PIC32MX150F128 Breakout Board

Size: px
Start display at page:

Download "PIC32MX150F128 Breakout Board"

Transcription

1 PIC32MX150F128 Breakout Board This is a description of a 32 Bit PIC32MX breakout board to be used for fast prototyping. It could also be used for conventional circuit boards to avoid the fine pitch of 64 pin packaged used by the device. In this case the board is piggy backed on the PCB board. A test program has been developed to verify the board and is described. The board is based on Microchip PIC32MX150F128 chip. A 44 pin TQFP packed is used. A total of 34 I/- pins are available. Bypass capacitors for power is provided on the breakout board as well as a connector for ICDA (In Circuit Emulation). The chip has the following features: KB Program memory 32 KB RAM 32 remappable pins 5 Timers/Capture/Compare 2 UART 2 SPI/I2S 5 External Interrupts 3 Analog Comparators 2 I2C PMP 4 DMA Channels CTMU bit ADC RTCC 34 I/O pins JTAG ICDA Chip pin layout is as in figure 1. The chip can use an internal RC-clock or use an external Chrystal for higher accuracy. The breakout board is prepared to use an external Chrystal. The CPU core is a DMIPS MIPS32 M4K running up to 48 MHz. The MCU has most of what you can expect from a modern microcontroller. A LED lamp indicates when power is applied. The power is 3.3 volts. The breakout board has two 22 pins 0.1 inch spaced connectors, similar to a big DIL circuit. This makes it easy to use the board on a solderless electronic prototype breadboard. All signal names are clearly visible with screened white text. An ICDA connector is mounted on the edge of the card. Via this connector you can connect a Microchip MPLAB ICD3 in circuit emulator. This gives you the possibility to download your programs to the program memory as well as debugging the program. You can set up to 6 breakpoints for this processor. One important notice! This board uses ICDA channel 2 (PGED2, PGEC2). You must enable this by a Pragma in your code as below: PIC32MX150F128 Breakout Board.docx, :33, page: 1 (8)

2 // Debug Configuration #pragma config DEBUG = ON #pragma config ICESEL = ICS_PGx2 // ICE Background debugger = On. // Note, you must do this due to that com port #2 is used for ICS Figure 1, Pin layout of the PIC32 chip used (PIC32MX150F128D) The schematic is shown in figure 2. Note that C7, C8 X1 is optional. They are only used if you want to have a crystal based CPU clock. In most cases it will work without problem to use the on chip RC-clock. Use low ESR capacitors. The colors on the ICDA pin is the standard colors I use for my own cables and just a reminder. Be careful to connect with the right polarity, NMCLR must be connected to pin 1 of the ICDA connector. All ports are only labeled with their port name (A, B, C) and the pin name. You can use the cross table found in Microchip data sheet for the processor to find the other corresponding signals that are shared with a port. Bear also in mind that PIC32MX150FXX uses Peripheral Pin Select (PPS), you can decide by configuration commands which signal shall be assigned to a particular pin. In total we have 35 I/O pins that can be used, not including NMCLR (Clear/Reset signal). PIC32MX150F128 Breakout Board.docx, :33, page: 2 (8)

3 Figure 2, schematic of the board. The pin configuration can be seen in table 1. J-Conn Jax-Pin DIL-pin Signal JA1 1 1 RB15/AN9_SCK2 JA1 2 2 RB14_AN10_SCK1 JA1 3 3 RB13_AN1 JA1 4 4 RB12 JA1 5 5 RB11_PGEC2 JA1 6 6 RB10_PGED2 JA1 7 7 RB9 JA1 8 8 RB8 JA1 9 9 RB7_INT0 JA RB6_SCL2 JA RB5_SDA2 JA RB4 JA RB3_AN5 JA RB2_AN4 JA RB1_AN3_PGEC1 JA RB0_AN2_PGED1 JA RA10 JA RA9 JA RA8 JA RA7 JA RA4_T1CK JA RA3_OSC2 J-Conn Jax-Pin DIL-pin Signal JA RA2_OSC1 JA RA1_AN1_SCL1 JA RA0_AN0_SDA1 JA RC0_AN6 JA RC1_AN7 JA RC2_AN8 JA RC3 JA RC4 JA RC5 JA RC6 JA RC7 JA RC8 JA RC9 JA NMCLR JA NC JA NC JA Vdd+3.3V JA Vdd+3.3V JA Vdd+3.3V JA GND JA GND JA GND PIC32MX150F128 Breakout Board.docx, :33, page: 3 (8)

4 Table 1, Breakout Board Pin configuration Note that some signals can t be used with PPS and are bound to a particular I/O pin. These are included in table 1. In figure 3 you can see a computer generated 3D picture of the board (top side) Figure 3, Computer generated 3D picture of the board A photo of the breakout board can be seen in figure 4. In this case the internal RC generator is used to provide the internal clock. This simple setup was used for the initial test to check that the board was preforming as expected. Figure 1, PIC32MX150F128D Breakout board connected to MPLAB ICD 3 Test Program A test program was made for the board. The purpose was just to check that the basic functions where working correctly. Besides doing some simple outputs it also checks the CPU and the on chip RAM. The pragma section can be of particular interest, se figure below. // System clock selection #pragma config FNOSC = FRCPLL #pragma config FPLLIDIV = DIV_2 #pragma config FPLLMUL = MUL_24 #pragma config FPLLODIV = DIV_2 #pragma config FPBDIV = DIV_2 #pragma config FSOSCEN = OFF // Watchdog Configuration #pragma config FWDTEN = OFF #pragma config WDTPS = PS // RC OSC 8 MHz // Divide 8/2 to get 4 MHz // Multiply by 24 to get 96 MHZ // Divide 96/2 to get 48 MHz System Clock // Peripheral Clock Divisor gives 24 MHz // Must be off to use RB4 // Watchdog Timer Enable bit, Watchdog OFF. // Watchdog Timer Postscale Select bits, WDPS = Max. PIC32MX150F128 Breakout Board.docx, :33, page: 4 (8)

5 // Debug Configuration #pragma config DEBUG = ON #pragma config ICESEL = ICS_PGx2 // Memory Configuration #pragma config CP = OFF #pragma config BWP = OFF #pragma config PWP = OFF // ICE Background debugger = On. // Note, you must do this due to that com port #2 is used for ICS // Code Protect Disabled. // Boot Flash write protect OFF. // Program Flash write protect OFF. #define SYS_CLK_MHZ 48 #define SYS_CLK_HZ L Note that this will give an infernal RC clock with a frequency of 48 MHz ( ns). I must admit that I actually wanted to have a 50 MHz clock but couldn t figure out how to get that figure. Perhaps somebody reading this can give an advice. A simple test program was developed. It uses one LED as an output indicator. The LED shall be connected to pin RC0 via a 470 ohms resistor. During the test the diode will blink fast. If the test is successful it will lit the LED with a steady green light for a while. It will after a delay start the sequence all over again. If it fails the LED will be turned off. The test program outputs the oscillator frequency (System Clock/SYSCLK) on pin RC3. You can easily verify this by connecting an oscilloscope to the pin. You will get a wave form as in figure YY. The test circuit setup is shown in figure x. Figure 5, test setup with the bread board PIC32MX150F128 Breakout Board.docx, :33, page: 5 (8)

6 You will see the LED blinking rapidly for a while then become steady lit up and the go back to the blinking. During steady lit the CPU test program is executing. You can see the pulse at RC0 with an oscilloscope. On pin RC2 you will find a square wave. On RC3 you will find the CPU clock, see more below. Finally, on pin RB4 you will see a PWM signal, OC1. When using a PIC32MX150F128D MCU and outputting the REFCLKO signal to a port pin I get the waveform as in the figure below. The remarkable thing is that it has negative voltage swing and that it looks like a sinus. I expected the signal to be pure square and just a positive voltage swing above ground. Figure 6, REFCLKO signal at pin RC3, note the negative swing The small red doted horizontal line is the ground reference level. As can be seen from the figure the max is Volt and the min Volts. I did check the ground reference level with another signal. It is correct! I m confused of this behavior. Does anybody have experience of this behavior and can explain it? How can the signal be negative? CPU and RAM test functions The following test functions are within the test framework: DoCpuRegisterTest(); DoProgramCounterTest(); DoCheckerBoardRamTest(); DoMarchBRamTest(); DoMarchCRamTtests(); DoMarchCMinusRamTtest(); DoMarchCRamAndStackTest(); DoFlashCrcTest(); PIC32MX150F128 Breakout Board.docx, :33, page: 6 (8)

7 DoCpuRegisterTest(); This function tests the 31 CPU Registers. This is a non-destructive test. Interrupts should be disabled when calling this test function. DoProgramCounterTest(); This is a functional test of the Program Counter (PC). It checks that the PC register is not stuck and it properly holds the address of the next instruction to be executed. DoCheckerBoardRamTest(); This function implements the Checkerboard test on the RAM memory. This is a non-destructive memory test. The content of the tested memory area is saved and restored. The test operates in 64 bytes long memory chunks at a time. DoMarchBRamTest(); This function implements the March B test. This test performs 32-bit word RAM accesses. The address of the RAM area to be tested must be 32-bit aligned and the size of the tested RAM area must be an integral multiple of 4. The tested RAM memory will be cleared when the control returns so this is a destructive memory test. DoMarchCRamTtests(); This function implements the March C test. This test performs 32-bit word RAM accesses. The address of the RAM area to be tested must be 32-bit aligned and the size of the tested RAM area must be an integral multiple of 4. This is a destructive memory test. DoMarchCMinusRamTtest(); This function implements the March C Minus test. This test performs 32-bit word RAM accesses. The address of the RAM area to be tested must be 32-bit aligned and the size of the tested RAM area must be an integral multiple of 4. This is a destructive memory test. DoMarchCRamAndStackTest(); This function implements the March C test on both a RAM and a stack area. First the RAM area is tested using the standard March C test. If the test succeeded the requested Stack area is copied into the RAM area that has just been tested and then the March C test is run over the Stack area as if it were a regular RAM area. The saved Stack area is restored and the result of the test is returned to the user. Once the Stack area is tested, the SP register is restored. This is a destructive memory test. DoFlashCrcTest(); This function calculates the 16-bit CRC of the supplied memory area using the standard Linear Feedback Shift Register (LFSR) implementation. It calculates the CRC over the memory area between the start address and end address and returns the CRC Value. This test is non-destructive for the memory area to which it is applied. The above test functions use a bit structure to set the result of each individual test, se below: volatile struct ClassB_Test_Flags { unsigned cpuregister_testresult : 1; PIC32MX150F128 Breakout Board.docx, :33, page: 7 (8)

8 unsigned programcounter_testresult:1; unsigned checkerboardram_testresult:1; unsigned marchcram_testresult:1; unsigned marchcminusram_testresult:1; unsigned marchcramstack_testresult:1; unsigned marchbram_testresult:1; unsigned flash_testresult:1; unsigned clock_testresult:1; unsigned clockline_testresult:1; } testflag; If the specific test has passed the corresponding bit is set to True (1), if it fails it will be set to False (0). Note that the two last bits for clock tests are not implemented in this incarnation. If the LED will be switched off, indicating an error, of check these bits for the probably cause. The memory test program uses malloc to allocate memory. Therefore it s important to set up the Heap due to the fact that malloc the heap to acquire memory. To set up the heap see figure 7 as an example. Note also that the stack size is set as well. Figure 7, Project build options to get a Heap Note that this project was developed and compiled using MPLAB IDE V8.92. However it should be rather straight forward to import it to the new MPLAB XC development environment. Regards Bo, SM6FIE References 1. Circuit diagram, pdf file 2. PCB DXF files, zip file 3. Test Framework, zip file Keywords: PIC32, PIC32MX150, Breakout Board, PIC32 Test program, REFCLKO, Class B Test software, Microchip PIC MCU PIC32MX150F128 Breakout Board.docx, :33, page: 8 (8)

An Introduction to Microchip's MPLAB IDE and an Example Application: LED Blinking

An Introduction to Microchip's MPLAB IDE and an Example Application: LED Blinking An Introduction to Microchip's MPLAB IDE and an Example Application: LED Blinking 1 See Project 1.1 for installation instructions for MPLAB X. 2 To rotate the LEDs 3 Help->Help Contents->Search: Port Functions

More information

ECE 3740 SEP1: MPLAB Introduction and LED Blinking. An Introduction to Microchip's MPLAB IDE and

ECE 3740 SEP1: MPLAB Introduction and LED Blinking. An Introduction to Microchip's MPLAB IDE and ECE 3740 SEP1: MPLAB Introduction and LED Blinking An Introduction to Microchip's MPLAB IDE and an Example Application: LED Blinking 1 Objective Rotate LEDs 2 Port Functions Library Help >Help Contents

More information

Configuration of Device Specific Features

Configuration of Device Specific Features Configuration of Device Specific Features 1 The PIC32MX795F512L microcontroller has many customizable features. These features can be either enabled or disabled to allow customization of the device. For

More information

32 bit Micro Experimenter Board Description and Assembly manual

32 bit Micro Experimenter Board Description and Assembly manual 32 bit Micro Experimenter Board Description and Assembly manual Thank you for purchasing the KibaCorp 32 bit Micro Experimenter. KibaCorp is dedicated to Microcontroller education for the student, hobbyist

More information

PIC-32MX development board Users Manual

PIC-32MX development board Users Manual PIC-32MX development board Users Manual All boards produced by Olimex are ROHS compliant Rev.A, June 2008 Copyright(c) 2008, OLIMEX Ltd, All rights reserved INTRODUCTION: The NEW PIC-32MX board uses the

More information

MPLAB XC32 USER S GUIDE FOR EMBEDDED ENGINEERS. MPLAB XC32 User s Guide for Embedded Engineers INTRODUCTION

MPLAB XC32 USER S GUIDE FOR EMBEDDED ENGINEERS. MPLAB XC32 User s Guide for Embedded Engineers INTRODUCTION MPLAB XC32 USER S GUIDE FOR EMBEDDED ENGINEERS MPLAB XC32 User s Guide for Embedded Engineers INTRODUCTION This document presents five code examples for 32-bit devices and the MPLAB XC32 C compiler. Some

More information

DEV-1 HamStack Development Board

DEV-1 HamStack Development Board Sierra Radio Systems DEV-1 HamStack Development Board Reference Manual Version 1.0 Contents Introduction Hardware Compiler overview Program structure Code examples Sample projects For more information,

More information

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform.

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform. Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform www.sierraradio.net www.hamstack.com Topics Introduction Hardware options Software development HamStack project

More information

Microprocessors B Lab 1 Spring The PIC24HJ32GP202

Microprocessors B Lab 1 Spring The PIC24HJ32GP202 The PIC24HJ32GP202 Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To familiarize the student

More information

MT2 Introduction Embedded Systems. MT2.1 Mechatronic systems

MT2 Introduction Embedded Systems. MT2.1 Mechatronic systems MT2 Introduction Embedded Systems MT2.1 Mechatronic systems Mechatronics is the synergistic integration of mechanical engineering, with electronics and intelligent computer control in the design and manufacturing

More information

Introducing the 32 bit Micro Experimenter

Introducing the 32 bit Micro Experimenter Introducing the 32 bit Micro Experimenter In a 2010, Nuts and Volts introduced the 16 bit Micro Experimenter with a seven article series. The 16 bit Experimenter offered the readership a new and significant

More information

ET-PIC 24 WEB-V1. o Central Processing Unit (CPU) o System. o nanowatt Power Managed Modes. o Analog Features

ET-PIC 24 WEB-V1. o Central Processing Unit (CPU) o System. o nanowatt Power Managed Modes. o Analog Features ET-PIC 24 WEB-V1 ET-PIC 24 WEB-V1 is PIC Board Microcontroller from Microchip that uses 16 Bit No.PIC24FJ128GA008 Microcontroller for processing data and develops board. The remarkable specification of

More information

Manual of Board ET-PIC STAMP 18F8722-K22 ET-PIC STAMP 18F8722-K22

Manual of Board ET-PIC STAMP 18F8722-K22 ET-PIC STAMP 18F8722-K22 ET-PIC STAMP 18F8722-K22 ET-PIC STAMP 18F8722-K22 is Board Microcontroller in a series of PIC18F87K22 80-Pin TQFP from Microchip. It designs I/O of MCU on board to interface with CONNECTOR in the format

More information

PicProtoBoard 32MX Adapter User Manual

PicProtoBoard 32MX Adapter User Manual PicProtoBoard 32MX Adapter User Manual The 32MX Adapter turns your PicProtoBoard into a 32bit testing environment. It is compatible with any PIC32MX 44 pin TQFP with pinout compatible with the PIC32MX130F064D.

More information

Introducing: New Low-Cost & Low Pin Count PIC Microcontrollers for the 8-, 16- & 32-bit Markets

Introducing: New Low-Cost & Low Pin Count PIC Microcontrollers for the 8-, 16- & 32-bit Markets Introducing: New Low-Cost & Low Pin Count PIC Microcontrollers for the 8-, 16- & 32-bit Markets PIC MCU and dspic DSC Family Portfolio 2 New Low Cost, Low Pin-Count 8-, 16-, 32-bit Offerings 3 What Are

More information

PIC32&Overview& E155&

PIC32&Overview& E155& PIC32&Overview& E155& Outline PIC 32 Architecture MIPS M4K Core PIC 32 Peripherals PIC 32 Basic Operations Clock 2 Microcontroller Approximately $16B of microcontrollers were sold in 2011, and the market

More information

AKKON USB CONTROLLER BOARD

AKKON USB CONTROLLER BOARD TN002 AKKON USB CONTROLLER BOARD USB Microcontroller board with the PIC18F4550 * Datasheet Authors: Gerhard Burger Version: 1.0 Last update: 20.01.2006 File: Attachments: no attachments Table of versions

More information

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester

Embedded Systems. PIC16F84A Internal Architecture. Eng. Anis Nazer First Semester Embedded Systems PIC16F84A Internal Architecture Eng. Anis Nazer First Semester 2017-2018 Review Computer system basic components? CPU? Memory? I/O? buses? Instruction? Program? Instruction set? CISC,

More information

DEVBOARD3 DATASHEET. 10Mbits Ethernet & SD card Development Board PIC18F67J60 MICROCHIP

DEVBOARD3 DATASHEET. 10Mbits Ethernet & SD card Development Board PIC18F67J60 MICROCHIP DEVBOARD3 DATASHEET 10Mbits Ethernet & SD card PIC18F67J60 MICROCHIP Version 1.0 - March 2009 DEVBOARD3 Version 1.0 March 2009 Page 1 of 7 The DEVBOARD3 is a proto-typing board used to quickly and easily

More information

KPIC-0818P (V050919) Devices Included in this Data sheet: KPIC-0818P

KPIC-0818P (V050919) Devices Included in this Data sheet: KPIC-0818P Devices Included in this Data sheet: KPIC-0818P Features: Carefully designed prototyping area Accepts 8 pin PIC12 series micro-controllers Accepts 14 and 18 Pin PIC16 series Accepts some 8,14 and 18 pin

More information

eip-24/100 Embedded TCP/IP 10/100-BaseT Network Module Features Description Applications

eip-24/100 Embedded TCP/IP 10/100-BaseT Network Module Features Description Applications Embedded TCP/IP 10/100-BaseT Network Module Features 16-bit Microcontroller with Enhanced Flash program memory and static RAM data memory On board 10/100Mbps Ethernet controller, and RJ45 jack for network

More information

Display Real Time Clock (RTC) On LCD. Version 1.2. Aug Cytron Technologies Sdn. Bhd.

Display Real Time Clock (RTC) On LCD. Version 1.2. Aug Cytron Technologies Sdn. Bhd. Display Real Time Clock (RTC) On LCD PR12 Version 1.2 Aug 2008 Cytron Technologies Sdn. Bhd. Information contained in this publication regarding device applications and the like is intended through suggestion

More information

Getting Started with SKPIC32

Getting Started with SKPIC32 Getting Started with SKPIC32 Content: 1.Introduction 2.The Board 3.Software 4.Hands On 4.1.Loading program with bootloader 4.2.Loading program without bootloader 1. Introduction 32-bit PIC MCU have more

More information

PICado Alpha Development Board V1.0

PICado Alpha Development Board V1.0 V1.0 Bluetooth Transceiver Module HC-05 Four onboard FET power output stage 34 freely assignable I/O pins ICSP interface 2015 Jan Ritschard, All rights reserved. V1.0 Table of Contents 1. Introduction...

More information

The Freescale MC908JL16 Microcontroller

The Freescale MC908JL16 Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory The Freescale MC908JL16 Microcontroller by Allan G. Weber 1 Introduction The Freescale MC908JL16 (also called

More information

chipkit MX3 is the new name for Cerebot MX3. This board retains all functionality of the Cerebot MX3.

chipkit MX3 is the new name for Cerebot MX3. This board retains all functionality of the Cerebot MX3. 1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com Revised October 11, 2013 This manual applies to the chipkit MX3 rev. B Overview chipkit MX3 is the new name for Cerebot MX3. This board

More information

Microcontroller. BV523 32bit Microcontroller. Product specification. Jun 2011 V0.a. ByVac Page 1 of 8

Microcontroller. BV523 32bit Microcontroller. Product specification. Jun 2011 V0.a. ByVac Page 1 of 8 32bit Product specification Jun 2011 V0.a ByVac Page 1 of 8 Contents 1. Introduction...3 2. Features...3 3. Physical Specification...3 3.1. PIC32...3 3.2. USB Interface...3 3.3. Power Supply...4 3.4. Power

More information

eip-10 Embedded TCP/IP 10-BaseT Network Module Features Description Applications

eip-10 Embedded TCP/IP 10-BaseT Network Module Features Description Applications Embedded TCP/IP 10-BaseT Network Module Features 8-bit reprogrammable Microcontroller with Enhanced Flash program memory, EEPROM and Static RAM data memory On board 10Mbps Ethernet controller, and RJ45

More information

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual

SBAT90USB162 Atmel. SBAT90USB162 Development Board User s Manual SBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the SBAT90USB162 Atmel AT90USB162 development board. This board is designed to give a quick and cost-effective

More information

PIC-P67J60 development board Users Manual

PIC-P67J60 development board Users Manual PIC-P67J60 development board Users Manual Rev.A, July 2008 Copyright(c) 2008, OLIMEX Ltd, All rights reserved INTRODUCTION: If you want to build your own Internet enabled device this is the board for you.

More information

BC-USB-Kit Manual. First Edition. February, BeatCraft, Inc.

BC-USB-Kit Manual. First Edition. February, BeatCraft, Inc. BC-USB-Kit Manual First Edition February, 2015 BeatCraft, Inc. 1. Overview BC-USB-Kit is a USB-gadget development kit, which is equipped with a micro controller of Microchip Technology Inc, PIC24FJ128GB202

More information

TDSDB Features. Description

TDSDB Features. Description TDSDB14550 Features Inexpensive development or project board providing quick start up solution. 5v Pic alternative to the 3.3v TDSDB146J50 Mini B USB socket to provide power and USB functionality. 40 pin

More information

Contents. The USB Logic Tool... 2 Programming... 2 Using the USB Logic Tool... 6 USB Logic Tool Features... 7 Device Hardware...

Contents. The USB Logic Tool... 2 Programming... 2 Using the USB Logic Tool... 6 USB Logic Tool Features... 7 Device Hardware... USB Logic Tool Contents The USB Logic Tool... 2 Programming... 2 Using the USB Logic Tool... 6 USB Logic Tool Features... 7 Device Hardware... 11 The USB Logic Tool The device is meant to be a prototyping

More information

LED Knight Rider. Yanbu College of Applied Technology. Project Description

LED Knight Rider. Yanbu College of Applied Technology. Project Description LED Knight Rider Yanbu College of Applied Technology Project Description This simple circuit functions as a 12 LED chaser. A single illuminated LED 'walks' left and right in a repeating sequence, similar

More information

SBC65EC. Ethernet enabled Single Board Computer

SBC65EC. Ethernet enabled Single Board Computer Ethernet enabled Single Board Computer Table of Contents 1 Introduction...2 2 Features...3 3 Daughter Board Connectors...4 3.1 As a Daughter Board...5 3.2 Expansion boards...5 4 Interfaces...5 4.1 Ethernet...5

More information

Microcontroller Overview

Microcontroller Overview Microcontroller Overview Microprocessors/Microcontrollers/DSP Microcontroller components Bus Memory CPU Peripherals Programming Microcontrollers vs. µproc. and DSP Microprocessors High-speed information

More information

ootbrobotics.com Electronics and Robotics LLC

ootbrobotics.com Electronics and Robotics LLC 2 Table of Contents... 2 Warning: READ BEFORE PROCEDING... 4 Be Careful with PORTB... 4 External Power Considerations... 4 Always Check Backpack Orientation... 4 Overview... 5 Why Xmega?... 5 Microcontroller

More information

Approximately half the power consumption of earlier Renesas Technology products and multiple functions in a 14-pin package

Approximately half the power consumption of earlier Renesas Technology products and multiple functions in a 14-pin package Renesas Technology to Release R8C/Mx Series of Flash MCUs with Power Consumption Among the Lowest in the Industry and Powerful On-Chip Peripheral Functions Approximately half the power consumption of earlier

More information

An Introduction to Designing Ham Radio Projects with PIC Microcontrollers. George Zafiropoulos KJ6VU

An Introduction to Designing Ham Radio Projects with PIC Microcontrollers. George Zafiropoulos KJ6VU An Introduction to Designing Ham Radio Projects with PIC Microcontrollers George Zafiropoulos KJ6VU Topics Ham radio applications Microcontroller basics Hardware design examples Implementing your design

More information

All information, including contact information, is available on our web site Feel free also to explore our alternative products.

All information, including contact information, is available on our web site   Feel free also to explore our alternative products. _ V1.1 POD Hardware Reference Intel 80186 EA POD POD rev. D Ordering code IC20011-1 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should

More information

C and Embedded Systems. So Why Learn Assembly Language? C Compilation. PICC Lite C Compiler. PICC Lite C Optimization Results (Lab #13)

C and Embedded Systems. So Why Learn Assembly Language? C Compilation. PICC Lite C Compiler. PICC Lite C Optimization Results (Lab #13) C and Embedded Systems A µp-based system used in a device (i.e, a car engine) performing control and monitoring functions is referred to as an embedded system. The embedded system is invisible to the user

More information

Nuvoton 4T 8051-based Microcontroller NuTiny-SDK-N78E715 User Manual

Nuvoton 4T 8051-based Microcontroller NuTiny-SDK-N78E715 User Manual 4T 8051 8-bit Microcontroller Nuvoton 4T 8051-based Microcontroller NuTiny-SDK-N78E715 User Manual The information described in this document is the exclusive intellectual property of Nuvoton Technology

More information

Typical applications where a CPLD may be the best design approach:

Typical applications where a CPLD may be the best design approach: By: Carlos Barberis, dba Bartek Technologies Description of Bartek s CPLD1 development board. For some of us CPLD s are familiar devices and for others just another acronym in the electronic device industry.

More information

Breeze Board. Type A. User Manual.

Breeze Board. Type A. User Manual. Breeze Board Type A User Manual www.dizzy.co.za Contents Introduction... 3 Overview Top... 4 Overview Bottom... 5 Getting Started (Amicus Compiler)... 6 Power Circuitry... 7 USB... 8 Microcontroller...

More information

_ V1.3. Motorola 68HC11 AE/AS POD rev. F. POD Hardware Reference

_ V1.3. Motorola 68HC11 AE/AS POD rev. F. POD Hardware Reference _ V1.3 POD Hardware Reference Motorola 68HC11 AE/AS POD rev. F Ordering code IC81049 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should

More information

PIC32 MX1/MX2 Microcontrollers. Dave Richkas Product Marketing Manager High-Performance Microcontroller Division Microchip Technology Inc.

PIC32 MX1/MX2 Microcontrollers. Dave Richkas Product Marketing Manager High-Performance Microcontroller Division Microchip Technology Inc. PIC32 MX1/MX2 Microcontrollers Dave Richkas Product Marketing Manager High-Performance Microcontroller Division Microchip Technology Inc. 2 New PIC32MX1/MX2 Series The smallest and lowest-cost PIC32 microcontrollers

More information

SBC44EC. Single board computer for 44 pin PLCC PICs

SBC44EC. Single board computer for 44 pin PLCC PICs Single board computer for 44 pin PLCC PICs Table of Contents 1 Introduction...2 2 Features...3 3 Expansion Connectors...4 3.1 Frontend Connectors...4 3.1.1 Connecting IDC connectors to the Frontend Connector...5

More information

Section 32. High-Level Device Integration

Section 32. High-Level Device Integration HIGHLIGHTS Section 32. High-Level Device Integration This section of the manual contains the following topics: 32 32.1 Introduction... 32-2 32.2 Device Configuration... 32-2 32.3 Device Identification...

More information

_ V1.1. Motorola 6809 B POD rev. C. POD Hardware Reference

_ V1.1. Motorola 6809 B POD rev. C. POD Hardware Reference _ V1.1 POD Hardware Reference Motorola 6809 B POD rev. C Ordering code IC81060 Thank you for purchasing this product from isystem. This product has been carefully crafted to satisfy your needs. Should

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

Table of Contents Overview Functional Description Programming Tools... 4

Table of Contents Overview Functional Description Programming Tools... 4 1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com ChipKIT Pro MX7 Board Reference Manual Revised January 3, 2014 This manual applies to the ChipKIT Pro MX7 rev. B and C Table of Contents

More information

AVR- M16 development board Users Manual

AVR- M16 development board Users Manual AVR- M16 development board Users Manual All boards produced by Olimex are ROHS compliant Rev. C, January 2005 Copyright(c) 2009, OLIMEX Ltd, All rights reserved Page1 INTRODUCTION AVR-M16 is header board

More information

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine

MPLAB SIM. MPLAB IDE Software Simulation Engine Microchip Technology Incorporated MPLAB SIM Software Simulation Engine MPLAB SIM MPLAB IDE Software Simulation Engine 2004 Microchip Technology Incorporated MPLAB SIM Software Simulation Engine Slide 1 Welcome to this web seminar on MPLAB SIM, the software simulator that

More information

User Manual For CP-JR ARM7 USB-LPC2148 / EXP

User Manual For CP-JR ARM7 USB-LPC2148 / EXP CP-JR ARM7 USB-LPC2148 / EXP 38 CR-JR ARM7 USB-LPC2148 which is a Board Microcontroller ARM7TDMI-S Core uses Microcontroller 16/32-Bit 64 Pin as Low Power type to be a permanent MCU on board and uses MCU

More information

Bolt 18F2550 System Hardware Manual

Bolt 18F2550 System Hardware Manual 1 Bolt 18F2550 System Hardware Manual Index : 1. Overview 2. Technical specifications 3. Definition of pins in 18F2550 4. Block diagram 5. FLASH memory Bootloader programmer 6. Digital ports 6.1 Leds and

More information

CEIBO FE-51RD2 Development System

CEIBO FE-51RD2 Development System CEIBO FE-51RD2 Development System Development System for Atmel AT89C51RD2 Microcontrollers FEATURES Emulates Atmel AT89C51RD2 60K Code Memory Real-Time Emulation Frequency up to 40MHz / 3V, 5V ISP and

More information

The Atmel ATmega328P Microcontroller

The Atmel ATmega328P Microcontroller Ming Hsieh Department of Electrical Engineering EE 459Lx - Embedded Systems Design Laboratory 1 Introduction The Atmel ATmega328P Microcontroller by Allan G. Weber This document is a short introduction

More information

Quickstart. Chapter 1

Quickstart. Chapter 1 Chapter 1 Quickstart Microchip PIC32s are powerful microcontrollers that can be purchased for less than $10 in quantities of one. The PIC32 combines, in a single chip, a 32-bit central processing unit

More information

Product Overview -A 16 bit Micro Experimenter for Solderless Breadboards

Product Overview -A 16 bit Micro Experimenter for Solderless Breadboards Product Overview -A 16 bit Micro Experimenter for Solderless Breadboards 1.0 Introduction The 16 Bit Micro Experimenter is an innovative solderless breadboard kit solution developed by a Microchip Academic

More information

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter

USB Debug Adapter. Power USB DEBUG ADAPTER. Silicon Laboratories. Stop. Run. Figure 1. Hardware Setup using a USB Debug Adapter C8051F2XX DEVELOPMENT KIT USER S GUIDE 1. Kit Contents The C8051F2xx Development Kits contain the following items: C8051F206 or C8051F226 Target Board C8051Fxxx Development Kit Quick-Start Guide Silicon

More information

PIC-LCD-3310 development board Users Manual

PIC-LCD-3310 development board Users Manual PIC-LCD-3310 development board Users Manual Rev.A, July 2008 Copyright(c) 2008, OLIMEX Ltd, All rights reserved INTRODUCTION: PIC-LCD-3310 is development board with PIC18F67J50, NOKIA 3310 BW 84x48 pixels

More information

Section 33. Device Configuration (Part II)

Section 33. Device Configuration (Part II) Section 33. Device Configuration (Part II) HIGHLIGHTS This section of the manual contains the following major topics: 33.1 Introduction... 33-2 33.2 Device Configuration Registers... 33-2 33.3 Configuration

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application...

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet Example Application... Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 19, 2011 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F684A processor,

More information

32 khz (typ.) embedded oscillator Oscillation stop detection circuit included

32 khz (typ.) embedded oscillator Oscillation stop detection circuit included (rev1.0) DESCRIPTIONS 16-bit Single Chip Microcontroller Smart card Interface (ISO7816-3) is embedded. 64KB Flash ROM: Read/program protection function, 4KB RAM Supports 1.8V to 5.5V wide range operating

More information

Easy Kit Board Manual

Easy Kit Board Manual User s Manual, V1.0, June2008 Easy Kit Board Manual Easy Kit - XC88x Microcontrollers Edition 2008-06 Published by Infineon Technologies AG, 81726 München, Germany Infineon Technologies AG 2008. All Rights

More information

Breeze Board. Type B. User Manual.

Breeze Board. Type B. User Manual. Breeze Board Type B User Manual www.dizzy.co.za Contents Introduction... 3 Overview Top... 4 Overview Bottom... 5 Getting Started (USB Bootloader)... 6 Power Circuitry... 7 USB... 8 Microcontroller...

More information

Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON

Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON Homework 5: Circuit Design and Theory of Operation Due: Friday, February 24, at NOON Team Code Name: Motion Tracking Laser Platform Group No.: 9 Team Member Completing This Homework: David Kristof NOTE:

More information

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4

1 Introduction to Computers and Computer Terminology Programs Memory Processor Data Sheet... 4 Overview of the PIC 16F648A Processor: Part 1 EE 361L Lab 2.1 Last update: August 1, 2016 Abstract: This report is the first of a three part series that discusses the features of the PIC 16F648A processor,

More information

PCB-STM32-F3U. Development baseboard for the STMicro Discovery-F3 module (STMicro part# STM32F3DISCOVERY)

PCB-STM32-F3U. Development baseboard for the STMicro Discovery-F3 module (STMicro part# STM32F3DISCOVERY) PCB-STM32-F3U Development baseboard for the STMicro Discovery-F3 module (STMicro part# STM32F3DISCOVERY) Part Number: PCB-STM32-F3U (unpopulated PCB with Discovery module sockets, no other parts) STM32-F3U

More information

XC164CS Prototype Board

XC164CS Prototype Board XC164CS Prototype Board Features: Small PCB (95 x 57 mm) with ground plane. o Designed to fit inside a Pac Tec FLX-4624 ABS enclosure Infineon XC164CS 16-bit single-chip microcontroller o 166SV2 core o

More information

AVR Training Board-I. VLSI Design Lab., Konkuk Univ. LSI Design Lab

AVR Training Board-I. VLSI Design Lab., Konkuk Univ. LSI Design Lab AVR Training Board-I V., Konkuk Univ. Tae Pyeong Kim What is microcontroller A microcontroller is a small, low-cost computeron-a-chip which usually includes: An 8 or 16 bit microprocessor (CPU). A small

More information

8051 Microcontroller

8051 Microcontroller 8051 Microcontroller The 8051, Motorola and PIC families are the 3 leading sellers in the microcontroller market. The 8051 microcontroller was originally developed by Intel in the late 1970 s. Today many

More information

CSE 466 Exam 1 Winter, 2010

CSE 466 Exam 1 Winter, 2010 This take-home exam has 100 points and is due at the beginning of class on Friday, Feb. 13. (!!!) Please submit printed output if possible. Otherwise, write legibly. Both the Word document and the PDF

More information

Nuvoton 1T 8051-based Microcontroller NuTiny-SDK-N76E885 User Manual

Nuvoton 1T 8051-based Microcontroller NuTiny-SDK-N76E885 User Manual NUTINY-SDK- USER MANUAL 1T 8051 8-bit Microcontroller Nuvoton 1T 8051-based Microcontroller NuTiny-SDK- User Manual The information described in this document is the exclusive intellectual property of

More information

Dwarf Boards. DN001 : introduction, overview and reference

Dwarf Boards. DN001 : introduction, overview and reference Dwarf Boards DN001 : introduction, overview and reference (c) Van Ooijen Technische Informatica version 1.6 PICmicro, In-Circuit Serial Prograing and ICSP are registerd trademarks of Microchip Technology

More information

PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1

PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1 Name Lab Day Lab Time PIC Dev 14 Surface Mount PCB Assembly and Test Lab 1 Introduction: The Pic Dev 14 SMD is a simple 8-bit Microchip Pic microcontroller breakout board for learning and experimenting

More information

Development board for PIC24FJ128GA010. with 262k TFT color LCD module

Development board for PIC24FJ128GA010. with 262k TFT color LCD module Development board for PIC24FJ128GA010 with 262k TFT color LCD module Picture shown with optional 3.2 TFT LCD with touch panel 1 INTRODUCTION Development board for PIC24FJ128GA010 provides a low cost platform

More information

Microprocessors B Lab 3 Spring PIC24/24LC515 EEPROM Interface Using I 2 C

Microprocessors B Lab 3 Spring PIC24/24LC515 EEPROM Interface Using I 2 C PIC24/24LC515 EEPROM Interface Using I 2 C Lab Report Objectives Materials See separate report form located on the course webpage. This form should be completed during the performance of this lab. 1) To

More information

Gigatechnology.com Pty Ltd

Gigatechnology.com Pty Ltd USB Plug and Play Parallel -Bit FIFO Development Module The is a low-cost integrated module for transferring data to / from a peripheral and host PC at up to Million bits ( Megabyte) per second. Based

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

SBC45EC. Single board computer for 44 pin PLCC PICs

SBC45EC. Single board computer for 44 pin PLCC PICs Single board computer for 44 pin PLCC PICs Table of Contents 1 Introduction...3 2 Features...4 3 Expansion Connectors...5 3.1 Frontend Connectors...5 3.1.1 Connecting IDC connectors to the Frontend Connector...5

More information

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 1.

Laboratory: Introduction to Mechatronics. Instructor TA: Edgar Martinez Soberanes Lab 1. Laboratory: Introduction to Mechatronics Instructor TA: Edgar Martinez Soberanes (eem370@mail.usask.ca) 2017-01-12 Lab 1. Introduction Lab Sessions Lab 1. Introduction to the equipment and tools to be

More information

SSD1963 EVK Rev3B User s Guide

SSD1963 EVK Rev3B User s Guide SSD1963 EVK Rev3B User s Guide TechToys Company Unit 1807, Pacific Plaza, 410 Des Voeux Road West, Hong Kong Tel: 852-28576267 Fax: 852-28576216 Web site: www.techtoys.com.hk Version 1.0a Page 1 Table

More information

Goal: We want to build an autonomous vehicle (robot)

Goal: We want to build an autonomous vehicle (robot) Goal: We want to build an autonomous vehicle (robot) This means it will have to think for itself, its going to need a brain Our robot s brain will be a tiny computer called a microcontroller Specifically

More information

Z8 Encore! XP F1680 Series 8-Bit Flash Solution with Extended Peripherals

Z8 Encore! XP F1680 Series 8-Bit Flash Solution with Extended Peripherals Embedded Flash Solutions Z8 Encore! XP F1680 Series High-performance 8-bit Flash MCU F1680 advantage low power - 1.8 V highly integrated peripherals flexible memory options optimized cost/performance target

More information

Evaluation board for Microchip 100-Pin General Purpose Microcontrollers

Evaluation board for Microchip 100-Pin General Purpose Microcontrollers Evaluation board for Microchip 100-Pin General Purpose Microcontrollers Board shown with a PIC24FJ128GA010 soldered onboard with an optional 3.5 TFT LCD module stacked 1 INTRODUCTION The part number PIC24-Eval-Rev

More information

CPT-DA Texas Instruments TMS320F28377D controlcard compatible. DA Series Interface Card. Technical Brief

CPT-DA Texas Instruments TMS320F28377D controlcard compatible. DA Series Interface Card. Technical Brief CPT-DA28377 Texas Instruments TMS320F28377D controlcard compatible DA Series Interface Card Technical Brief May 2015 Manual Release 1 Card Version 1.0 Copyright 2015 Creative Power Technologies P/L P.O.

More information

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual

LBAT90USB162 Atmel. LBAT90USB162 Development Board User s Manual LBAT90USB162 Atmel AT90USB162 Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the LBAT90USB162 Atmel AT90USB162 development board. This board is designed to give quick and cost-effective

More information

MicroBolt. Microcomputer/Controller Featuring the Philips LPC2106 FEATURES

MicroBolt. Microcomputer/Controller Featuring the Philips LPC2106 FEATURES Microcomputer/Controller Featuring the Philips LPC2106 FEATURES Powerful 60 MHz, 32-bit ARM processing core. Pin compatible with 24 pin Stamp-like controllers. Small size complete computer/controller with

More information

Am186ER/Am188ER AMD continues 16-bit innovation

Am186ER/Am188ER AMD continues 16-bit innovation Am186ER/Am188ER AMD continues 16-bit innovation 386-Class Performance, Enhanced System Integration, and Built-in SRAM Am186ER and Am188ER Am186 System Evolution 80C186 Based 3.37 MIP System Am186EM Based

More information

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual

DBAT90USB162 Atmel. DBAT90USB162 Enhanced Development Board User s Manual DBAT90USB162 Atmel AT90USB162 Enhanced Development Board User s manual 1 1. INTRODUCTION Thank you for choosing the DBAT90USB162 Atmel AT90USB162 enhanced development board. This board is designed to give

More information

Section 42. Oscillators with Enhanced PLL

Section 42. Oscillators with Enhanced PLL Section 42. Oscillators with Enhanced PLL HIGHLIGHTS This section of the manual contains the following major topics: 42.1 Introduction... 42-2 42.2 Control Registers... 42-4 42.3 Operation: Clock Generation

More information

Embedded systems. Exercise session 3. Microcontroller Programming Lab Preparation

Embedded systems. Exercise session 3. Microcontroller Programming Lab Preparation Embedded systems Exercise session 3 Microcontroller Programming Lab Preparation Communications Contact Mail : michael.fonder@ulg.ac.be Office : 1.82a, Montefiore Website for the exercise sessions and the

More information

MICROPROCESSORS B (17.384) Spring Lecture Outline

MICROPROCESSORS B (17.384) Spring Lecture Outline MICROPROCESSORS B (17.384) Spring 2012 Lecture Outline Class # 01 January 24, 2012 Dohn Bowden 1 Today s Lecture Administrative General Course Overview Microcontroller Hardware and/or Interface Programming/Software

More information

Doc: page 1 of 9

Doc: page 1 of 9 chipkit DP32 Reference Manual Revision: July 10, 2013 Note: This document applies to REV B of the board. 1300 NE Henley Court, Suite 3 Pullman, WA 99163 (509) 334 6306 Voice (509) 334 6300 Fax Overview

More information

Good Idea to Working Electronic Model

Good Idea to Working Electronic Model Good Idea to Working Electronic Model by Jan H. Lichtenbelt, March 2011 Abstract Seeing an idea manifest itself into a fully working creation is always satisfying, however so many good ideas go to waste

More information

PIC-P28-USB development board Users Manual

PIC-P28-USB development board Users Manual PIC-P28-USB development board Users Manual Rev.A, June 2007 Copyright(c) 2007, OLIMEX Ltd, All rights reserved INTRODUCTION: PIC-P28-USB board was designed in mind to create board which to allow easy interface

More information

DEV16T. LCD Daughter board

DEV16T. LCD Daughter board LCD Daughter board Table of Contents 1 Introduction...2 2 Features...3 3 Expansion Connectors...4 3.1 Daughter Board Connectors...4 4 LCD Display...5 5 Input Buttons S1 to S4...5 6 Buzzer...5 7 Connector

More information

PIC-32MX development board User's Manual

PIC-32MX development board User's Manual PIC-MX development board User's Manual All boards produced by Olimex are ROHS compliant Document revision B, April 07 Copyright(c) 008, OLIMEX Ltd, All rights reserved INTRODUCTION: The NEW PIC-MX board

More information

CEIBO FE-5111 Development System

CEIBO FE-5111 Development System CEIBO FE-5111 Development System Development System for Atmel W&M T89C5111 Microcontrollers FEATURES Emulates Atmel W&M T89C5111 4K Code Memory Real-Time Emulation and Trace Frequency up to 33MHz/5V ISP

More information