Let A(x) be x is an element of A, and B(x) be x is an element of B.

Size: px
Start display at page:

Download "Let A(x) be x is an element of A, and B(x) be x is an element of B."

Transcription

1 Homework 6. CSE 240, Fall, 2014 Due, Tuesday October 28. Can turn in at the beginning of class, or earlier in the mailbox labelled Pless in Bryan Hall, room 509c. Practice Problems: 1. Given two arbitrary sets A,B, prove that (A intersection B) union (A intersection B-complement) equals A. You may *not* use a venn diagram. You may define characteristic functions for A,B so that A = {x PA(x}), and B = {x PB(x)}. Let A(x) be x is an element of A, and B(x) be x is an element of B. Our expression on sets can then be written in logical terms: (A(x) ^ B(x)) v (A(x) ^ ~B(x)) <--> A(x) To prove this equivalence, we start with the left side, and derive the right side: (A(x) ^ B(x)) v (A(x) ^ ~B(x)) <--> A(x) ^ (B(x) v ~B(x)) <--> A(x) ^ T <--> A(x). q.e.d. 2. Let f(x) = 2x + 1 and g(x) = (x-3)2. For each definition of Domain and Co-Domain defined below, answer (i) is the function injective? (ii) is the function surjective? (iii) Is the function a bijection? (iv) If the function if bijective, give its inverse (a) the function f, when the domain and co-domain are the reals. ANSWER: f is injective, surjective and a bijection. the inverse of f is: invf(y) = y/2-1/2. This is an inverse because invf(f(x)) = x: (2x+1)/2-1/2 = x + 1/2-1/2 = x. (b) the function f, when the domain in the integers and co-domain is the reals. ANSWER: f is injective (1-1), but not surjective (onto), and not a bijection. (c) the function (f o g) when the domain and co-domain are the reals. [Recall, (f o g)(x) = f(g(x))] ANSWER: (f 0 g)(x) = f(g(x)) = 2 (x-3)/2 + 1 = x = x-2 this is injective, surjective and bijective. the inverse of f, invf is invf(y) = y+2 3. List the elements of the following sets: (a) {1, 2, 3} {a, b} (1,a), (2,a), (3,a), (1,b), (2,b), (3,b) [no braces needed because I didn t ask you to define 1

2 (b) P owerset({1, 2, 3}) P owerset({1, 2, 4}) {}, {1}, {2}, {1,2} 4. Prove the cardinality of all finite length binary strings (strings over the alphabet {0, 1}) is the same as the cardinality of all finite length strings over the alphabet {0, 1, 2, 3} A = all string {0,1} B = all strings {0,1,2,3} Proof A <= B if I can find an f: B --> A that is onto, then A < B f(s) = s if all characters is s are 0 or 1. f(s) = 0 if there is any character that is a 2 or a 3. this is an onto function because f(s) = s for strings in B that are also in A and all strings that are in A are also in B. Proof A >= B if I can find an f: A --> B that is onto, then A > B f(s): f is going to map strings in A as follows: s = a binary string of 0 s and 1 s. For example: we break that string into pairs of characeters: and replace each pair with the number that binary pair represents: and that becomes our output string: Proof that f is onto: Let y be any element of B take each element of y, represent it as a 2 bit binary string, and concatenate all those bit strings together to make y. Then f(y ) = y because that is how we constructed f. Therefore f is onto and A >= B 2

3 Since A >= B and A <= B, it must be that A = B 5. Sets that are the same size as the integers are called countable, which is short for countably infinite. Which of the following sets are countable? Give an intuitive answer that describes a mapping between these sets and the integers, or argue in a few sentences why this isn t possible. (example) The set of even integers. ANSWER: f(x) = x 2 integers. is a bijection between even integers and (example) The set of finite length binary strings. ANSWER: there is a bijection between the binary strings and the positive integers they represent. (a) P (N) (the powerset of natural numbers). ANSWER: This is uncountable. You can map each element of: P (N) onto an infinitely long bit string of 0 s and 1 s (like we have mapped the subsets of finite sets onto bitstrings), and then you can prove that there are more infinitely long bitstrings than there are integers following the same diagonalization proof that we used to prove the real numbers are bigger. (b) The set of all possible functions f : N {0, 1}. ANSWER: This is uncountable. You can map each possible function f onto an infinitely long bit string of 0 s and 1 s (that gives the definition of that function for each natural number). Then you can prove that there are more infinitely long bitstrings than there are integers following the same diagonalization proof that we used to prove the real numbers are bigger. (c) The set of all possible functions f : {0, 1} N. This is countable. This is the same size as the rational number. To define one possible function f, you need to specify f(0) and f(1), which is a pair of integers. So each function f can be mapped to an integer coordinate, and we can map those to the integers the same way we mapped the rational numbers to the integers. 6. Let A, B, and C be any sets that each have at least 1 element. Also, let f, g, h be functions, where: g : A B, h : A C, and f : A B C, where f is defined by g, h so that: f(x) = (g(x), h(x)) Prove or give a counterexample for each of the following statements. (In this case, a counterexample must include a definition of sets A,B,C and a definition of the functions g,h that make the statement false.). (a) If g or h is one-to-one, then f is one-to-one We prove the contrapositive of this statement: if $f$ is NOT one-to-one, then g is not one-to-one and h is not one-to-one. Assume that $f$ is not one-to-one. Then there are to elements in A (let s call them a1 and a2), such that f(a1) = f(a2) and (a1 is not equal to a2)... if no two elements like this exist, then f would be one to one. So, f(a1) = f(a2). By definition of f: By definition of f: f(a1) = (g(a1), h(a1)), and f(a2) = (g(a2), h(a2)) 3

4 So, if f(a1) = f(a2), then (g(a1), h(a1)) = (g(a2), h(a2)), and because two ordered pairs are only the same if both elements are the same, then g(a1) = g(a2) and h(a1) = h(a2). This proves that neither g or h are one-to-one. Therefor if $f$ is NOT one-to-one, then g is not one-to-one and h is not one-to-one. Therefore if g is one-to-one and h is one-to-one then g is one to one. (b) If neither g or h is one-to-one, then f is not one-to-one Counter example: A = {1,2,3,...,10} B = {1,2} C = {1,2,3,4,5} g: A -> B is defined so that: g(1) = 1 g(2) = 1 g(3) = 1 g(4) = 1 g(5) = 1 g(6) = 2 g(7) = 2 g(8) = 2 g(9) = 2 g(10) = 2 h: A -> C is defined so that h(1) = 1 h(2) = 2 h(3) = 3 h(4) = 4 h(5) = 5 h(6) = 1 h(7) = 2 h(8) = 3 h(9) = 4 h(10) = 5 then neither g or h is one to one, but f(1) = (1,1) f(2) = (1,2) f(3) = (1,3). 4

5 . f(6) = (2,1) f(7) = (2,2) but f is 1-1 (many examples are possible). Problems to turn in: 1. Let A be the set {2, 3, 4}, and B be the set {1, 2, 3, 4, 5}. Let P(A) be the powerset of A, and P(B) be the powerset of B. (a) How many elements does the set A B have? 3 5 = 15. (b) How many elements does A P (A) have? = 24. (c) list two different elements of A P (A) (2, {}), (3, {1, 3, 4}) (d) How many elements does P (A) P (B) have? = 8 32 = Let A, B, and C be any sets that each have at least 1 element. Also, let f, g, h be functions, where: g : A B, h : A C, and f : A B C, where f is defined by g, h so that: f(x) = (g(x), h(x)) Prove or give a counterexample for each of the following statements. (In this case, a counterexample must include a definition of sets A,B,C and a definition of the functions g,h that make the statement false.). (a) If f is onto, the both g and h are onto. Assume f is onto Prove g is onto. Let y be any element of B Let c be any element of C. (y, c) B C, by definition of cartesian product. There is some x A such that f(x) = (y, c), because f is onto. by definition of f, f(x) = (y,c) means that g(x) = y, andh(x) = c. therefore, this value of x has the property that g(x) = y. therefore g is onto (we started with an arbitrary value of y and showed that there is an x such that g(x) = y Prove h is onto. [This is almost exactly the same as the above proof: Let y be any element of C Let b be any element of B. (b, y) B C, by definition of cartesian product. There is some x A such that f(x) = (b, y), because f is onto. by definition of f, f(x) = (y,c) means that g(x) = b, andh(x) = y. therefore, this value of x has the property that h(x) = y. therefore h is onto (we started with an arbitrary value of y and showed that there is an x such that h(x) = y). Therefore, if f is onto, the both g and h are onto. 5

6 (b) if g and h are both onto, then f is onto. Define A = B = C = {1, 2, 3}. Define g(x) = h(x) = x. Then f(x) = (x, x). Both g, h are onto, but f is not onto because it never creates the element (1,2). (there are other elements it doesn t create, but you just need to show one. 6

A B. bijection. injection. Section 2.4: Countability. a b c d e g

A B. bijection. injection. Section 2.4: Countability. a b c d e g Section 2.4: Countability We can compare the cardinality of two sets. A = B means there is a bijection between A and B. A B means there is an injection from A to B. A < B means A B and A B Example: Let

More information

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R).

2. Functions, sets, countability and uncountability. Let A, B be sets (often, in this module, subsets of R). 2. Functions, sets, countability and uncountability I. Functions Let A, B be sets (often, in this module, subsets of R). A function f : A B is some rule that assigns to each element of A a unique element

More information

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A.

Functions. Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. Functions functions 1 Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. a A! b B b is assigned to a a A! b B f ( a) = b Notation: If

More information

Infinity and Uncountability. Countable Countably infinite. Enumeration

Infinity and Uncountability. Countable Countably infinite. Enumeration Infinity and Uncountability. Countable Countably infinite. Enumeration How big is the set of reals or the set of integers? Infinite! Is one bigger or smaller? Same size? Same number? Make a function f

More information

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions

Functions 2/1/2017. Exercises. Exercises. Exercises. and the following mathematical appetizer is about. Functions. Functions Exercises Question 1: Given a set A = {x, y, z} and a set B = {1, 2, 3, 4}, what is the value of 2 A 2 B? Answer: 2 A 2 B = 2 A 2 B = 2 A 2 B = 8 16 = 128 Exercises Question 2: Is it true for all sets

More information

Functions. How is this definition written in symbolic logic notation?

Functions. How is this definition written in symbolic logic notation? functions 1 Functions Def. Let A and B be sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by

More information

Cardinality of Sets. Washington University Math Circle 10/30/2016

Cardinality of Sets. Washington University Math Circle 10/30/2016 Cardinality of Sets Washington University Math Circle 0/0/06 The cardinality of a finite set A is just the number of elements of A, denoted by A. For example, A = {a, b, c, d}, B = {n Z : n } = {,,, 0,,,

More information

Comparing sizes of sets

Comparing sizes of sets Comparing sizes of sets Sets A and B are the same size if there is a bijection from A to B. (That was a definition!) For finite sets A, B, it is not difficult to verify that there is a bijection from A

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ).

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ). MATH 139 W12 Review 1 Checklist 1 Exam Checklist 1. Introduction to Predicates and Quantified Statements (chapters 3.1-3.4). universal and existential statements truth set negations of universal and existential

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

Material from Recitation 1

Material from Recitation 1 Material from Recitation 1 Darcey Riley Frank Ferraro January 18, 2011 1 Introduction In CSC 280 we will be formalizing computation, i.e. we will be creating precise mathematical models for describing

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31

Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Sets Fall / 31 Sets MAT231 Transition to Higher Mathematics Fall 2014 MAT231 (Transition to Higher Math) Sets Fall 2014 1 / 31 Outline 1 Sets Introduction Cartesian Products Subsets Power Sets Union, Intersection, Difference

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability)

MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) MATHEMATICS 191, FALL 2004 MATHEMATICAL PROBABILITY Outline #1 (Countability and Uncountability) Last modified: September 16, 2004 Reference: Apostol, Calculus, Vol. 2, section 13.19 (attached). The aim

More information

Slides for Faculty Oxford University Press All rights reserved.

Slides for Faculty Oxford University Press All rights reserved. Oxford University Press 2013 Slides for Faculty Assistance Preliminaries Author: Vivek Kulkarni vivek_kulkarni@yahoo.com Outline Following topics are covered in the slides: Basic concepts, namely, symbols,

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Regarding Python level necessary for the course

Regarding Python level necessary for the course Logistics First two recitations (next two weeks) Python basics (installation, basic syntax, basic programming), optional Making models for 3D printing w/ Blender Will announce details through Sakai Regarding

More information

MITOCW watch?v=4dj1oguwtem

MITOCW watch?v=4dj1oguwtem MITOCW watch?v=4dj1oguwtem PROFESSOR: So it's time to examine uncountable sets. And that's what we're going to do in this segment. So Cantor's question was, are all sets the same size? And he gives a definitive

More information

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

Functions. Prof. Susan Older. 20 October (CIS 375) Functions 20 Oct / 14

Functions. Prof. Susan Older. 20 October (CIS 375) Functions 20 Oct / 14 Functions Prof. Susan Older 20 October 2016 Functions (CIS 375) Functions 20 Oct 2016 1 / 14 relation f is a function provided that for all a, b, c, if (a, b) f and (a, c) f, then b = c. (That is, no object

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

Lecture 17: Continuous Functions

Lecture 17: Continuous Functions Lecture 17: Continuous Functions 1 Continuous Functions Let (X, T X ) and (Y, T Y ) be topological spaces. Definition 1.1 (Continuous Function). A function f : X Y is said to be continuous if the inverse

More information

EDAA40 At home exercises 1

EDAA40 At home exercises 1 EDAA40 At home exercises 1 1. Given, with as always the natural numbers starting at 1, let us define the following sets (with iff ): Give the number of elements in these sets as follows: 1. 23 2. 6 3.

More information

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall CSE 20 https://goo.gl/forms/1o 1KOd17RMoURxjn2 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Explain the steps in a proof by mathematical and/or structural

More information

T. Background material: Topology

T. Background material: Topology MATH41071/MATH61071 Algebraic topology Autumn Semester 2017 2018 T. Background material: Topology For convenience this is an overview of basic topological ideas which will be used in the course. This material

More information

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.

2/18/14. Uses for Discrete Math in Computer Science. What is discrete? Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2. Why Study Discrete Math? Sets and Functions (Rosen, Sections 2.1,2.2, 2.3) TOPICS Discrete math Set Definition Set Operations Tuples Digital computers are based on discrete units of data (bits). Therefore,

More information

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory

Proof Techniques Alphabets, Strings, and Languages. Foundations of Computer Science Theory Proof Techniques Alphabets, Strings, and Languages Foundations of Computer Science Theory Proof By Case Enumeration Sometimes the most straightforward way to prove that a property holds for all elements

More information

Section 1.7 Sequences, Summations Cardinality of Infinite Sets

Section 1.7 Sequences, Summations Cardinality of Infinite Sets Section 1.7 Sequences, Summations Cardinality of Infinite Sets Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and

More information

Practice Problems: All Computer Science majors are people. Some computer science majors are logical thinkers. Some people are logical thinkers.

Practice Problems: All Computer Science majors are people. Some computer science majors are logical thinkers. Some people are logical thinkers. CSE 240, Fall, 2013 Homework 2 Due, Tuesday September 17. Can turn in class, at the beginning of class, or earlier in the mailbox labelled Pless in Bryan Hall, room 509c. Practice Problems: 1. Consider

More information

CS3102 Theory of Computation Problem Set 2, Spring 2011 Department of Computer Science, University of Virginia

CS3102 Theory of Computation Problem Set 2, Spring 2011 Department of Computer Science, University of Virginia CS3102 Theory of Computation Problem Set 2, Spring 2011 Department of Computer Science, University of Virginia Gabriel Robins Please start solving these problems immediately, and work in study groups.

More information

Section 2.4 Sequences and Summations

Section 2.4 Sequences and Summations Section 2.4 Sequences and Summations Definition: A sequence is a function from a subset of the natural numbers (usually of the form {0, 1, 2,... } to a set S. Note: the sets and {0, 1, 2, 3,..., k} {1,

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

MATH 271 Summer 2016 Assignment 4 solutions

MATH 271 Summer 2016 Assignment 4 solutions MATH 7 ummer 06 Assignment 4 solutions Problem Let A, B, and C be some sets and suppose that f : A B and g : B C are functions Prove or disprove each of the following statements (a) If f is one-to-one

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS

Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Point-Set Topology 1. TOPOLOGICAL SPACES AND CONTINUOUS FUNCTIONS Definition 1.1. Let X be a set and T a subset of the power set P(X) of X. Then T is a topology on X if and only if all of the following

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan

MATH 22 MORE ABOUT FUNCTIONS. Lecture M: 10/14/2003. Form follows function. Louis Henri Sullivan MATH 22 Lecture M: 10/14/2003 MORE ABOUT FUNCTIONS Form follows function. Louis Henri Sullivan This frightful word, function, was born under other skies than those I have loved. Le Corbusier D ora innanzi

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in .

.Math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in  . 0.1 More on innity.math 0450 Honors intro to analysis Spring, 2009 Notes #4 corrected (as of Monday evening, 1/12) some changes on page 6, as in email. 0.1.1 If you haven't read 1.3, do so now! In notes#1

More information

Practice Final. Read all the problems first before start working on any of them, so you can manage your time wisely

Practice Final. Read all the problems first before start working on any of them, so you can manage your time wisely PRINT your name here: Practice Final Print your name immediately on the cover page, as well as each page of the exam, in the space provided. Each time you are caught working on a page without your name

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Cardinality of Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Cardinality of Sets Fall / 15

Cardinality of Sets MAT231. Fall Transition to Higher Mathematics. MAT231 (Transition to Higher Math) Cardinality of Sets Fall / 15 Cardinality of Sets MAT Transition to Higher Mathematics Fall 0 MAT (Transition to Higher Math) Cardinality of Sets Fall 0 / Outline Sets with Equal Cardinality Countable and Uncountable Sets MAT (Transition

More information

CS 341 Homework 1 Basic Techniques

CS 341 Homework 1 Basic Techniques CS 341 Homework 1 Basic Techniques 1. What are these sets? Write them using braces, commas, numerals, (for infinite sets), and only. (a) ({1, 3, 5} {3, 1}) {3, 5, 7} (b) {{3}, {3, 5}, {{5, 7}, {7, 9}}}

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

Tutorial 3 Q&A. En la pregunta 7 de la sección 2.2 el cual dice: 7. Prove the domination laws in Table 1 by showing that: a)a U = U b)a =

Tutorial 3 Q&A. En la pregunta 7 de la sección 2.2 el cual dice: 7. Prove the domination laws in Table 1 by showing that: a)a U = U b)a = Tutorial 3 Q&A Question 1: 1) Can the range be considered a subset of a function's codomain? No, not always. There are cases that it is like that, but there are many that not. 2) Why is it that if the

More information

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth

Computer Science and Mathematics. Part I: Fundamental Mathematical Concepts Winfried Kurth Computer Science and Mathematics Part I: Fundamental Mathematical Concepts Winfried Kurth http://www.uni-forst.gwdg.de/~wkurth/csm17_home.htm 1. Mathematical Logic Propositions - can be either true or

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia

Notes on metric spaces and topology. Math 309: Topics in geometry. Dale Rolfsen. University of British Columbia Notes on metric spaces and topology Math 309: Topics in geometry Dale Rolfsen University of British Columbia Let X be a set; we ll generally refer to its elements as points. A distance function, or metric

More information

Announcements. Problem Set 3 due Friday, October 21. Alternate Midterm Times. Drop by office hours! Ask questions at

Announcements. Problem Set 3 due Friday, October 21. Alternate Midterm Times. Drop by office hours! Ask questions at Functions Announcements Problem Set 3 due Friday, October 21 Drop by office hours! Ask questions at cs103@cs.stanford.edu. Alternate Midterm Times Wednesday, October 26, 7:00PM 10:00PM Thursday, October

More information

Calculating Cardinalities

Calculating Cardinalities Math Circle Monday March 20, 2017 Calculating Cardinalities Martin Zeman To say that a set A has 5 elements means that we can write the elements of A as a list a 1, a 2, a 3, a 4, a 5 in a way that (a)

More information

Computation, Computers, and Programs. Administrivia. Resources. Course texts: Kozen: Introduction to Computability Hickey: Introduction to OCaml

Computation, Computers, and Programs. Administrivia. Resources. Course texts: Kozen: Introduction to Computability Hickey: Introduction to OCaml CS20a: Computation, Computers, Programs Instructor: Jason Hickey Email: jyh@cs.caltech.edu Office hours: TR 10-11am TAs: Nathan Gray (n8gray@cs.caltech.edu) Brian Aydemir (emre@cs.caltech.edu) Jason Frantz

More information

CS3102 Theory of Computation Solutions to Problem Set 1, Spring 2012 Department of Computer Science, University of Virginia

CS3102 Theory of Computation Solutions to Problem Set 1, Spring 2012 Department of Computer Science, University of Virginia CS3102 Theory of Computation Solutions to Problem Set 1, Spring 2012 Department of Computer Science, University of Virginia Gabriel Robins Please start solving these problems immediately, and work in study

More information

Functions and Sequences Rosen, Secs. 2.3, 2.4

Functions and Sequences Rosen, Secs. 2.3, 2.4 UC Davis, ECS20, Winter 2017 Discrete Mathematics for Computer Science Prof. Raissa D Souza (slides adopted from Michael Frank and Haluk Bingöl) Lecture 8 Functions and Sequences Rosen, Secs. 2.3, 2.4

More information

CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia

CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia CS6160 Theory of Computation Problem Set 2 Department of Computer Science, University of Virginia Gabriel Robins Please start solving these problems immediately, and work in study groups. Please prove

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or

Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or Phil 320 Chapter 1: Sets, Functions and Enumerability I. Sets Informally: a set is a collection of objects. The objects are called members or elements of the set. a) Use capital letters to stand for sets

More information

Lecture 25 : Counting DRAFT

Lecture 25 : Counting DRAFT CS/Math 240: Introduction to Discrete Mathematics 4/28/2011 Lecture 25 : Counting Instructor: Dieter van Melkebeek Scribe: Dalibor Zelený DRAFT Today we start the last topic of the course, counting. For

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

4. Definition: topological space, open set, topology, trivial topology, discrete topology.

4. Definition: topological space, open set, topology, trivial topology, discrete topology. Topology Summary Note to the reader. If a statement is marked with [Not proved in the lecture], then the statement was stated but not proved in the lecture. Of course, you don t need to know the proof.

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING

CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING CPSC 121: Models of Computation PART 1 REVIEW OF TEXT READING Unit 12: Functions These pages correspond to tet reading and are not covered in the lectures. Based on slides by Patrice Belleville and Steve

More information

Cardinality Lectures

Cardinality Lectures Cardinality Lectures Enrique Treviño March 8, 014 1 Definition of cardinality The cardinality of a set is a measure of the size of a set. When a set A is finite, its cardinality is the number of elements

More information

To illustrate what is intended the following are three write ups by students. Diagonalization

To illustrate what is intended the following are three write ups by students. Diagonalization General guidelines: You may work with other people, as long as you write up your solution in your own words and understand everything you turn in. Make sure to justify your answers they should be clear

More information

Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D.

Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Source of Slides: Introduction to Automata Theory, Languages, and Computation By John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman And Introduction to Languages and The by J. C. Martin Basic Mathematical

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES CS: DISCRETE STRUCTURES Computer Science Department Lecture : Set and Sets Operations (Ch2) Lecture Contents 2 Sets Definition. Some Important Sets. Notation used to describe membership in sets. How to

More information

Introduction to Algebraic and Geometric Topology Week 5

Introduction to Algebraic and Geometric Topology Week 5 Introduction to Algebraic and Geometric Topology Week 5 Domingo Toledo University of Utah Fall 2017 Topology of Metric Spaces I (X, d) metric space. I Recall the definition of Open sets: Definition U

More information

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1}

1. (10 points) Draw the state diagram of the DFA that recognizes the language over Σ = {0, 1} CSE 5 Homework 2 Due: Monday October 6, 27 Instructions Upload a single file to Gradescope for each group. should be on each page of the submission. All group members names and PIDs Your assignments in

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

Functions. Jason Filippou UMCP. Jason Filippou UMCP) Functions / 19

Functions. Jason Filippou UMCP. Jason Filippou UMCP) Functions / 19 Functions Jason Filippou CMSC250 @ UMCP 06-22-2016 Jason Filippou (CMSC250 @ UMCP) Functions 06-22-2016 1 / 19 Outline 1 Basic definitions and examples 2 Properties of functions 3 The pigeonhole principle

More information

Mathematics for Computer Science Exercises from Week 4

Mathematics for Computer Science Exercises from Week 4 Mathematics for Computer Science Exercises from Week 4 Silvio Capobianco Last update: 26 September 2018 Problems from Section 4.1 Problem 4.3. Set Formulas and Propositional Formulas. (a) Verify that the

More information

THEORY OF COMPUTATION

THEORY OF COMPUTATION THEORY OF COMPUTATION UNIT-1 INTRODUCTION Overview This chapter begins with an overview of those areas in the theory of computation that are basic foundation of learning TOC. This unit covers the introduction

More information

The Size of the Cantor Set

The Size of the Cantor Set The Size of the Cantor Set Washington University Math Circle November 6, 2016 In mathematics, a set is a collection of things called elements. For example, {1, 2, 3, 4}, {a,b,c,...,z}, and {cat, dog, chicken}

More information

Notes on point set topology, Fall 2010

Notes on point set topology, Fall 2010 Notes on point set topology, Fall 2010 Stephan Stolz September 3, 2010 Contents 1 Pointset Topology 1 1.1 Metric spaces and topological spaces...................... 1 1.2 Constructions with topological

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

CS3102 Theory of Computation Solutions to Selected Problems from Set 1 Department of Computer Science, University of Virginia

CS3102 Theory of Computation Solutions to Selected Problems from Set 1 Department of Computer Science, University of Virginia CS3102 Theory of Computation Solutions to Selected Problems from Set 1 Department of Computer Science, University of Virginia Gabriel Robins Please start solving these problems immediately, don t procrastinate,

More information

1. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which:

1. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which: P R O B L E M S Finite Autom ata. Draw the state graphs for the finite automata which accept sets of strings composed of zeros and ones which: a) Are a multiple of three in length. b) End with the string

More information

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012)

Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Topology 550A Homework 3, Week 3 (Corrections: February 22, 2012) Michael Tagare De Guzman January 31, 2012 4A. The Sorgenfrey Line The following material concerns the Sorgenfrey line, E, introduced in

More information

1-3 Continuity, End Behavior, and Limits

1-3 Continuity, End Behavior, and Limits Determine whether each function is continuous at the given x-value(s). Justify using the continuity test. If discontinuous, identify the type of discontinuity as infinite, jump, or removable. 1. f (x)

More information

Set and Set Operations

Set and Set Operations Set and Set Operations Introduction A set is a collection of objects. The objects in a set are called elements of the set. A well defined set is a set in which we know for sure if an element belongs to

More information

HW 1 CMSC 452. Morally DUE Feb 7 NOTE- THIS HW IS THREE PAGES LONG!!! SOLUTIONS THROUGOUT THIS HW YOU CAN ASSUME:

HW 1 CMSC 452. Morally DUE Feb 7 NOTE- THIS HW IS THREE PAGES LONG!!! SOLUTIONS THROUGOUT THIS HW YOU CAN ASSUME: HW 1 CMSC 452. Morally DUE Feb 7 NOTE- THIS HW IS THREE PAGES LONG!!! SOLUTIONS THROUGOUT THIS HW YOU CAN ASSUME: The union of a finite number of countable sets is countable. The union of a countable number

More information

1.7 The Heine-Borel Covering Theorem; open sets, compact sets

1.7 The Heine-Borel Covering Theorem; open sets, compact sets 1.7 The Heine-Borel Covering Theorem; open sets, compact sets This section gives another application of the interval halving method, this time to a particularly famous theorem of analysis, the Heine Borel

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

2.1 Symbols and Terminology

2.1 Symbols and Terminology 2.1 Symbols and Terminology A is a collection of objects or things. The objects belonging to the are called the, or. - : there is a way of determining for sure whether a particular item is an element of

More information

Figure 1.1: This is an illustration of a generic set and its elements.

Figure 1.1: This is an illustration of a generic set and its elements. Chapter 1 Mathematical Review et theory is now generally accepted as the foundation of modern mathematics, and it plays an instrumental role in the treatment of probability. Unfortunately, a simple description

More information

In class 75min: 2:55-4:10 Thu 9/30.

In class 75min: 2:55-4:10 Thu 9/30. MATH 4530 Topology. In class 75min: 2:55-4:10 Thu 9/30. Prelim I Solutions Problem 1: Consider the following topological spaces: (1) Z as a subspace of R with the finite complement topology (2) [0, π]

More information

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee Sets Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Sets Sets A set is an unordered collection of objects, called elements, without duplication. We write a A to denote that a is an element

More information

CHAPTER 4. COMPUTABILITY AND DECIDABILITY

CHAPTER 4. COMPUTABILITY AND DECIDABILITY CHAPTER 4. COMPUTABILITY AND DECIDABILITY 1. Introduction By definition, an n-ary function F on N assigns to every n-tuple k 1,...,k n of elements of N a unique l N which is the value of F at k 1,...,k

More information

1 Sets, Fields, and Events

1 Sets, Fields, and Events CHAPTER 1 Sets, Fields, and Events B 1.1 SET DEFINITIONS The concept of sets play an important role in probability. We will define a set in the following paragraph. Definition of Set A set is a collection

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

CS 125 Section #10 Midterm 2 Review 11/5/14

CS 125 Section #10 Midterm 2 Review 11/5/14 CS 125 Section #10 Midterm 2 Review 11/5/14 1 Topics Covered This midterm covers up through NP-completeness; countability, decidability, and recognizability will not appear on this midterm. Disclaimer:

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

1 Point Set Topology. 1.1 Topological Spaces. CS 468: Computational Topology Point Set Topology Fall 2002

1 Point Set Topology. 1.1 Topological Spaces. CS 468: Computational Topology Point Set Topology Fall 2002 Point set topology is something that every analyst should know something about, but it s easy to get carried away and do too much it s like candy! Ron Getoor (UCSD), 1997 (quoted by Jason Lee) 1 Point

More information

SET DEFINITION 1 elements members

SET DEFINITION 1 elements members SETS SET DEFINITION 1 Unordered collection of objects, called elements or members of the set. Said to contain its elements. We write a A to denote that a is an element of the set A. The notation a A denotes

More information

2. Metric and Topological Spaces

2. Metric and Topological Spaces 2 Metric and Topological Spaces Topology begins where sets are implemented with some cohesive properties enabling one to define continuity Solomon Lefschetz In order to forge a language of continuity,

More information