CSC 8400: Computer Systems. Using the Stack for Function Calls

Size: px
Start display at page:

Download "CSC 8400: Computer Systems. Using the Stack for Function Calls"

Transcription

1 CSC 84: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing the calling function to continue where it left off Return address and contents of registers Stack: last-in-first-out data structure! Stack frame: args, local vars, return address, registers! Stack pointer: pointing to the current top of the stack Calling functions! CALL and instructions! PUSH into and POP from the stack frame! Using the base pointer EBP as a reference point 1

2 Function Calls main calls add! Push arguments on the stack! Push return address on stack! Jump to add! Allocate local variables on stack, etc. Returning to main! Clear the stack frame for add! Pop return address from stack int add(int a, int b, int c) { int d; } d = a + b + c; return d; int main() { int sum, avg; } sum = add(, 4, 5); avg = sum / ; return avg Stack Frame for add Return Address 4 5 Stack Frames Use stack for all temporary data related to each active function invocation! Input parameters! Return address! Local variables of function! Saving registers across invocations Stack Frame Stack has one Stack Frame per active function invocation 2

3 High-Level Picture main begins executing main calls P (Extended Stack Pointer) Always points to the top element of the stack Bottom main s Stack Frame High-Level Picture main begins executing main calls P P calls Q Bottom P s Stack Frame main s Stack Frame

4 High-Level Picture main begins executing main calls P P calls Q Q returns Bottom Q s Stack Frame P s Stack Frame main s Stack Frame High-Level Picture main begins executing main calls P P calls Q Q returns P returns Bottom P s Stack Frame main s Stack Frame 4

5 High-Level Picture main begins executing main calls P P calls Q Q returns P returns main returns Bottom main s Stack Frame High-Level Picture main begins executing main calls P P calls Q Q returns P returns main returns Bottom 5

6 Function Call Details Call and Return instructions! call: push EIP on the stack, and jump to function! ret: pop the stack into the EIP to go back Argument passing between procedures! Calling function pushes arguments on to the stack! Called function reads/writes on the stack Local variables! Called function creates and manipulates on the stack Register saving conventions! Either calling or called function saves all of the registers before use Call and Return Instructions Instruction Effective Operations PUSH Src SUB, 4 POP Dest CALL Addr MOV [], Src MOV Dest, [] ADD, 4 PUSH EIP JMP Addr POP EIP before CALL Note: can t really access EIP directly, but this is implicitly what call and ret are doing. 6

7 Call and Return Instructions Instruction Effective Operations PUSH Src SUB, 4 POP Dest CALL Addr MOV [], Src MOV Dest, [] ADD, 4 PUSH EIP JMP Addr POP EIP after CALL Old EIP Call and Return Instructions Instruction Effective Operations PUSH Src SUB, 4 POP Dest CALL Addr MOV [], Src MOV Dest, [] ADD, 4 PUSH EIP JMP Addr POP EIP before Old EIP Return instruction assumes that the return address is at the top of the stack 7

8 Call and Return Instructions Instruction Effective Operations PUSH Src SUB, 4 POP Dest CALL Addr MOV [], Src MOV Dest, [] ADD, 4 PUSH EIP JMP Addr POP EIP after Input Arguments Caller pushes input arguments before executing the CALL Parameters are pushed in the reverse order! Push N th argument first! Push 1 st argument last! So that first argument is at the top of the stack at the time of the Call before pushing arguments 8

9 Input Arguments Caller pushes input parameters before executing the CALL Parameters are pushed in the reverse order! Push N th argument first! Push 1 st argument last! So that first argument is at top of the stack at the time of the CALL before CALL Arg 1 Arg Arg N CALL Called function can address arguments relative to : Arg 1 as [+4] before CALL Arg 1 Arg Arg N after CALL Old EIP Arg 1 Arg Arg N 9

10 : Returning to Caller before Old EIP Arg 1 Arg Arg N after Arg 1 Arg Arg N Base Pointer: EBP As Callee executes, may change! E.g., preparing to call another function Use EBP as fixed reference point! E.g., to access arguments and other local variables Need to save old value of EBP! Before overwriting EBP register Callee begins by executing prolog MOV EBP, after CALL Old EIP Arg 1 Arg Arg N EBP 1

11 Base Pointer: EBP As Callee executes, may change! E.g., preparing to call another function Use EBP as fixed reference point! E.g., to access arguments and other local variables Need to save old value of EBP! Before overwriting EBP register Callee begins by executing prolog MOV EBP,, EBP Old EBP Old EIP Arg 1 Arg Arg N Regardless of, Callee can address Arg 1 as [EBP+8] Base Pointer: EBP Before returning, Callee must restore EBP to its old value Executes MOV, EBP EBP Old EBP Old EIP Arg 1 Arg Arg N 11

12 Base Pointer: EBP Before returning, Callee must restore EBP to its old value Executes MOV, EBP, EBP Old EBP Old EIP Arg 1 Arg Arg N Base Pointer: EBP Before returning, Callee must restore EBP to its old value Executes MOV, EBP Old EIP Arg 1 Arg Arg N EBP 12

13 Base Pointer: EBP Before returning, Callee must restore EBP to its old value Executes MOV, EBP Arg 1 Arg Arg N EBP Allocation for Local Variables Local variables of the Callee are also allocated on the stack Allocation done by moving the stack pointer Example: allocate two integers! SUB, 4! SUB, 4! (or equivalently, SUB, 8) Reference local variables using the base pointer! [EBP-4]! [EBP-8] EBP Var 2 Var 1 Old EBP Old EIP Arg 1 Arg Arg N 1

14 Use of Registers Problem: Callee may use a register that the caller is also using! When callee returns control to caller, old register contents may be lost! Caller cannot continue where it left off Solution: save the registers on the stack! Callee must push register contents before altering! Callee must pop register contents before returning A Simple Example int sum(int x, int y) { return x+y; } int main () { int result; } result = sum(1, 2); printf("%d\n", result); return ; Compile: gcc masm=intel sum.c Debug: gdb./a.out disas main 14

15 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 Recall that:! The stack grows from high addresses towards low addresses EBP Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 Recall that:! The stack grows from high addresses towards low addresses EBP 15

16 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 16

17 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 2 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, <sum>: MOV EBP, MOV EAX, DWORD PTR [EBP+12] ADD EAX, DWORD PTR [EBP+8] 17

18 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 RA(main) 1 2 <sum>: MOV EBP, MOV EAX, DWORD PTR [EBP+12] ADD EAX, DWORD PTR [EBP+8] Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 RA(main) 1 2 <sum>: MOV EBP, MOV EAX, DWORD PTR [EBP+12] ADD EAX, DWORD PTR [EBP+8] 18

19 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 RA(main) 1 2 EBP(sum) <sum>: MOV EBP, MOV EAX, DWORD PTR [EBP+12] ADD EAX, DWORD PTR [EBP+8] Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 RA(main) 1 2 EBP(sum) <sum>: MOV EBP, MOV EAX, DWORD PTR [EBP+12] ADD EAX, DWORD PTR [EBP+8] EAX 2 19

20 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 RA(main) 1 2 EBP(sum) <sum>: MOV EBP, MOV EAX, DWORD PTR [EBP+12] ADD EAX, DWORD PTR [EBP+8] EAX Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 RA(main) 1 2 <sum>: MOV EBP, MOV EAX, DWORD PTR [EBP+12] ADD EAX, DWORD PTR [EBP+8] EAX 2

21 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, EAX Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, EAX 21

22 Example.section.data.LC STRING "%d\n".lc MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 1 Example.section.data.LC STRING "%d\n".lc MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 Address of % Skipping the details of 22

23 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 Address of % Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 Address of % Prepare to: leave EAX 2

24 Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 EAX Example.LC MOV EBP, SUB, 16 MOV DWORD PTR [+4],2 MOV DWORD PTR [],1 MOV DWORD PTR [+4],EAX MOV DWORD PTR [], OFFSET:.LC MOV EAX, ADD, 16 EAX 24

25 Summary Invoking a function! CALL: call the function! : return from the instruction Stack Frame for a function call includes! Function arguments! Return address! Local variables! Saved registers Base pointer EBP! Fixed reference point in the Stack Frame! Useful for referencing arguments and local variables 25

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

CSC 2400: Computer Systems. Using the Stack for Function Calls

CSC 2400: Computer Systems. Using the Stack for Function Calls CSC 24: Computer Systems Using the Stack for Function Calls Lecture Goals Challenges of supporting functions! Providing information for the called function Function arguments and local variables! Allowing

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls"

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls" 1 Lecture Goals! Challenges of supporting functions" Providing information for the called function" Function arguments and local variables" Allowing

More information

CSC 2400: Computing Systems. X86 Assembly: Function Calls

CSC 2400: Computing Systems. X86 Assembly: Function Calls CSC 24: Computing Systems X86 Assembly: Function Calls 1 Lecture Goals Challenges of supporting functions Providing information for the called function Function arguments and local variables Allowing the

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and returning Passing parameters Storing local variables Handling registers without interference

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and returning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems

Assembly Language: Function Calls. Goals of this Lecture. Function Call Problems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems: Calling and urning Passing parameters Storing local variables Handling registers without interference Returning

More information

Assembly Language: Function Calls" Goals of this Lecture"

Assembly Language: Function Calls Goals of this Lecture Assembly Language: Function Calls" 1 Goals of this Lecture" Help you learn:" Function call problems:" Calling and urning" Passing parameters" Storing local variables" Handling registers without interference"

More information

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site)

Function Calls COS 217. Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) Function Calls COS 217 Reading: Chapter 4 of Programming From the Ground Up (available online from the course Web site) 1 Goals of Today s Lecture Finishing introduction to assembly language o EFLAGS register

More information

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call

Stack -- Memory which holds register contents. Will keep the EIP of the next address after the call Call without Parameter Value Transfer What are involved? ESP Stack Pointer Register Grows by 4 for EIP (return address) storage Stack -- Memory which holds register contents Will keep the EIP of the next

More information

Systems I. Machine-Level Programming V: Procedures

Systems I. Machine-Level Programming V: Procedures Systems I Machine-Level Programming V: Procedures Topics abstraction and implementation IA32 stack discipline Procedural Memory Usage void swap(int *xp, int *yp) int t0 = *xp; int t1 = *yp; *xp = t1; *yp

More information

Assembly Language: Function Calls

Assembly Language: Function Calls Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems x86-64 solutions Pertinent instructions and conventions 2 Function Call Problems (1) Calling and returning

More information

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls

Princeton University Computer Science 217: Introduction to Programming Systems. Assembly Language: Function Calls Princeton University Computer Science 217: Introduction to Programming Systems Assembly Language: Function Calls 1 Goals of this Lecture Help you learn: Function call problems x86-64 solutions Pertinent

More information

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017

143A: Principles of Operating Systems. Lecture 4: Calling conventions. Anton Burtsev October, 2017 143A: Principles of Operating Systems Lecture 4: Calling conventions Anton Burtsev October, 2017 Recap from last time Stack and procedure calls What is stack? Stack It's just a region of memory Pointed

More information

Program Exploitation Intro

Program Exploitation Intro Program Exploitation Intro x86 Assembly 04//2018 Security 1 Univeristà Ca Foscari, Venezia What is Program Exploitation "Making a program do something unexpected and not planned" The right bugs can be

More information

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017

143A: Principles of Operating Systems. Lecture 5: Calling conventions. Anton Burtsev January, 2017 143A: Principles of Operating Systems Lecture 5: Calling conventions Anton Burtsev January, 2017 Stack and procedure calls Stack Main purpose: Store the return address for the current procedure Caller

More information

The IA-32 Stack and Function Calls. CS4379/5375 Software Reverse Engineering Dr. Jaime C. Acosta

The IA-32 Stack and Function Calls. CS4379/5375 Software Reverse Engineering Dr. Jaime C. Acosta 1 The IA-32 Stack and Function Calls CS4379/5375 Software Reverse Engineering Dr. Jaime C. Acosta 2 Important Registers used with the Stack EIP: ESP: EBP: 3 Important Registers used with the Stack EIP:

More information

238P: Operating Systems. Lecture 3: Calling conventions. Anton Burtsev October, 2018

238P: Operating Systems. Lecture 3: Calling conventions. Anton Burtsev October, 2018 238P: Operating Systems Lecture 3: Calling conventions Anton Burtsev October, 2018 What does CPU do internally? (Remember Lecture 01 - Introduction?) CPU execution loop CPU repeatedly reads instructions

More information

Function Call Convention

Function Call Convention Function Call Convention Compass Security Schweiz AG Werkstrasse 20 Postfach 2038 CH-8645 Jona Tel +41 55 214 41 60 Fax +41 55 214 41 61 team@csnc.ch www.csnc.ch Content Intel Architecture Memory Layout

More information

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27

Procedure Calls. Young W. Lim Sat. Young W. Lim Procedure Calls Sat 1 / 27 Procedure Calls Young W. Lim 2016-11-05 Sat Young W. Lim Procedure Calls 2016-11-05 Sat 1 / 27 Outline 1 Introduction References Stack Background Transferring Control Register Usage Conventions Procedure

More information

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution

EECE.3170: Microprocessor Systems Design I Summer 2017 Homework 4 Solution 1. (40 points) Write the following subroutine in x86 assembly: Recall that: int f(int v1, int v2, int v3) { int x = v1 + v2; urn (x + v3) * (x v3); Subroutine arguments are passed on the stack, and can

More information

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang

CMSC 313 Lecture 12. Project 3 Questions. How C functions pass parameters. UMBC, CMSC313, Richard Chang Project 3 Questions CMSC 313 Lecture 12 How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP

More information

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016

CS 31: Intro to Systems Functions and the Stack. Martin Gagne Swarthmore College February 23, 2016 CS 31: Intro to Systems Functions and the Stack Martin Gagne Swarthmore College February 23, 2016 Reminders Late policy: you do not have to send me an email to inform me of a late submission before the

More information

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs

CSC 2400: Computer Systems. Towards the Hardware: Machine-Level Representation of Programs CSC 2400: Computer Systems Towards the Hardware: Machine-Level Representation of Programs Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32)

More information

CIT Week13 Lecture

CIT Week13 Lecture CIT 3136 - Week13 Lecture Runtime Environments During execution, allocation must be maintained by the generated code that is compatible with the scope and lifetime rules of the language. Typically there

More information

CSC 8400: Computer Systems. Machine-Level Representation of Programs

CSC 8400: Computer Systems. Machine-Level Representation of Programs CSC 8400: Computer Systems Machine-Level Representation of Programs Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32) 1 Compilation Stages

More information

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29

Procedure Calls. Young W. Lim Mon. Young W. Lim Procedure Calls Mon 1 / 29 Procedure Calls Young W. Lim 2017-08-21 Mon Young W. Lim Procedure Calls 2017-08-21 Mon 1 / 29 Outline 1 Introduction Based on Stack Background Transferring Control Register Usage Conventions Procedure

More information

x86 assembly CS449 Fall 2017

x86 assembly CS449 Fall 2017 x86 assembly CS449 Fall 2017 x86 is a CISC CISC (Complex Instruction Set Computer) e.g. x86 Hundreds of (complex) instructions Only a handful of registers RISC (Reduced Instruction Set Computer) e.g. MIPS

More information

CNIT 127: Exploit Development. Ch 2: Stack Overflows in Linux

CNIT 127: Exploit Development. Ch 2: Stack Overflows in Linux CNIT 127: Exploit Development Ch 2: Stack Overflows in Linux Stack-based Buffer Overflows Most popular and best understood exploitation method Aleph One's "Smashing the Stack for Fun and Profit" (1996)

More information

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G

CS 33: Week 3 Discussion. x86 Assembly (v1.0) Section 1G CS 33: Week 3 Discussion x86 Assembly (v1.0) Section 1G Announcements - HW2 due Sunday - MT1 this Thursday! - Lab2 out Info Name: Eric Kim (Section 1G, 2-4 PM, BH 5419) Office Hours (Boelter 2432) - Wed

More information

System Software Assignment 1 Runtime Support for Procedures

System Software Assignment 1 Runtime Support for Procedures System Software Assignment 1 Runtime Support for Procedures Exercise 1: Nested procedures Some programming languages like Oberon and Pascal support nested procedures. 1. Find a run-time structure for such

More information

CS213. Machine-Level Programming III: Procedures

CS213. Machine-Level Programming III: Procedures CS213 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows toward

More information

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Assembly III: Procedures. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Assembly III: Procedures Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu IA-32 (1) Characteristics Region of memory managed with stack discipline

More information

Lecture 4 CIS 341: COMPILERS

Lecture 4 CIS 341: COMPILERS Lecture 4 CIS 341: COMPILERS CIS 341 Announcements HW2: X86lite Available on the course web pages. Due: Weds. Feb. 7 th at midnight Pair-programming project Zdancewic CIS 341: Compilers 2 X86 Schematic

More information

16.317: Microprocessor Systems Design I Fall 2013

16.317: Microprocessor Systems Design I Fall 2013 16.317: Microprocessor Systems Design I Fall 2013 Exam 2 Solution 1. (20 points, 5 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

X86 Stack Calling Function POV

X86 Stack Calling Function POV X86 Stack Calling Function POV Computer Systems Section 3.7 Stack Frame Reg Value ebp xffff FFF0 esp xffff FFE0 eax x0000 000E Memory Address Value xffff FFF8 xffff FFF4 x0000 0004 xffff FFF4 x0000 0003

More information

ASSEMBLY III: PROCEDURES. Jo, Heeseung

ASSEMBLY III: PROCEDURES. Jo, Heeseung ASSEMBLY III: PROCEDURES Jo, Heeseung IA-32 STACK (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110

Question 4.2 2: (Solution, p 5) Suppose that the HYMN CPU begins with the following in memory. addr data (translation) LOAD 11110 Questions 1 Question 4.1 1: (Solution, p 5) Define the fetch-execute cycle as it relates to a computer processing a program. Your definition should describe the primary purpose of each phase. Question

More information

Assembly III: Procedures. Jo, Heeseung

Assembly III: Procedures. Jo, Heeseung Assembly III: Procedures Jo, Heeseung IA-32 Stack (1) Characteristics Region of memory managed with stack discipline Grows toward lower addresses Register indicates lowest stack address - address of top

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 16, SPRING 2013 TOPICS TODAY Project 6 Perils & Pitfalls of Memory Allocation C Function Call Conventions in Assembly Language PERILS

More information

Subprograms: Local Variables

Subprograms: Local Variables Subprograms: Local Variables ICS312 Machine-Level and Systems Programming Henri Casanova (henric@hawaii.edu) Local Variables in Subprograms In all the examples we have seen so far, the subprograms were

More information

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB. Lab # 10. Advanced Procedures

Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB. Lab # 10. Advanced Procedures Islamic University Gaza Engineering Faculty Department of Computer Engineering ECOM 2125: Assembly Language LAB Lab # 10 Advanced Procedures May, 2014 1 Assembly Language LAB Stack Parameters There are

More information

Subprograms: Arguments

Subprograms: Arguments Subprograms: Arguments ICS312 Machine-Level and Systems Programming Henri Casanova (henric@hawaii.edu) Activation Records The stack is useful to store and rieve urn addresses, transparently managed via

More information

Chapter 14 Functions

Chapter 14 Functions Chapter 14 Functions Function Smaller, simpler, subcomponent of program Provides abstraction hide low-level details give high-level structure to program, easier to understand overall program flow enables

More information

CMSC 313 Lecture 12 [draft] How C functions pass parameters

CMSC 313 Lecture 12 [draft] How C functions pass parameters CMSC 313 Lecture 12 [draft] How C functions pass parameters UMBC, CMSC313, Richard Chang Last Time Stack Instructions: PUSH, POP PUSH adds an item to the top of the stack POP removes an

More information

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri

CS356: Discussion #6 Assembly Procedures and Arrays. Marco Paolieri CS356: Discussion #6 Assembly Procedures and Arrays Marco Paolieri (paolieri@usc.edu) Procedures Functions are a key abstraction in software They break down a problem into subproblems. Reusable functionality:

More information

Arguments and Return Values. EE 109 Unit 16 Stack Frames. Assembly & HLL s. Arguments and Return Values

Arguments and Return Values. EE 109 Unit 16 Stack Frames. Assembly & HLL s. Arguments and Return Values 1 Arguments and Return Values 2 EE 109 Unit 16 Stack Frames MIPS convention is to use certain registers for this task used to pass up to 4 arguments. If more arguments, use the stack used for return value

More information

Machine Program: Procedure. Zhaoguo Wang

Machine Program: Procedure. Zhaoguo Wang Machine Program: Procedure Zhaoguo Wang Requirements of procedure calls? P() { y = Q(x); y++; 1. Passing control int Q(int i) { int t, z; return z; Requirements of procedure calls? P() { y = Q(x); y++;

More information

Stacks and Frames Demystified. CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han

Stacks and Frames Demystified. CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han s and Frames Demystified CSCI 3753 Operating Systems Spring 2005 Prof. Rick Han Announcements Homework Set #2 due Friday at 11 am - extension Program Assignment #1 due Tuesday Feb. 15 at 11 am - note extension

More information

Sungkyunkwan University

Sungkyunkwan University Switch statements IA 32 Procedures Stack Structure Calling Conventions Illustrations of Recursion & Pointers long switch_eg (long x, long y, long z) { long w = 1; switch(x) { case 1: w = y*z; break; case

More information

16.317: Microprocessor Systems Design I Fall 2014

16.317: Microprocessor Systems Design I Fall 2014 16.317: Microprocessor Systems Design I Fall 2014 Exam 2 Solution 1. (16 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions?

administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? administrivia today start assembly probably won t finish all these slides Assignment 4 due tomorrow any questions? exam on Wednesday today s material not on the exam 1 Assembly Assembly is programming

More information

CSCI 334: Principles of Programming Languages. Computer Architecture (a really really fast introduction) Lecture 11: Control Structures II

CSCI 334: Principles of Programming Languages. Computer Architecture (a really really fast introduction) Lecture 11: Control Structures II 1 byte{ 1 byte{ CSCI 334: Principles of Programming Languages Lecture 11: Control Structures II Computer Architecture (a really really fast introduction) Instructor: Dan Barowy Memory Instructions main

More information

W4118: PC Hardware and x86. Junfeng Yang

W4118: PC Hardware and x86. Junfeng Yang W4118: PC Hardware and x86 Junfeng Yang A PC How to make it do something useful? 2 Outline PC organization x86 instruction set gcc calling conventions PC emulation 3 PC board 4 PC organization One or more

More information

Course Administration

Course Administration Fall 2018 EE 3613: Computer Organization Chapter 2: Instruction Set Architecture Introduction 4/4 Avinash Karanth Department of Electrical Engineering & Computer Science Ohio University, Athens, Ohio 45701

More information

CS429: Computer Organization and Architecture

CS429: Computer Organization and Architecture CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: February 28, 2018 at 06:32 CS429 Slideset 9: 1 Mechanisms in Procedures

More information

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

Implementing Threads. Operating Systems In Depth II 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Implementing Threads Operating Systems In Depth II 1 Copyright 2018 Thomas W Doeppner All rights reserved The Unix Address Space stack dynamic bss data text Operating Systems In Depth II 2 Copyright 2018

More information

Instructor: Alvin R. Lebeck

Instructor: Alvin R. Lebeck X86 Assembly Programming with GNU assembler Lecture 7 Instructor: Alvin R. Lebeck Some Slides based on those from Randy Bryant and Dave O Hallaron Admin Reading: Chapter 3 Note about pointers: You must

More information

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping

IA32 Stack. Lecture 5 Machine-Level Programming III: Procedures. IA32 Stack Popping. IA32 Stack Pushing. Topics. Pushing. Popping Lecture 5 Machine-Level Programming III: Procedures Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region of memory managed with stack discipline Grows

More information

Machine-level Programming (3)

Machine-level Programming (3) Machine-level Programming (3) Procedures A: call A call A return Two issues How to return to the correct position? How to pass arguments and return values between callee to caller? 2 Procedure Control

More information

Machine Programming 3: Procedures

Machine Programming 3: Procedures Machine Programming 3: Procedures CS61, Lecture 5 Prof. Stephen Chong September 15, 2011 Announcements Assignment 2 (Binary bomb) due next week If you haven t yet please create a VM to make sure the infrastructure

More information

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002

The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables class07.ppt

More information

Part 7. Stacks. Stack. Stack. Examples of Stacks. Stack Operation: Push. Piles of Data. The Stack

Part 7. Stacks. Stack. Stack. Examples of Stacks. Stack Operation: Push. Piles of Data. The Stack Part 7 Stacks The Stack Piles of Data Stack Stack A stack is an abstract data structure that stores objects Based on the concept of a stack of items like a stack of dishes Data can only be added to or

More information

Compiler construction. x86 architecture. This lecture. Lecture 6: Code generation for x86. x86: assembly for a real machine.

Compiler construction. x86 architecture. This lecture. Lecture 6: Code generation for x86. x86: assembly for a real machine. This lecture Compiler construction Lecture 6: Code generation for x86 Magnus Myreen Spring 2018 Chalmers University of Technology Gothenburg University x86 architecture s Some x86 instructions From LLVM

More information

X86 Addressing Modes Chapter 3" Review: Instructions to Recognize"

X86 Addressing Modes Chapter 3 Review: Instructions to Recognize X86 Addressing Modes Chapter 3" Review: Instructions to Recognize" 1 Arithmetic Instructions (1)! Two Operand Instructions" ADD Dest, Src Dest = Dest + Src SUB Dest, Src Dest = Dest - Src MUL Dest, Src

More information

Subprograms, Subroutines, and Functions

Subprograms, Subroutines, and Functions Subprograms, Subroutines, and Functions Subprograms are also called subroutines, functions, procedures and methods. A function is just a subprogram that returns a value; say Y = SIN(X). In general, the

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Machine-Level Programming III: Procedures Dr. Steve Goddard goddard@cse.unl.edu Giving credit where credit is due Most of slides for this lecture are based on slides created

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 4

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 4 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 4 LAST TIME Enhanced our processor design in several ways Added branching support Allows programs where work is proportional to the input values

More information

Mechanisms in Procedures. CS429: Computer Organization and Architecture. x86-64 Stack. x86-64 Stack Pushing

Mechanisms in Procedures. CS429: Computer Organization and Architecture. x86-64 Stack. x86-64 Stack Pushing CS429: Computer Organization and Architecture Dr. Bill Young Department of Computer Sciences University of Texas at Austin Last updated: February 28, 2018 at 06:32 Mechanisms in Procedures Passing Control

More information

CSE 351: Week 4. Tom Bergan, TA

CSE 351: Week 4. Tom Bergan, TA CSE 35 Week 4 Tom Bergan, TA Does this code look okay? int binarysearch(int a[], int length, int key) { int low = 0; int high = length - ; while (low

More information

Assembly Language Programming: Procedures. EECE416 uc. Charles Kim Howard University. Fall

Assembly Language Programming: Procedures. EECE416 uc. Charles Kim Howard University. Fall Assembly Language Programming: Procedures EECE416 uc Charles Kim Howard University Fall 2013 www.mwftr.com Before we start Schedule of the next few weeks T Nov 19: Procedure and Calls (continued) R Nov

More information

CSE P 501 Compilers. x86 Lite for Compiler Writers Hal Perkins Autumn /25/ Hal Perkins & UW CSE J-1

CSE P 501 Compilers. x86 Lite for Compiler Writers Hal Perkins Autumn /25/ Hal Perkins & UW CSE J-1 CSE P 501 Compilers x86 Lite for Compiler Writers Hal Perkins Autumn 2011 10/25/2011 2002-11 Hal Perkins & UW CSE J-1 Agenda Learn/review x86 architecture Core 32-bit part only for now Ignore crufty, backward-compatible

More information

CPS104 Recitation: Assembly Programming

CPS104 Recitation: Assembly Programming CPS104 Recitation: Assembly Programming Alexandru Duțu 1 Facts OS kernel and embedded software engineers use assembly for some parts of their code some OSes had their entire GUIs written in assembly in

More information

Procedure-Calling Conventions October 30

Procedure-Calling Conventions October 30 Procedure-Calling Conventions October 30 CSC201 Section 002 Fall, 2000 Saving registers Registers are inevitably used by subroutines; changes their! Registers have global scope; calling procedures also

More information

Procedure Call. Procedure Call CS 217. Involves following actions

Procedure Call. Procedure Call CS 217. Involves following actions Procedure Call CS 217 Procedure Call Involves following actions pass arguments save a return address transfer control to callee transfer control back to caller return results int add(int a, int b) { return

More information

6.1. CS356 Unit 6. x86 Procedures Basic Stack Frames

6.1. CS356 Unit 6. x86 Procedures Basic Stack Frames 6.1 CS356 Unit 6 x86 Procedures Basic Stack Frames 6.2 Review of Program Counter (Instruc. Pointer) PC/IP is used to fetch an instruction PC/IP contains the address of the next instruction The value in

More information

Implementing Functions at the Machine Level

Implementing Functions at the Machine Level Subroutines/Functions Implementing Functions at the Machine Level A subroutine is a program fragment that... Resides in user space (i.e, not in OS) Performs a well-defined task Is invoked (called) by a

More information

Assembler Programming. Lecture 10

Assembler Programming. Lecture 10 Assembler Programming Lecture 10 Lecture 10 Mixed language programming. C and Basic to MASM Interface. Mixed language programming Combine Basic, C, Pascal with assembler. Call MASM routines from HLL program.

More information

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element

Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address = address of top element Machine Representa/on of Programs: Procedures Instructors: Sanjeev Se(a 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoGom Increasing Addresses Register

More information

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address

IA32 Stack. Stack BoDom. Region of memory managed with stack discipline Grows toward lower addresses. Register %esp contains lowest stack address IA32 Procedures 1 IA32 Stack Region of memory managed with stack discipline Grows toward lower addresses Stack BoDom Increasing Addresses Register contains lowest stack address address of top element Stack

More information

Lab 10: Introduction to x86 Assembly

Lab 10: Introduction to x86 Assembly CS342 Computer Security Handout # 8 Prof. Lyn Turbak Wednesday, Nov. 07, 2012 Wellesley College Revised Nov. 09, 2012 Lab 10: Introduction to x86 Assembly Revisions: Nov. 9 The sos O3.s file on p. 10 was

More information

Lecture 5. Announcements: Today: Finish up functions in MIPS

Lecture 5. Announcements: Today: Finish up functions in MIPS Lecture 5 Announcements: Today: Finish up functions in MIPS 1 Control flow in C Invoking a function changes the control flow of a program twice. 1. Calling the function 2. Returning from the function In

More information

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing

IA32 Stack The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, IA32 Stack Popping. IA32 Stack Pushing 15-213 The course that gives CMU its Zip! Machine-Level Programming III: Procedures Sept. 17, 2002 Topics IA32 stack discipline Register saving conventions Creating pointers to local variables IA32 Region

More information

x86 Assembly Tutorial COS 318: Fall 2017

x86 Assembly Tutorial COS 318: Fall 2017 x86 Assembly Tutorial COS 318: Fall 2017 Project 1 Schedule Design Review: Monday 9/25 Sign up for 10-min slot from 3:00pm to 7:00pm Complete set up and answer posted questions (Official) Precept: Monday

More information

University of Washington

University of Washington Roadmap C: car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq %rbp movq %rsp, %rbp... popq %rbp

More information

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS

Lectures 5. Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS Lectures 5 Announcements: Today: Oops in Strings/pointers (example from last time) Functions in MIPS 1 OOPS - What does this C code do? int foo(char *s) { int L = 0; while (*s++) { ++L; } return L; } 2

More information

Digital Forensics Lecture 3 - Reverse Engineering

Digital Forensics Lecture 3 - Reverse Engineering Digital Forensics Lecture 3 - Reverse Engineering Low-Level Software Akbar S. Namin Texas Tech University Spring 2017 Reverse Engineering High-Level Software Low-level aspects of software are often the

More information

Functions in MIPS. Functions in MIPS 1

Functions in MIPS. Functions in MIPS 1 Functions in MIPS We ll talk about the 3 steps in handling function calls: 1. The program s flow of control must be changed. 2. Arguments and return values are passed back and forth. 3. Local variables

More information

Compiling Code, Procedures and Stacks

Compiling Code, Procedures and Stacks Compiling Code, Procedures and Stacks L03-1 RISC-V Recap Computational Instructions executed by ALU Register-Register: op dest, src1, src2 Register-Immediate: op dest, src1, const Control flow instructions

More information

Towards the Hardware"

Towards the Hardware CSC 2400: Computer Systems Towards the Hardware Chapter 2 Towards the Hardware High-level language (Java) High-level language (C) assembly language machine language (IA-32) 1 High-Level Language Make programming

More information

16.317: Microprocessor Systems Design I Fall 2015

16.317: Microprocessor Systems Design I Fall 2015 16.317: Microprocessor Systems Design I Fall 2015 Exam 2 Solution 1. (16 points, 4 points per part) Multiple choice For each of the multiple choice questions below, clearly indicate your response by circling

More information

Machine-level Programs Procedure

Machine-level Programs Procedure Computer Systems Machine-level Programs Procedure Han, Hwansoo Mechanisms in Procedures Passing control To beginning of procedure code Back to return point Passing data Procedure arguments Return value

More information

Intel assembly language using gcc

Intel assembly language using gcc QOTD Intel assembly language using gcc Assembly language programming is difficult. Make no mistake about that. It is not for wimps and weaklings. - Tanenbaum s 6th, page 519 These notes are a supplement

More information

Buffer Overflow Attack (AskCypert CLaaS)

Buffer Overflow Attack (AskCypert CLaaS) Buffer Overflow Attack (AskCypert CLaaS) ---------------------- BufferOverflow.c code 1. int main(int arg c, char** argv) 2. { 3. char name[64]; 4. printf( Addr;%p\n, name); 5. strcpy(name, argv[1]); 6.

More information

Stack Discipline Jan. 19, 2018

Stack Discipline Jan. 19, 2018 15-410 An Experience Like No Other Discipline Jan. 19, 2018 Dave Eckhardt Brian Railing Slides originally stolen from 15-213 1 15-410, S 18 Synchronization Registration The wait list will probably be done

More information

Practical Malware Analysis

Practical Malware Analysis Practical Malware Analysis Ch 4: A Crash Course in x86 Disassembly Revised 1-16-7 Basic Techniques Basic static analysis Looks at malware from the outside Basic dynamic analysis Only shows you how the

More information

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control.

What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope. C Flow Control. C Flow Control David Chisnall February 1, 2011 Outline What the CPU Sees Basic Flow Control Conditional Flow Control Structured Flow Control Functions and Scope Disclaimer! These slides contain a lot of

More information

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 21: Generating Pentium Code 10 March 08

CS412/CS413. Introduction to Compilers Tim Teitelbaum. Lecture 21: Generating Pentium Code 10 March 08 CS412/CS413 Introduction to Compilers Tim Teitelbaum Lecture 21: Generating Pentium Code 10 March 08 CS 412/413 Spring 2008 Introduction to Compilers 1 Simple Code Generation Three-address code makes it

More information

Machine-Level Programming III: Procedures

Machine-Level Programming III: Procedures Machine-Level Programming III: Procedures CSE 238/2038/2138: Systems Programming Instructor: Fatma CORUT ERGİN Slides adapted from Bryant & O Hallaron s slides Mechanisms in Procedures Passing control

More information

Calling Conventions. See P&H 2.8 and Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Calling Conventions. See P&H 2.8 and Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Calling Conventions See P&H 2.8 and 2.12 Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Goals for Today Review: Calling Conventions call a routine (i.e. transfer control to

More information