Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Size: px
Start display at page:

Download "Propositional Calculus. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson"

Transcription

1 Propositional Calculus CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

2 Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus so that they can use it to codify logical statements and to reason about these statements. To illustrate how a computer can be used to carry out formal proofs and to provide a framework for logical deduction. 2

3 Propositional Calculus Topics Motivation Boolean functions and expressions Rules of Boolean Algebra Tautologies and automatic verification of tautologies

4 Word Problem Tom likes Jane if and only if Jane likes Tom. Jane likes Bill. Therefore, Tom does not like Jane. Let p denote Tom likes Jane Let q denote Jane likes Tom Let r denote Jane likes Bill ((p q) r) p encodes the above claim The claim is not valid as the assignment p = true, q = true, and r = true evaluates to false

5 Programming Example Boolean expressions arise in conditional statements. It is possible to abstract the relations with boolean variables (propositions that are either true or false). Using this abstraction one can reason and simplify conditional statements. if ((a < b) ((a >= b) && (c == d)) then { } else { } Let p denote the relation (a<b) and q denote the relation (c == d). The above expression is then equal to p!p && q 5

6 Programming Example (cont) The previous expression is equivalent (two expressions are equivalent if they are true for the same values of the variables occurring in the expressions) to a simpler expression (p!p && q) p q We can see this since if p is true both expressions are true, and if p is false, then!p is true and (!p && q) is true exactly when q is true. 6

7 Limitations of Propositional Calculus Propositions hide the information in the predicates they abstract. Sometimes properties of the hidden information is required to make further deductions. E.G. for integers a,b, and c, (a < b) && (b < c) implies that a < c; however, this can not be deduced without using the order properties of the integers. The predicate calculus allows the use of predicates to encode this additional information. E.G. we can introduce a parameterized predicate lt(a,b) to encode the predicate a < b. Properties such as lt(a,b) && lt(b,c) lt(a,c) can be asserted. This type of notation and deduction is called predicate calculus and will be discussed later. 7

8 Boolean Functions A Boolean variable has two possible values (true/false) (1/0). A Boolean function has a number of Boolean input variables and has a Boolean valued output. x 0 x 1 f s x 0 x 1 f A Boolean function can be described using a truth table. There are 2 2n Boolean function of n variables. s Multiplexor function

9 Boolean Expressions BExpr := Constant: T F Variable Negation: BExpr And: BExpr BExpr Or: BExpr BExpr 9

10 Expression Trees Boolean expressions can be represented by a binary tree Internal nodes are operators Leaf nodes are operands Consider p (T q): p T q

11 Example Derivation BExpr BExpr BExpr Variable BExpr p BExpr p p p BExpr BExpr Constant BExpr T BExpr

12 Example Derivation p p p T BExpr T BExpr T Constant p T p (T q) q

13 Predicate for Boolean Expressions define isbooleanexpr(expr) return true if the input expr is a Boolean expression if constant return true if variable return true if isnegation(expr) and isbooleanexpr(operand(expr)) return true if isdisjunction(expr) and isbooleanexpr(firstoperand(expr)) and isbooleanexpr(secondoperand(expr)) then return true if isconjunction(expr) and isbooleanexpr(firstoperand(expr)) and isbooleanexpr(secondoperand(expr)) then return true else return false 13

14 Semantics of Boolean Expressions An expression built up from variables, and, or, and not. x y x y x y x y x x and or not 14

15 Evaluating Expression Trees Assume p = T and q = F T p=t p=t p=t T T T T q=f

16 Evaluation define booleaneval(expr, env) Input: expr is a Boolean Expression, env is an environment of variable assignments to T or F. Assume all variables in expr are defined in env Output: true if expr evaluates to true and false if expr evaluates to false if isconstant(expr) return expr if isvariable(expr) return lookup(expr,env) if isnegation(expr) return not booleaneval(operand(expr)) if isdisjunction(expr) return booleaneval(firstoperand(expr)) or booleaneval(secondoperand(expr)) if isconjunction(expr) return booleaneval(firstoperand(expr)) and booleaneval(secondoperand(expr))

17 Short Circuit Evaluation define booleaneval(expr, env) Input: expr is a Boolean Expression, env is an environment of variable assignments to T or F. Assume all variables in expr are defined in env Output: true if expr evaluates to true and false if expr evaluates to false if isconstant(expr) return expr if isvariable(expr) return lookup(expr,env) if isnegation(expr) return not booleaneval(operand(expr)) if isdisjunction(expr) if booleaneval(firstoperand(expr)) return true else return booleaneval(secondoperand(expr)) if isdisjunction(expr) if not booleaneval(firstoperand(expr)) return false else return booleaneval(secondoperand(expr))

18 Disjunctive Normal Form A Boolean expression is a Boolean function Any Boolean function can be written as a Boolean expression Write a Boolean expression that evaluates to true for each row in the truth table that is true and false for other rows. The Boolean expression for a given row is the conjunction of the variables that are true and the negation of variables that are false. Take the disjunction of all such rows. E.G. (multiplexor function) ( s x 0 x 1 ) ( s x 0 x 1 ) (s x 0 x 1 ) (s x 0 x 1 ) s x 0 x 1 f

19 Boolean Algebra The Boolean operators and are analogous to addition and multiplication with true and false playing the roles of 1 and 0. Complement is used for negation. This provides a compact notation and suggests appropriate algebraic simplification Similar properties hold such as the associative, commutative, and distributive identities.

20 Sums of Products Disjunctive normal form, using the notation of Boolean Algebra, corresponds to a sum of products E.G. (multiplexor function) s x 0 x 1 f

21 Properties of Boolean Algebra Boolean expressions can be simplified using rules of Boolean algebra Identity law: A + 0 = A and A 1 = A. Zero and One laws: A + 1 = 1 and A 0 = 0 Inverse laws: Idempotent laws: A + A = A = A A Commutative laws: A + B = B + A and A B = B A. Associative laws: A + (B + C) = (A + B) + C and A (B C) = (A B) C. Distributive laws: A (B + C) = (A B) + (A C) and A + (B C) = (A + B) (A + C) Double Negation: AA = AA DeMorgan s laws:

22 Simplification of Boolean Expressions Simplifying multiplexor expression using Boolean algebra Equational reasoning: replace subexpressions by equivalent expressions Verify that the boolean function corresponding to this expression as the same truth table as the original function. 22

23 Nand is functionally complete All boolean functions can be implemented using nand gates (and, or and not can be implemented using nand) not: x y x y and: or:

24 Additional Notation Several additional Boolean functions of two variables have special meaning and are given special notation. By our previous results we know that all boolean functions can be expressed with not, and, and or; so the additional notation is simply a convenience. x y x y implication x y x y equivalence x y x y xor 24

25 Tautologies A tautology is a boolean expression that is always true, independent of the values of the variables occurring in the expression. The properties of Boolean Algebra are examples of tautologies. Tautologies can be verified using truth tables. The truth table below shows that x y x y x y x y x y

26 Exercise Derive the tautology x y x y from the sum of products expression obtained from the truth table for x y. You will need to use properties of Boolean algebra to simplify the sum of products expression to obtain the desired equivalence. 26

27 Derive the tautology x y x y Solution x y x y xx yy ( xx yy) xx yy xx yy ( xx yy) ( xx yy) xx yy xx yy xx ( yy yy) xx xx yy ( xx TT) (TT yy) xx yy 27

28 Tautology Checker A program can be written to check to see if a Boolean expression is a tautology. Simply generate all possible truth assignments for the variables occurring in the expression and evaluate the expression with its variables set to each of these assignments. If the evaluated expressions are always true, then the given Boolean expression is a tautology. A similar program can be written to check if any two Boolean expressions E1 and E2 are equivalent, i.e. if E1 E2. Such a program has been provided. 28

Propositional Calculus: Boolean Functions and Expressions. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Functions and Expressions CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Objective: To provide students with the concepts and

Propositional Calculus. Math Foundations of Computer Science

Propositional Calculus Math Foundations of Computer Science Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus so that they can use it to

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

Propositional Calculus. Math Foundations of Computer Science

Propositional Calculus Math Foundations of Computer Science Propositional Calculus Objective: To provide students with the concepts and techniques from propositional calculus so that they can use it to

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.5 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Boolean Operations Laws of Boolean Algebra Rules of Boolean Algebra

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Announcements Today: PS 7 Lab 8: Sound Lab tonight bring machines and headphones! PA 7 Tomorrow: Lab 9 Friday: PS8 Today (Short) Floating point review Boolean

Computer Organization and Levels of Abstraction

Computer Organization and Levels of Abstraction Announcements PS8 Due today PS9 Due July 22 Sound Lab tonight bring machines and headphones! Binary Search Today Review of binary floating point notation

CS February 17

Discrete Mathematics CS 26 February 7 Equal Boolean Functions Two Boolean functions F and G of degree n are equal iff for all (x n,..x n ) B, F (x,..x n ) = G (x,..x n ) Example: F(x,y,z) = x(y+z), G(x,y,z)

Logic Design: Part 2

Orange Coast College Business Division Computer Science Department CS 6- Computer Architecture Logic Design: Part 2 Where are we? Number systems Decimal Binary (and related Octal and Hexadecimal) Binary

COMP combinational logic 1 Jan. 18, 2016

In lectures 1 and 2, we looked at representations of numbers. For the case of integers, we saw that we could perform addition of two numbers using a binary representation and using the same algorithm that

SAT Solver. CS 680 Formal Methods Jeremy Johnson

SAT Solver CS 680 Formal Methods Jeremy Johnson Disjunctive Normal Form A Boolean expression is a Boolean function Any Boolean function can be written as a Boolean expression s x 0 x 1 f Disjunctive normal

Introduction to Boolean logic and Logical Gates

Introduction to Boolean logic and Logical Gates Institute of Statistics Fall 2014 We saw the importance of the binary number system for data representation in a computer system. We ll see that the construction

LECTURE 4. Logic Design

LECTURE 4 Logic Design LOGIC DESIGN The language of the machine is binary that is, sequences of 1 s and 0 s. But why? At the hardware level, computers are streams of signals. These signals only have two

TA: Jade Cheng ICS 241 Recitation Lecture Notes #12 November 13, 2009

TA: Jade Cheng ICS 241 Recitation Lecture Notes #12 November 13, 2009 Recitation #12 Question: Use Prim s algorithm to find a minimum spanning tree for the given weighted graph. Step 1. Start from the

CSC Discrete Math I, Spring Sets

CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

Circuit analysis summary

Boolean Algebra Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table to describe what the circuit does. You can easily convert

Review. EECS Components and Design Techniques for Digital Systems. Lec 05 Boolean Logic 9/4-04. Seq. Circuit Behavior. Outline.

Review EECS 150 - Components and Design Techniques for Digital Systems Lec 05 Boolean Logic 94-04 David Culler Electrical Engineering and Computer Sciences University of California, Berkeley Design flow

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012

Henry Lin, Department of Electrical and Computer Engineering, California State University, Bakersfield Lecture 7 (Digital Logic) July 24 th, 2012 1 Digital vs Analog Digital signals are binary; analog

Summary of Course Coverage

CS-227, Discrete Structures I Spring 2006 Semester Summary of Course Coverage 1) Propositional Calculus a) Negation (logical NOT) b) Conjunction (logical AND) c) Disjunction (logical inclusive-or) d) Inequalities

Experiment 4 Boolean Functions Implementation

Experiment 4 Boolean Functions Implementation Introduction: Generally you will find that the basic logic functions AND, OR, NAND, NOR, and NOT are not sufficient to implement complex digital logic functions.

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION

2. BOOLEAN ALGEBRA 2.1 INTRODUCTION In the previous chapter, we introduced binary numbers and binary arithmetic. As you saw in binary arithmetic and in the handling of floating-point numbers, there is

IT 201 Digital System Design Module II Notes

IT 201 Digital System Design Module II Notes BOOLEAN OPERATIONS AND EXPRESSIONS Variable, complement, and literal are terms used in Boolean algebra. A variable is a symbol used to represent a logical quantity.

Combinational Logic & Circuits

Week-I Combinational Logic & Circuits Spring' 232 - Logic Design Page Overview Binary logic operations and gates Switching algebra Algebraic Minimization Standard forms Karnaugh Map Minimization Other

Lecture (04) Boolean Algebra and Logic Gates

Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee ١ Dr. Ahmed ElShafee, ACU : Spring 26, Logic Design Boolean algebra properties basic assumptions and properties: Closure law A set S is

Lecture (04) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee

Lecture (4) Boolean Algebra and Logic Gates By: Dr. Ahmed ElShafee Boolean algebra properties basic assumptions and properties: Closure law A set S is closed with respect to a binary operator, for every

7/25/2016. Example: Addition of Unsigned Bit Patterns. ECE 120: Introduction to Computing. Adding Two Non-Negative Patterns Can Overflow

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing 2 s Complement Overflow and Boolean Logic Example: ddition of Unsigned Bit Patterns

Homework 1. Due Date: Wednesday 11/26/07 - at the beginning of the lecture

Homework 1 Due Date: Wednesday 11/26/07 - at the beginning of the lecture Problems marked with a [*] are a littlebit harder and count as extra credit. Note 1. For any of the given problems make sure that

Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

Chapter 2. Boolean Expressions:

Chapter 2 Boolean Expressions: A Boolean expression or a function is an expression which consists of binary variables joined by the Boolean connectives AND and OR along with NOT operation. Any Boolean

01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2006

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 26 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom

Menu. Algebraic Simplification - Boolean Algebra EEL3701 EEL3701. MSOP, MPOS, Simplification

Menu Minterms & Maxterms SOP & POS MSOP & MPOS Simplification using the theorems/laws/axioms Look into my... 1 Definitions (Review) Algebraic Simplification - Boolean Algebra Minterms (written as m i ):

01 Introduction to Digital Logic. ENGR 3410 Computer Architecture Mark L. Chang Fall 2008

Introduction to Digital Logic ENGR 34 Computer Architecture Mark L. Chang Fall 28 Acknowledgements Patterson & Hennessy: Book & Lecture Notes Patterson s 997 course notes (U.C. Berkeley CS 52, 997) Tom

Boolean Logic CS.352.F12

Boolean Logic CS.352.F12 Boolean Algebra Boolean Algebra Mathematical system used to manipulate logic equations. Boolean: deals with binary values (True/False, yes/no, on/off, 1/0) Algebra: set of operations

Introduction to Boolean Algebra

Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions

Assignment (3-6) Boolean Algebra and Logic Simplification - General Questions 1. Convert the following SOP expression to an equivalent POS expression. 2. Determine the values of A, B, C, and D that make

BOOLEAN ALGEBRA AND CIRCUITS

UNIT 3 Structure BOOLEAN ALGEBRA AND CIRCUITS Boolean Algebra and 3. Introduction 3. Objectives 3.2 Boolean Algebras 3.3 Logic 3.4 Boolean Functions 3.5 Summary 3.6 Solutions/ Answers 3. INTRODUCTION This

Programming Languages Third Edition

Programming Languages Third Edition Chapter 12 Formal Semantics Objectives Become familiar with a sample small language for the purpose of semantic specification Understand operational semantics Understand

Introduction to Computer Architecture

Boolean Operators The Boolean operators AND and OR are binary infix operators (that is, they take two arguments, and the operator appears between them.) A AND B D OR E We will form Boolean Functions of

Introduction to Boolean Algebra

Introduction to Boolean Algebra Boolean algebra which deals with two-valued (true / false or and ) variables and functions find its use in modern digital computers since they too use two-level systems

Lecture 5. Logic I. Statement Logic

Ling 726: Mathematical Linguistics, Logic. Statement Logic V. Borschev and B. Partee, September 27, 2 p. Lecture 5. Logic I. Statement Logic. Statement Logic...... Goals..... Syntax of Statement Logic....2.

LECTURE 2 An Introduction to Boolean Algebra

IST 210: Boot Camp Ritendra Datta LECTURE 2 An Introduction to Boolean Algebra 2.1. Outline of Lecture Fundamentals Negation, Conjunction, and Disjunction Laws of Boolean Algebra Constructing Truth Tables

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

Bawar Abid Abdalla. Assistant Lecturer Software Engineering Department Koya University

Logic Design First Stage Lecture No.6 Boolean Algebra Bawar Abid Abdalla Assistant Lecturer Software Engineering Department Koya University Outlines Boolean Operations Laws of Boolean Algebra Rules of

Systems Architecture I

Systems Architecture I Topics Review of Digital Circuits and Logic Design Review of Sequential Logic Circuits Compilers, Assemblers, Linkers & Loaders Notes Courtesy of Jeremy R. Johnson Lec 2 Systems

Propositional Calculus

Propositional Calculus Proposition is a statement that is either or. Example 1 Propositions: It rains. Sun is shining and my coat is wet. If Ann plays with me, I give her a candy. x > 10 x = 1 and y

Lecture #21 March 31, 2004 Introduction to Gates and Circuits

Lecture #21 March 31, 2004 Introduction to Gates and Circuits To this point we have looked at computers strictly from the perspective of assembly language programming. While it is possible to go a great

CS Bootcamp Boolean Logic Autumn 2015 A B A B T T T T F F F T F F F F T T T T F T F T T F F F

1 Logical Operations 1.1 And The and operator is a binary operator, denoted as, &,, or sometimes by just concatenating symbols, is true only if both parameters are true. A B A B F T F F F F The expression

2.1 Sets 2.2 Set Operations

CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

(a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are rational they can be written as the ratio of integers a 1

CS 70 Discrete Mathematics for CS Fall 2000 Wagner MT1 Sol Solutions to Midterm 1 1. (16 pts.) Theorems and proofs (a) (4 pts) Prove that if a and b are rational, then ab is rational. Since a and b are

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007

VLSI System Design Part II : Logic Synthesis (1) Oct.2006 - Feb.2007 Lecturer : Tsuyoshi Isshiki Dept. Communications and Integrated Systems, Tokyo Institute of Technology isshiki@vlsi.ss.titech.ac.jp

Logic and Computation

Logic and Computation From Conceptualization to Formalization Here's what we do when we build a formal model (or do a computation): 0. Identify a collection of objects/events in the real world. This is

Boolean Algebra and Logic Gates

Boolean Algebra and Logic Gates Binary logic is used in all of today's digital computers and devices Cost of the circuits is an important factor Finding simpler and cheaper but equivalent circuits can

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Sets Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Sets Sets A set is an unordered collection of objects, called elements, without duplication. We write a A to denote that a is an element

Variable, Complement, and Literal are terms used in Boolean Algebra.

We have met gate logic and combination of gates. Another way of representing gate logic is through Boolean algebra, a way of algebraically representing logic gates. You should have already covered the

Simplification of Boolean Functions

COM111 Introduction to Computer Engineering (Fall 2006-2007) NOTES 5 -- page 1 of 5 Introduction Simplification of Boolean Functions You already know one method for simplifying Boolean expressions: Boolean

Standard Boolean Forms

Standard Boolean Forms In this section, we develop the idea of standard forms of Boolean expressions. In part, these forms are based on some standard Boolean simplification rules. Standard forms are either

BOOLEAN ALGEBRA. Logic circuit: 1. From logic circuit to Boolean expression. Derive the Boolean expression for the following circuits.

COURSE / CODE DIGITAL SYSTEMS FUNDAMENTAL (ECE 421) DIGITAL ELECTRONICS FUNDAMENTAL (ECE 422) BOOLEAN ALGEBRA Boolean Logic Boolean logic is a complete system for logical operations. It is used in countless

Objectives: 1- Bolean Algebra. Eng. Ayman Metwali

Objectives: Chapter 3 : 1- Boolean Algebra Boolean Expressions Boolean Identities Simplification of Boolean Expressions Complements Representing Boolean Functions 2- Logic gates 3- Digital Components 4-

SYNERGY INSTITUTE OF ENGINEERING & TECHNOLOGY,DHENKANAL LECTURE NOTES ON DIGITAL ELECTRONICS CIRCUIT(SUBJECT CODE:PCEC4202)

Lecture No:5 Boolean Expressions and Definitions Boolean Algebra Boolean Algebra is used to analyze and simplify the digital (logic) circuits. It uses only the binary numbers i.e. 0 and 1. It is also called

At this point in our study of digital circuits, we have two methods for representing combinational logic: schematics and truth tables.

HPTER FIVE oolean lgebra 5.1 Need for oolean Expressions t this point in our study of digital circuits, we have two methods for representing combinational logic: schematics and truth tables. 0 0 0 1 0

6.1 Combinational Circuits. George Boole ( ) Claude Shannon ( )

6. Combinational Circuits George Boole (85 864) Claude Shannon (96 2) Signals and Wires Digital signals Binary (or logical ) values: or, on or off, high or low voltage Wires. Propagate digital signals

Boolean Algebra A B A AND B = A*B A B A OR B = A+B

Boolean Algebra Algebra is the branch of mathematics that deals with variables. Variables represent unknown values and usually can stand for any real number. Because computers use only 2 numbers as we

Boolean algebra. June 17, Howard Huang 1

Boolean algebra Yesterday we talked about how analog voltages can represent the logical values true and false. We introduced the basic Boolean operations AND, OR and NOT, which can be implemented in hardware

4. Write a sum-of-products representation of the following circuit. Y = (A + B + C) (A + B + C)

COP 273, Winter 26 Exercises 2 - combinational logic Questions. How many boolean functions can be defined on n input variables? 2. Consider the function: Y = (A B) (A C) B (a) Draw a combinational logic

Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions

EE210: Switching Systems Lecture 3: Binary Subtraction, Switching Algebra, Gates, and Algebraic Expressions Prof. YingLi Tian Feb. 5/7, 2019 Department of Electrical Engineering The City College of New

2.1 Binary Logic and Gates

1 EED2003 Digital Design Presentation 2: Boolean Algebra Asst. Prof.Dr. Ahmet ÖZKURT Asst. Prof.Dr Hakkı T. YALAZAN Based on the Lecture Notes by Jaeyoung Choi choi@comp.ssu.ac.kr Fall 2000 2.1 Binary

Unit-IV Boolean Algebra

Unit-IV Boolean Algebra Boolean Algebra Chapter: 08 Truth table: Truth table is a table, which represents all the possible values of logical variables/statements along with all the possible results of

QUESTION BANK FOR TEST

CSCI 2121 Computer Organization and Assembly Language PRACTICE QUESTION BANK FOR TEST 1 Note: This represents a sample set. Please study all the topics from the lecture notes. Question 1. Multiple Choice

DKT 122/3 DIGITAL SYSTEM 1

Company LOGO DKT 122/3 DIGITAL SYSTEM 1 BOOLEAN ALGEBRA (PART 2) Boolean Algebra Contents Boolean Operations & Expression Laws & Rules of Boolean algebra DeMorgan s Theorems Boolean analysis of logic circuits

ENGIN 112 Intro to Electrical and Computer Engineering

ENGIN 2 Intro to Electrical and Computer Engineering Lecture 5 Boolean Algebra Overview Logic functions with s and s Building digital circuitry Truth tables Logic symbols and waveforms Boolean algebra

Math 55 - Spring 04 - Lecture notes # 1 - Jan 20 (Tuesday)

Math 55 - Spring 04 - Lecture notes # 1 - Jan 20 (Tuesday) Name, class, URL (www.cs.berkeley.edu/~demmel/ma55) on board Head TA Mike West speaks on bureaucracy Advertise CS 70 (T Th 2-3:30) as an "honors"

EE292: Fundamentals of ECE

EE292: Fundamentals of ECE Fall 2012 TTh 10:00-11:15 SEB 1242 Lecture 22 121115 http://www.ee.unlv.edu/~b1morris/ee292/ 2 Outline Review Binary Number Representation Binary Arithmetic Combinatorial Logic

Information Science 1

Information Science Boolean Expressions Week College of Information Science and Engineering Ritsumeikan University Topics covered l Terms and concepts from Week 9 l Binary (Boolean) logic History Boolean

ENGIN 112. Intro to Electrical and Computer Engineering

ENIN 2 Intro to Electrical and Computer Engineering Lecture 6 More Boolean Algebra ENIN2 L6: More Boolean Algebra September 5, 23 A B Overview Epressing Boolean functions Relationships between algebraic

Computer Engineering Chapter 3 Boolean Algebra

Computer Engineering Chapter 3 Boolean Algebra Hiroaki Kobayashi 5/30/2011 Ver. 06102011 5/30/2011 Computer Engineering 1 Agenda in Chapter 3 What is Boolean Algebra Basic Boolean/Logical Operations (Operators)

Combinational Devices and Boolean Algebra

Combinational Devices and Boolean Algebra Silvina Hanono Wachman M.I.T. L02-1 6004.mit.edu Home: Announcements, course staff Course information: Lecture and recitation times and locations Course materials

Combinational Logic Circuits

Chapter 2 Combinational Logic Circuits J.J. Shann (Slightly trimmed by C.P. Chung) Chapter Overview 2-1 Binary Logic and Gates 2-2 Boolean Algebra 2-3 Standard Forms 2-4 Two-Level Circuit Optimization

3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f?

1. Prove: A full m-ary tree with i internal vertices contains n = mi + 1 vertices. 2. For a full m-ary tree with n vertices, i internal vertices, and l leaves, prove: (i) i = (n 1)/m and l = [(m 1)n +

A Survey of Mathematics with Applications 8 th Edition, 2009

A Correlation of A Survey of Mathematics with Applications 8 th Edition, 2009 South Carolina Discrete Mathematics Sample Course Outline including Alternate Topics and Related Objectives INTRODUCTION This

Standard Forms of Expression. Minterms and Maxterms

Standard Forms of Expression Minterms and Maxterms Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains:

Section 001. Read this before starting!

Points missed: Student's Name: Total score: / points East Tennessee State University Department of Computer and Information Sciences CSCI 25 (Tarnoff) Computer Organization TEST 2 for Fall Semester, 25

Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Chapter 6 Outline. Unary Relational Operations: SELECT and

Chapter 6 The Relational Algebra and Relational Calculus Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 6 Outline Unary Relational Operations: SELECT and PROJECT Relational

Introductory logic and sets for Computer scientists

Introductory logic and sets for Computer scientists Nimal Nissanke University of Reading ADDISON WESLEY LONGMAN Harlow, England II Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario

Logic Gates and Boolean Algebra ENT263

Logic Gates and Boolean Algebra ENT263 Logic Gates and Boolean Algebra Now that we understand the concept of binary numbers, we will study ways of describing how systems using binary logic levels make

24 Nov Boolean Operations. Boolean Algebra. Boolean Functions and Expressions. Boolean Functions and Expressions

24 Nov 25 Boolean Algebra Boolean algebra provides the operations and the rules for working with the set {, }. These are the rules that underlie electronic circuits, and the methods we will discuss are

UNIT 2 BOOLEAN ALGEBRA

UNIT 2 BOOLEN LGEBR Spring 2 2 Contents Introduction Basic operations Boolean expressions and truth tables Theorems and laws Basic theorems Commutative, associative, and distributive laws Simplification

CS40-S13: Functional Completeness

CS40-S13: Functional Completeness Victor Amelkin victor@cs.ucsb.edu April 12, 2013 In class, we have briefly discussed what functional completeness means and how to prove that a certain system (a set)

CS470: Computer Architecture. AMD Quad Core

CS470: Computer Architecture Yashwant K. Malaiya, Professor malaiya@cs.colostate.edu AMD Quad Core 1 Architecture Layers Building blocks Gates, flip-flops Functional bocks: Combinational, Sequential Instruction

CS8803: Advanced Digital Design for Embedded Hardware

CS883: Advanced Digital Design for Embedded Hardware Lecture 2: Boolean Algebra, Gate Network, and Combinational Blocks Instructor: Sung Kyu Lim (limsk@ece.gatech.edu) Website: http://users.ece.gatech.edu/limsk/course/cs883

LOGIC AND DISCRETE MATHEMATICS

LOGIC AND DISCRETE MATHEMATICS A Computer Science Perspective WINFRIED KARL GRASSMANN Department of Computer Science University of Saskatchewan JEAN-PAUL TREMBLAY Department of Computer Science University

Boolean Algebra. P1. The OR operation is closed for all x, y B x + y B

Boolean Algebra A Boolean Algebra is a mathematical system consisting of a set of elements B, two binary operations OR (+) and AND ( ), a unary operation NOT ('), an equality sign (=) to indicate equivalence

1. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z

CS W3827 05S Solutions for Midterm Exam 3/3/05. Fill in the entries in the truth table below to specify the logic function described by the expression, AB AC A B C Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.

GC03 Boolean Algebra

Why study? GC3 Boolean Algebra Computers transfer and process binary representations of data. Binary operations are easily represented and manipulated in Boolean algebra! Digital electronics is binary/boolean

Logic and its Applications

Logic and its Applications Edmund Burke and Eric Foxley PRENTICE HALL London New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich Contents Preface xiii Propositional logic 1 1.1 Informal introduction

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1.1 A theorem in Boolean algebra: a) Can easily be proved by e.g. logic induction b) Is a logical statement that is assumed to be true, c) Can be contradicted by another