to perform Address field(s)/operands, telling the memory addresses of the values on which the operation works. So, a machine language instruction = Opcode + Operands

31 Format of machine language instruction For Example: ADD X, Y - Opcode ADD tell the ALU to execute the add function - X and Y is the memory address - execute ADD X,Y means ADD content at memory locations X and Y, and store back in memory location Y. Assume: 4-bit opcode for ADD is 9 in decimal, and 8-bit operands, X=99, Y=100 in decimal How to represent the instruction ADD X,Y in computer?

32

33 analysis on machine instruction Given the von Neumann Instruction Set illustrated above and a piece of Pseudo instruction code as follows: Address 8L 8R 9L 9R 10L 10R 11L Contents LOAD M(0FA) STOR M(0FB) LOAD M(0FA) JUMP+ M(11,0:19) LOAD M(0FA) STOR M(0FB) Please explain what the program does? Suppose value at 0FA is - 10, what s the value at 0FB after executing the code?

34 Thank you for your attendance Any questions?

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 3: von Neumann Architecture von Neumann Architecture Our goal: understand the basics of von Neumann architecture, including memory, control unit

More information

Introduction to Computer Science-103. Midterm

Introduction to Computer Science-103. Midterm Introduction to Computer Science-103 Midterm 1. Convert the following hexadecimal and octal numbers to decimal without using a calculator, showing your work. (6%) a. (ABC.D) 16 2748.8125 b. (411) 8 265

More information

Module 2: Computer Arithmetic

Module 2: Computer Arithmetic Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

More information

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions CHAPTER 4 Operations On Data (Solutions to Odd-Numbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC

CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-1 CHAPTER V CHAPTER V NUMBER SYSTEMS AND ARITHMETIC CHAPTER V-2 NUMBER SYSTEMS RADIX-R REPRESENTATION Decimal number expansion 73625 10 = ( 7 10 4 ) + ( 3 10 3 ) + ( 6 10 2 ) + ( 2 10 1 ) +(

More information

CS101 Lecture 04: Binary Arithmetic

CS101 Lecture 04: Binary Arithmetic CS101 Lecture 04: Binary Arithmetic Binary Number Addition Two s complement encoding Briefly: real number representation Aaron Stevens (azs@bu.edu) 25 January 2013 What You ll Learn Today Counting in binary

More information

Arab Open University. Computer Organization and Architecture - T103

Arab Open University. Computer Organization and Architecture - T103 Arab Open University Computer Organization and Architecture - T103 Reference Book: Linda Null, Julia Lobur, The essentials of Computer Organization and Architecture, Jones & Bartlett, Third Edition, 2012.

More information

Advanced Computer Architecture-CS501

Advanced Computer Architecture-CS501 Advanced Computer Architecture Lecture No. 34 Reading Material Vincent P. Heuring & Harry F. Jordan Chapter 6 Computer Systems Design and Architecture 6.1, 6.2 Summary Introduction to ALSU Radix Conversion

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

More information

CS 101: Computer Programming and Utilization

CS 101: Computer Programming and Utilization CS 101: Computer Programming and Utilization Jul-Nov 2017 Umesh Bellur (cs101@cse.iitb.ac.in) Lecture 3: Number Representa.ons Representing Numbers Digital Circuits can store and manipulate 0 s and 1 s.

More information

4/8/17. Admin. Assignment 5 BINARY. David Kauchak CS 52 Spring 2017

4/8/17. Admin. Assignment 5 BINARY. David Kauchak CS 52 Spring 2017 4/8/17 Admin! Assignment 5 BINARY David Kauchak CS 52 Spring 2017 Diving into your computer Normal computer user 1 After intro CS After 5 weeks of cs52 What now One last note on CS52 memory address binary

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

CHW 261: Logic Design

CHW 261: Logic Design CHW 261: Logic Design Instructors: Prof. Hala Zayed Dr. Ahmed Shalaby http://www.bu.edu.eg/staff/halazayed14 http://bu.edu.eg/staff/ahmedshalaby14# Slide 1 Slide 2 Slide 3 Digital Fundamentals CHAPTER

More information

CS & IT Conversions. Magnitude 10,000 1,

CS & IT Conversions. Magnitude 10,000 1, CS & IT Conversions There are several number systems that you will use when working with computers. These include decimal, binary, octal, and hexadecimal. Knowing how to convert between these number systems

More information

Chapter 2. Data Representation in Computer Systems

Chapter 2. Data Representation in Computer Systems Chapter 2 Data Representation in Computer Systems Chapter 2 Objectives Understand the fundamentals of numerical data representation and manipulation in digital computers. Master the skill of converting

More information

The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop.

The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. CS 320 Ch 10 Computer Arithmetic The ALU consists of combinational logic. Processes all data in the CPU. ALL von Neuman machines have an ALU loop. Signed integers are typically represented in sign-magnitude

More information

Number System. Introduction. Decimal Numbers

Number System. Introduction. Decimal Numbers Number System Introduction Number systems provide the basis for all operations in information processing systems. In a number system the information is divided into a group of symbols; for example, 26

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

More information

Chapter 2 Data Representations

Chapter 2 Data Representations Computer Engineering Chapter 2 Data Representations Hiroaki Kobayashi 4/21/2008 4/21/2008 1 Agenda in Chapter 2 Translation between binary numbers and decimal numbers Data Representations for Integers

More information

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example

Number Systems. Binary Numbers. Appendix. Decimal notation represents numbers as powers of 10, for example Appendix F Number Systems Binary Numbers Decimal notation represents numbers as powers of 10, for example 1729 1 103 7 102 2 101 9 100 decimal = + + + There is no particular reason for the choice of 10,

More information

Introduction to Computers and Programming. Numeric Values

Introduction to Computers and Programming. Numeric Values Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 47-71 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000

More information

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems

Decimal & Binary Representation Systems. Decimal & Binary Representation Systems Decimal & Binary Representation Systems Decimal & binary are positional representation systems each position has a value: d*base i for example: 321 10 = 3*10 2 + 2*10 1 + 1*10 0 for example: 101000001

More information

Data Representations & Arithmetic Operations

Data Representations & Arithmetic Operations Data Representations & Arithmetic Operations Hiroaki Kobayashi 7/13/2011 7/13/2011 Computer Science 1 Agenda Translation between binary numbers and decimal numbers Data Representations for Integers Negative

More information

Computer Organisation CS303

Computer Organisation CS303 Computer Organisation CS303 Module Period Assignments 1 Day 1 to Day 6 1. Write a program to evaluate the arithmetic statement: X=(A-B + C * (D * E-F))/G + H*K a. Using a general register computer with

More information

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation

9/3/2015. Data Representation II. 2.4 Signed Integer Representation. 2.4 Signed Integer Representation Data Representation II CMSC 313 Sections 01, 02 The conversions we have so far presented have involved only unsigned numbers. To represent signed integers, computer systems allocate the high-order bit

More information

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

1010 2?= ?= CS 64 Lecture 2 Data Representation. Decimal Numbers: Base 10. Reading: FLD Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 CS 64 Lecture 2 Data Representation Reading: FLD 1.2-1.4 Decimal Numbers: Base 10 Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Example: 3271 = (3x10 3 ) + (2x10 2 ) + (7x10 1 ) + (1x10 0 ) 1010 10?= 1010 2?= 1

More information

Level ISA3: Information Representation

Level ISA3: Information Representation Level ISA3: Information Representation 1 Information as electrical current At the lowest level, each storage unit in a computer s memory is equipped to contain either a high or low voltage signal Each

More information

Number Systems. Both numbers are positive

Number Systems. Both numbers are positive Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

More information

Homework 1 graded and returned in class today. Solutions posted online. Request regrades by next class period. Question 10 treated as extra credit

Homework 1 graded and returned in class today. Solutions posted online. Request regrades by next class period. Question 10 treated as extra credit Announcements Homework 1 graded and returned in class today. Solutions posted online. Request regrades by next class period. Question 10 treated as extra credit Quiz 2 Monday on Number System Conversions

More information

Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

More information

Digital Fundamentals

Digital Fundamentals Digital Fundamentals Tenth Edition Floyd Chapter 2 2009 Pearson Education, Upper 2008 Pearson Saddle River, Education NJ 07458. All Rights Reserved Decimal Numbers The position of each digit in a weighted

More information

COMP 122/L Lecture 2. Kyle Dewey

COMP 122/L Lecture 2. Kyle Dewey COMP 122/L Lecture 2 Kyle Dewey Outline Operations on binary values AND, OR, XOR, NOT Bit shifting (left, two forms of right) Addition Subtraction Twos complement Bitwise Operations Bitwise AND Similar

More information

CS 64 Week 1 Lecture 1. Kyle Dewey

CS 64 Week 1 Lecture 1. Kyle Dewey CS 64 Week 1 Lecture 1 Kyle Dewey Overview Bitwise operation wrap-up Two s complement Addition Subtraction Multiplication (if time) Bitwise Operation Wrap-up Shift Left Move all the bits N positions to

More information

Errors in Computation

Errors in Computation Theory of Errors Content Errors in computation Absolute Error Relative Error Roundoff Errors Truncation Errors Floating Point Numbers Normalized Floating Point Numbers Roundoff Error in Floating Point

More information

CSC201, SECTION 002, Fall 2000: Homework Assignment #2

CSC201, SECTION 002, Fall 2000: Homework Assignment #2 1 of 7 11/8/2003 7:34 PM CSC201, SECTION 002, Fall 2000: Homework Assignment #2 DUE DATE Monday, October 2, at the start of class. INSTRUCTIONS FOR PREPARATION Neat, in order, answers easy to find. Staple

More information

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Signed Binary Numbers

Signed Binary Numbers Signed Binary Numbers Unsigned Binary Numbers We write numbers with as many digits as we need: 0, 99, 65536, 15000, 1979, However, memory locations and CPU registers always hold a constant, fixed number

More information

Floating Point Arithmetic

Floating Point Arithmetic Floating Point Arithmetic CS 365 Floating-Point What can be represented in N bits? Unsigned 0 to 2 N 2s Complement -2 N-1 to 2 N-1-1 But, what about? very large numbers? 9,349,398,989,787,762,244,859,087,678

More information

T02 Tutorial Slides for Week 2

T02 Tutorial Slides for Week 2 T02 Tutorial Slides for Week 2 ENEL 353: Digital Circuits Fall 2017 Term Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary 19 September, 2017

More information

Course Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation

Course Schedule. CS 221 Computer Architecture. Week 3: Plan. I. Hexadecimals and Character Representations. Hexadecimal Representation Course Schedule CS 221 Computer Architecture Week 3: Information Representation (2) Fall 2001 W1 Sep 11- Sep 14 Introduction W2 Sep 18- Sep 21 Information Representation (1) (Chapter 3) W3 Sep 25- Sep

More information

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University.

Rui Wang, Assistant professor Dept. of Information and Communication Tongji University. Data Representation ti and Arithmetic for Computers Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Questions What do you know about

More information

Chapter Three. Arithmetic

Chapter Three. Arithmetic Chapter Three 1 Arithmetic Where we've been: Performance (seconds, cycles, instructions) Abstractions: Instruction Set Architecture Assembly Language and Machine Language What's up ahead: Implementing

More information

Computer Architecture V Fall Practice Exam Questions

Computer Architecture V Fall Practice Exam Questions Computer Architecture V22.0436 Fall 2002 Practice Exam Questions These are practice exam questions for the material covered since the mid-term exam. Please note that the final exam is cumulative. See the

More information

Signed umbers. Sign/Magnitude otation

Signed umbers. Sign/Magnitude otation Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

Birkbeck (University of London) Department of Computer Science and Information Systems. Introduction to Computer Systems (BUCI008H4)

Birkbeck (University of London) Department of Computer Science and Information Systems. Introduction to Computer Systems (BUCI008H4) Birkbeck (University of London) Department of Computer Science and Information Systems Introduction to Computer Systems (BUCI008H4) CREDIT VALUE: none Spring 2017 Mock Examination Date: Tuesday 14th March

More information

CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader

CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader CS61c Midterm Review (fa06) Number representation and Floating points From your friendly reader Number representation (See: Lecture 2, Lab 1, HW#1) KNOW: Kibi (2 10 ), Mebi(2 20 ), Gibi(2 30 ), Tebi(2

More information

Final Labs and Tutors

Final Labs and Tutors ICT106 Fundamentals of Computer Systems - Topic 2 REPRESENTATION AND STORAGE OF INFORMATION Reading: Linux Assembly Programming Language, Ch 2.4-2.9 and 3.6-3.8 Final Labs and Tutors Venue and time South

More information

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,...

Groups of two-state devices are used to represent data in a computer. In general, we say the states are either: high/low, on/off, 1/0,... Chapter 9 Computer Arithmetic Reading: Section 9.1 on pp. 290-296 Computer Representation of Data Groups of two-state devices are used to represent data in a computer. In general, we say the states are

More information

Tutorial for Chapter 3, 4

Tutorial for Chapter 3, 4 Eastern Mediterranean University School of Computing and Technology ITEC2 Computer Organization & Architecture Tutorial for Chapter 3, 4 Number Systems Binary Number Systems o Base = 2 o A single bit can

More information

ECE 2030D Computer Engineering Spring problems, 5 pages Exam Two 8 March 2012

ECE 2030D Computer Engineering Spring problems, 5 pages Exam Two 8 March 2012 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

CS1100 Introduction to Programming

CS1100 Introduction to Programming Course Outline Introduction to Computing CS00 Introduction to Programming Introduction to Computing Programming (in C) Exercises and examples from the mathematical area of Numerical Methods Madhu Mutyam

More information

Birkbeck (University of London) Department of Computer Science and Information Systems. Introduction to Computer Systems (BUCI008H4)

Birkbeck (University of London) Department of Computer Science and Information Systems. Introduction to Computer Systems (BUCI008H4) Birkbeck (University of London) Department of Computer Science and Information Systems Introduction to Computer Systems (BUCI008H4) CREDIT VALUE: none Spring 2017 Mock Examination SUMMARY ANSWERS Date:

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 5: Processors Our goal: understand basics of processors and CPU understand the architecture of MARIE, a model computer a close look at the instruction

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

2.2 THE MARIE Instruction Set Architecture

2.2 THE MARIE Instruction Set Architecture 2.2 THE MARIE Instruction Set Architecture MARIE has a very simple, yet powerful, instruction set. The instruction set architecture (ISA) of a machine specifies the instructions that the computer can perform

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

CMPSCI 145 MIDTERM #1 Solution Key. SPRING 2017 March 3, 2017 Professor William T. Verts

CMPSCI 145 MIDTERM #1 Solution Key. SPRING 2017 March 3, 2017 Professor William T. Verts CMPSCI 145 MIDTERM #1 Solution Key NAME SPRING 2017 March 3, 2017 PROBLEM SCORE POINTS 1 10 2 10 3 15 4 15 5 20 6 12 7 8 8 10 TOTAL 100 10 Points Examine the following diagram of two systems, one involving

More information

s complement 1-bit Booth s 2-bit Booth s

s complement 1-bit Booth s 2-bit Booth s ECE/CS 552 : Introduction to Computer Architecture FINAL EXAM May 12th, 2002 NAME: This exam is to be done individually. Total 6 Questions, 100 points Show all your work to receive partial credit for incorrect

More information

CS6303 COMPUTER ARCHITECTURE LESSION NOTES UNIT II ARITHMETIC OPERATIONS ALU In computing an arithmetic logic unit (ALU) is a digital circuit that performs arithmetic and logical operations. The ALU is

More information

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1

IT 1204 Section 2.0. Data Representation and Arithmetic. 2009, University of Colombo School of Computing 1 IT 1204 Section 2.0 Data Representation and Arithmetic 2009, University of Colombo School of Computing 1 What is Analog and Digital The interpretation of an analog signal would correspond to a signal whose

More information

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two 26 February 2014

ECE 2020B Fundamentals of Digital Design Spring problems, 6 pages Exam Two 26 February 2014 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

A Level Computing. Contents. For the Exam:

A Level Computing. Contents. For the Exam: A Level Computing Contents For the Exam:... 1 Revision of Binary... 2 Computing Mathematics Revision... 2 Binary Addition/Subtraction revision... 3 BCD... 3 Sign and Magnitude... 4 2 s Compliment... 4

More information

Thus needs to be a consistent method of representing negative numbers in binary computer arithmetic operations.

Thus needs to be a consistent method of representing negative numbers in binary computer arithmetic operations. Signed Binary Arithmetic In the real world of mathematics, computers must represent both positive and negative binary numbers. For example, even when dealing with positive arguments, mathematical operations

More information

The type of all data used in a C++ program must be specified

The type of all data used in a C++ program must be specified The type of all data used in a C++ program must be specified A data type is a description of the data being represented That is, a set of possible values and a set of operations on those values There are

More information

Name: CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1. Question Points I. /34 II. /30 III.

Name: CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1. Question Points I. /34 II. /30 III. CMSC 313 Fall 2001 Computer Organization & Assembly Language Programming Exam 1 Name: Question Points I. /34 II. /30 III. /36 TOTAL: /100 Instructions: 1. This is a closed-book, closed-notes exam. 2. You

More information

Lecture 2: Number Systems

Lecture 2: Number Systems Lecture 2: Number Systems Syed M. Mahmud, Ph.D ECE Department Wayne State University Original Source: Prof. Russell Tessier of University of Massachusetts Aby George of Wayne State University Contents

More information

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010

ECE 2030B 1:00pm Computer Engineering Spring problems, 5 pages Exam Two 10 March 2010 Instructions: This is a closed book, closed note exam. Calculators are not permitted. If you have a question, raise your hand and I will come to you. Please work the exam in pencil and do not separate

More information

CSE 140 Homework One

CSE 140 Homework One CSE 140 Homewor One June 29, 2009 Only Problem Set Part B will be graded. Turn in only Problem Set Part B which will be due on July 13, 2009 (Monday) at 3:00pm. 1 Problem Set Part A textboo 1.3 textboo

More information

RECITATION SECTION: YOUR CDA 3101 NUMBER:

RECITATION SECTION: YOUR CDA 3101 NUMBER: PRINT YOUR NAME: KEY UFID [5:8]: RECITATION SECTION: YOUR CDA 3101 NUMBER: I have not looked at anyone else s paper, and I have not obtained unauthorized help in completing this exam. Also, I have adhered

More information

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C Final Review CS304 Introduction to C Why C? Difference between Python and C C compiler stages Basic syntax in C Pointers What is a pointer? declaration, &, dereference... Pointer & dynamic memory allocation

More information

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014

CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 B CS2214 COMPUTER ARCHITECTURE & ORGANIZATION SPRING 2014 DUE : March 3, 2014 READ : - Related sections of Chapter 2 - Related sections of Chapter 3 - Related sections of Appendix A - Related sections

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 15: Midterm 1 Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Basics Midterm to cover Book Sections (inclusive) 1.1 1.5

More information

UNIT 7A Data Representation: Numbers and Text. Digital Data

UNIT 7A Data Representation: Numbers and Text. Digital Data UNIT 7A Data Representation: Numbers and Text 1 Digital Data 10010101011110101010110101001110 What does this binary sequence represent? It could be: an integer a floating point number text encoded with

More information

COMP1917 Computing 1 Written Exam Sample Questions

COMP1917 Computing 1 Written Exam Sample Questions COMP1917 Computing 1 Written Exam Sample Questions Note: these sample questions are intended to provide examples of a certain style of question which did not occur in the tutorial or laboratory exercises,

More information

The Institution of Engineers - Sri Lanka

The Institution of Engineers - Sri Lanka / The Institution of Engineers - Sri Lanka PART III- EXAMINATION 2012 311- COMPUTER SYSTEMS ENGINEERING Time Allowed: 3 hours INSTRUCTIONS TO CANDIDATES 1. This paper contains 8 questions in 5 pages 2.

More information

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture)

COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture) COSC 243 Data Representation 3 Lecture 3 - Data Representation 3 1 Data Representation Test Material Lectures 1, 2, and 3 Tutorials 1b, 2a, and 2b During Tutorial a Next Week 12 th and 13 th March If you

More information

Binary Addition & Subtraction. Unsigned and Sign & Magnitude numbers

Binary Addition & Subtraction. Unsigned and Sign & Magnitude numbers Binary Addition & Subtraction Unsigned and Sign & Magnitude numbers Addition and subtraction of unsigned or sign & magnitude binary numbers by hand proceeds exactly as with decimal numbers. (In fact this

More information

UNIVERSITY OF WISCONSIN MADISON

UNIVERSITY OF WISCONSIN MADISON CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN MADISON Prof. Gurindar Sohi TAs: Lisa Ossian, Minsub Shin, Sujith Surendran Midterm Examination 1 In Class (50 minutes) Wednesday,

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 01, SPRING 2013 TOPICS TODAY Course overview Levels of machines Machine models: von Neumann & System Bus Fetch-Execute Cycle Base

More information

Signed Multiplication Multiply the positives Negate result if signs of operand are different

Signed Multiplication Multiply the positives Negate result if signs of operand are different Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result

More information

Name: University of Michigan uniqname: (NOT your student ID number!)

Name: University of Michigan uniqname: (NOT your student ID number!) The University of Michigan - Department of EECS EECS370 Introduction to Computer Organization Midterm Exam 1 October 22, 2009 Name: University of Michigan uniqname: (NOT your student ID number!) Open book,

More information

Chapter 10 - Computer Arithmetic

Chapter 10 - Computer Arithmetic Chapter 10 - Computer Arithmetic Luis Tarrataca luis.tarrataca@gmail.com CEFET-RJ L. Tarrataca Chapter 10 - Computer Arithmetic 1 / 126 1 Motivation 2 Arithmetic and Logic Unit 3 Integer representation

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Exponential Notation FLOATING POINT NUMBERS Englander Ch. 5 The following are equivalent representations of 1,234 123,400.0 x 10-2 12,340.0 x 10-1 1,234.0 x 10 0 123.4 x 10 1 12.34 x 10 2 1.234 x 10 3

More information

10.1. Unit 10. Signed Representation Systems Binary Arithmetic

10.1. Unit 10. Signed Representation Systems Binary Arithmetic 0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

More information

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states).

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). These states are usually labeled 0 and 1. Each item in memory

More information

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning

4 Operations On Data 4.1. Foundations of Computer Science Cengage Learning 4 Operations On Data 4.1 Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: List the three categories of operations performed on data.

More information

1.3 Data processing; data storage; data movement; and control.

1.3 Data processing; data storage; data movement; and control. CHAPTER 1 OVERVIEW ANSWERS TO QUESTIONS 1.1 Computer architecture refers to those attributes of a system visible to a programmer or, put another way, those attributes that have a direct impact on the logical

More information

CS 61C: Great Ideas in Computer Architecture. (Brief) Review Lecture

CS 61C: Great Ideas in Computer Architecture. (Brief) Review Lecture CS 61C: Great Ideas in Computer Architecture (Brief) Review Lecture Instructor: Justin Hsia 7/16/2013 Summer 2013 Lecture #13 1 Topic List So Far (1/2) Number Representation Signed/unsigned, Floating Point

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information